Cornell University Library

Mathematics > Number Theory

Gaussian Behavior in Generalized Zeckendorf Decompositions

Steven J. Miller, Yinghui Wang

(Submitted on 14 Jul 2011)

> A beautiful theorem of Zeckendorf states that every integer can be written uniquely as a sum of non-consecutive Fibonacci numbers $\$ \backslash\left\{F_{-n} n\right\} _\{n=1\}^{\wedge}$ $\{$ linfty $\} \$$; Lekkerkerker proved that the average number of summands for integers in $\$\left[F _n, F _\{n+1\}\right) \$$ is $\$ n /($ phi^2 +1$) \$$, with $\$$ lphi $\$$ the golden mean. Interestingly, the higher moments seem to have been ignored. We discuss the proof that the distribution of the number of summands converges to a Gaussian as $\$ n \backslash t o$ linfty $\$$, and comment on generalizations to related decompositions. For example, every integer can be written uniquely as a sum of the $\$ \backslash p m ~ F _n \$ ' s$, such that every two terms of the same (opposite) sign differ in index by at least 4 (3). The distribution of the numbers of positive and negative summands converges to a bivariate normal with computable, negative correlation, namely $\$-(21-2 \backslash p h i) /(29+2 \backslash p h i)$ lapprox $-0.551058 \$$.

Comments: This is a survey article based on talks given at CANT 2010 and CANT 2011
Subjects: Number Theory (math.NT)
MSC classes: 11B39 (primary) 65Q30, 60B10 (secondary)
Cite as: arXiv:1107.2718 [math.NT] (or arXiv:1107.2718v1 [math.NT] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.NT
 < prev | next > new | recent | 1107

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)


```
*)
```


Submission history

From: Steven Miller [view email]
[v1] Thu, 14 Jul 2011 02:54:51 GMT (33kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

