Cornell University

Mathematics > Number Theory

A Note on Terence Tao's Paper "On the Number of Solutions to

4/p=1/n_1+1/n_2+1/n_3"

Chaohua Jia
(Submitted on 27 Jul 2011)

For the positive integer $\$ n \$$, let $\$ f(n) \$$ denote the number of positive integer solutions $\$\left(n _1, \backslash, n _2, \backslash, n _3\right) \$$ of the Diophantine equation $\$ \$\{4 \backslash$ over $n\}=\{1$ lover n_1 $\}+\left\{1 \backslash o v e r n _2\right\}+\{1 \backslash o v e r$ $\left.n _3\right\}$. $\$ \$$ For the prime number $\$ p \$, \$ f(p) \$$ can be split into $\$ f _1(p)+f _2(p), \$$ where $\$ f \quad i(p)(i=1, \backslash, 2) \$$ counts those solutions with exactly $\$ 1 \$$ of denominators\$n_1,
,n_2, ,,n_3\$ divisible by \$p.\$ Recently Terence Tao proved that \$\$ \sum_\{p<x\}f_2(p)\II x\log^2x\log\logx \$\$ with other results. But actually only the upper bound $\$ x \backslash \log { }^{\wedge} 2 x \backslash \log \backslash \log { }^{\wedge} 2 x \$$ can be obtained in his discussion. In this note we shall use an elementary method to save a factor $\$ \backslash \log \backslash \log x \$$ and recover the above estimate.

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.NT
< prev | next >
new | recent | 1107
Change to browse b math

References \& Citatic - NASA ADS

Bookmark(what is this?)

Subjects: Number Theory (math.NT)
Cite as: arXiv:1107.5394 [math.NT] (or arXiv:1107.5394v1 [math.NT] for this version)

Submission history

From: Chaohua Jia [view email]
[v1] Wed, 27 Jul 2011 05:55:52 GMT (3kb)
Which authors of this paper are endorsers?

