Mathematics > Number Theory

A one-sided power sum inequality

Frits Beukers, Rob Tijdeman

(Submitted on 27 Jul 2011 (v1), last revised 6 Nov 2012 (this version, v3))
In this note we prove results of the following types. Let be given distinct complex numbers $\$ z _\$$ satisfying the conditions $\$\left|z _j\right|=1, z _\backslash n o t=1 \$$ for $\$ j=1, \ldots, n \$$ and for every $\$ z _j \$$ there exists an $\$ i \$$ such that $\$ z _i=\backslash b a r\left\{z _j\right\} . \$$ Then \$\$ linf_\{k\} \sum_\{j=1\}^n z_j^k Vleq-1. \$\$ If, moreover, none of the
 $\{2\}\left\{\backslash \mathrm{pi}^{\wedge} 3\right\} \backslash \log \mathrm{n}$. $\$ \$$ The constant -1 in the former result is the best possible. The above results are special cases of upper bounds for \$linf_\{k\} \sum_\{j=1\} ${ }^{\wedge} \mathrm{n} \mathrm{b} _\mathrm{jz} \mathrm{j}^{\wedge} k \$$ obtained in this paper.

Comments: 10 pages, to appear in Indagationes Mathematicae
Subjects: Number Theory (math.NT)
MSC classes: 11N30
Cite as: arXiv:1107.5495 [math.NT] (or arXiv:1107.5495v3 [math.NT] for this version)

Submission history

From: Rob Tijdeman [view email]
[v1] Wed, 27 Jul 2011 14:48:45 GMT (4kb)
[v2] Fri, 13 Jan 2012 10:07:44 GMT (7kb)
[v3] Tue, 6 Nov 2012 12:34:43 GMT (8kb)

Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.NT
< prev | next > new | recent | 1107

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)


```
*)
```

Link back to: arXiv, form interface, contact.

