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TWISTED GROSS-ZAGIER THEOREMS

BENJAMIN HOWARD

ABSTRACT. The theorems of Gross-Zagier and Zhang relate the Néron-Tate
heights of complex multiplication points on the modular curve Xo(N) (and
on Shimura curve analogues) with the central derivatives of automorphic L-
function. We extend these results to include certain CM points on modular
curves of the form X (I'o(M)NI'1(S)) (and on Shimura curve analogues). These
results are motivated by applications to Hida theory which are described in
the companion article [15].

1. INTRODUCTION

Let xo be a finite order character of the idele class group Q*\A* of Q, and sup-
pose that f € So(To(N), xg ', C) is a normalized newform of level N and character
Xo ! In particular we assume that f is an eigenform for all Hecke operators T},
with (n, N) = 1. Writing f = >, b,q" the L-series of f is defined as the analytic
continuation of L(s, f) = >, byn~*. To compare with the notation used in the
body of the article, L(s,IT) = L*(s + 1/2, f) where

L*(s, f) = 2(2m)"°T'(s)L(s, f)

is the completed L-function of f and II is the automorphic representation of GLo(A)
attached to f. Let E be a quadratic imaginary field of discriminant —D and let x
be a finite order character of the idele class group E*\ A} whose restriction to A*
agrees with xo. Factor N = M.S in such a way that S is divisible only by primes
dividing Ng,g(cond(x)) and M is relatively prime to N, g(cond(y)). We assume

(a) N and Ng/g(cond(x)) are each relatively prime to D,

(b) for any prime p | S the restriction of x to E = (E®qQ,)* factors through

the norm E — Q,

(¢) S = cond(xo).
It is easy to see from these hypotheses that cond(yx) = COg for some positive
integer C' which is divisible by S.

Let w denote the quadratic Dirichlet character attached to E. The L-function of
f and the Hecke L-series of y each admit Euler products over the rational primes.
For each prime p the local Eulers factors have the form

Ly(s,f) = (1—ap ) "(1—agp®)""
Ly(s,x) = (1=pwp %) (1 —Bop )"
and we define a new Euler factor

Lsox. /)= [ (1—aBp™).

1<i,5<2
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The Rankin-Selberg convolution L-function L(s, x, f) =[], Lp(s, x, f) has analytic
continuation to an entire function of s and satisfies the functional equation

L*(87X7f) = —(U(M) : (CQDM)2725 L*(2 - Suva)

where

L*(Sv X5 f) = 4(27T)725F(S)2L(5a X f)
In the notation of the body of the text L(s,II xII,) = L*(s+1/2, x, f), and so the
functional equation follows from the functional equation (26) of the Rankin-Selberg
kernel and the integral representation of the L-function ([Z.F]).

Assume that every prime divisor of M splits in E. In particular the functional
equation forces L(1,x,f) = 0. Let O = Z+ COg and O' = Z + CS~'OF be
the orders of conductors C' and C'S™', respectively, of Og. Fix an invertible ideal
M C O such that O/M = Z/MZ and consider the isogenies of complex elliptic
curves

c/o By o/t c/0 5 )0
These isogenies are cyclic of degree M and S, respectively, and if we pick an arbi-
trary generator m € ker(Fs) the triple @ = (C/O, ker(Fas), 7) determines a point
on the moduli space Xr(C) parametrizing complex elliptic curves with

I'= FQ(M) ﬁFl(S)

level structure. We view X1 as a scheme over Spec(Q). Let O denote the closure
of O in the ring Ag ; of finite adeles of E and let 6 : O* — (Z/SZ)* denote
homomorphism giving the action of O* on O’ / 0 =~ Z/SZ. The character x has
trivial restriction to ker(#), and by the theory of complex multiplication the point
@ is rational over the abelian extension of E with class group E*\Aj 1/ker(6).
Thus we may form the divisor with complex coeflicients

Q= > x®-Qn

teEX \AEYf/ker(G)

on Xr Xqg E, where [, E] is the Artin symbol normalized as in [28] §5.2] and E,
is the abelian extension of F cut out by x. Assume that x is nontrivial (otherwise
S =1 and we are in the case originally considered by Gross and Zagier [14]) so
that @, has degree zero and may be viewed as a point in the modular Jacobian
Qy € Jr(Ey)®zC. Denote by T the (semi-simple) C-algebra generated by the Hecke
operators {7, | (n, N) = 1} and the diamond operators {{d) | (d,S) = 1} acting
on S3(T",C). By the Eichler-Shimura theory the algebra T acts on Jr(E, ) ®zC via
the Albanese endomorphisms 7). and (d). as in [22, §2.4]).

The following theorem is a special case of Theorem[5.6.21 When S = 1 this result
is due to Zhang [36, Theorem 6.1]. When S = 1 and x is unramified it is due to
Gross-Zagier [14].

Theorem A. Let Qs denote the projection of @, to the mazimal summand of
Jr(Ey) ®z C on which T acts through T, + by, and (d) — xg'(d). Then

L'(1,x,[) =0 < Q5 =0.

Remark 1.0.1. The hypotheses (b) and (c) placed on the primes divisors of S are not
made for the sake of convenience; rather these hypotheses seem to be closely related
to the particular choice of T'1 () level structure on C/O, given by a generator of the
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kernel of an isogeny to an elliptic curve with complex multiplication by a different
quadratic order.

Remark 1.0.2. If IT = @, II,, denotes the automorphic representation of GLa(A)
generated by the adelization of f then the condition (c) above is equivalent to
Hypothesis [LTI(b) below, with F' = Q, s = SZ, and ¢ = CZ. This follows from
the formulas of [27, §12.3] and [25] Theorem 4.6.17].

Throughout the body of the article we work in much greater generality than
the situation described above; instead of a classical modular form f as above we
work with a Hilbert modular newform ¢ over a totally real field F', and assume
that ¢ is either holomorphic of parallel weight 2 or is a Maass form of parallel
weight 0. Let x be a finite order character of the idele class group of a totally
imaginary quadratic extension E of F, and assume that the restriction of x ' to
the ideles of F' agrees with the central character of the automorphic representation
IT generated by ¢r1. We assume that IT, x, and E also satisfy the hypotheses of §1.1]
below. The Rankin-Selberg L-function L(s,II x II, ), where II, is the theta series
representation associated to , is normalized so that the center of symmetry of the
functional equation is at s = 1/2.

Assume first that ¢ is holomorphic of parallel weight 2. When the sign in the
functional equation of L(s,II x II,) is 1 we prove a formula (Theorem [L33)) re-
lating the central value L(1/2,1II x IL,) to certain CM-points on a totally definite
quaternion algebra over F'. In special cases such results go back to Gross’s special
value formula [I0]. Such special value formulas have been used by Bertolini and
Darmon to construct anticyclotomic p-adic L-functions for elliptic curves [I], and
such L-functions play a central role both in those authors’ work on the anticyclo-
tomic Iwasawa main conjecture for elliptic curves [2] as well as in the work of Vatsal
[30] and Cornut-Vatsal [6l 5] on the nonvanishing of L-values in towers of ring class
fields. We point out also the helpful expository article of Vatsal [31]. When the
sign in the functional equation of L(s,II x II,) is —1 we prove a theorem (Theo-
rem [5.6.2] which includes Theorem [A] as a special case) which generalizes results
of Zhang [36, Theorem 6.1] and Gross-Zagier [14] by relating the central derivative
L'(1/2,11 x II,) to the Néron-Tate height of CM-cycles on a Shimura curve over
F. Now assume that ¢r; is Maass form of parallel weight 0 and that the sign in the
functional equation of L(s,II x II,) is 1. In this case we prove (Theorem 42) a
formula expressing the central value L(1/2,II xII,) as a weighted sum of the values
at CM points of a weight 0 Maass form (related to ¢ by the Jacquet-Langlands
correspondence) on a Shimura variety of dimension [F': Q).

Our methods follow those of Zhang [34] [36] and we freely use his results and
calculations when they carry over to our setting without significant change; the
reader is advised to keep copies of [34] [36] close at hand. The original contributions
are primarily found in §3] and §41

The primary motivation for this work is to obtain results on the behavior of
Selmer groups and L-functions in Hida families. Indeed, the somewhat peculiar
point @ € Xp(C) defined above plays a central role in the construction of big
Heegner points [16] in the cohomology of Galois representations for A-adic modular
forms. Theorem [A] can be used to verify, in any particular case, the conjectural
nonvanishing of these big Heegner points and can also be used to give examples of
Hida families of modular forms whose L-functions vanish to exact order one with
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only finitely many exceptions. The applications to Hida theory and Iwasawa theory
of the results contained herein is found in the separate article [15].

The author thanks Shou-Wu Zhang for many very helpful conversations.

1.1. Notation and conventions. The following choices and conventions apply
throughout the remainder of the article.

Fix a totally real field F, a CM-extension FE/F of relative discriminant d and
relative different ©, and denote by A and Ag the adele rings of F' and F, respec-
tively. The integer rings of F' and E are denoted Or and Op, respectively, and w
denotes the quadratic character of A*/F'* corresponding to the extension E/F. If
M is any finitely generated Z-module we let M denote its profinite completion. If
a is any nonzero Op-ideal, Np/g(a) denotes the cardinality of Op/a. If v is a real
place of F then |- |, denotes the usual absolute value on F, 2 R. If v is a finite
place then |-, is normalized so that for any uniformizing parameter @ of F,, ||, *
is the size of the residue field of v. For any Op-module M and any place v of F,
set M, = M @, OF,. For any © € AX let xOp denote the fractional ideal of Op
determined by (zOp), = z,0F,, for every finite place v.

Fix a finite order character x : A5 /E* — C*. Let xo denote the restriction of
X to AX/F* and let € denote the conductor of x. We abbreviate N(€) = Ng,p(&).
For each place v of F let x, denote the restriction of x to E} = (E ®p F,)*.
Let IT be an irreducible infinite dimensional cuspidal automorphic representation of
GLa(A) of central character y; ' and conductor n, as defined in §2.1} Factor n = ms
in such a way that m is prime to N(€) and s is divisible only by primes dividing
N(€). We assume throughout that n and N(€) are both prime to .

Hypothesis 1.1.1. At times we will assume that II satisfies the following hypothe-
ses.
(a) For every v | s there is a character v, of F* such that x, = v, oNg_/p,.
Note that this hypothesis implies that € = ¢Op for some ideal ¢ of Op.
(b) For every v | s, II, is a principal series representation H(uv,xaiugl) of
GLg(Fy) with p,, an unramified quasi-character of F,*. In particular

ord,(s) = ord,(cond(xo)) < ord,(c).

These hypotheses will be assumed in §4 and §5l but are not needed for the calcula-
tions of §3] or for the calculations of §2] unless otherwise indicated.

2. AUTOMORPHIC FORMS AND THE RANKIN-SELBERG INTEGRAL

Let ¢ : A/F — C* be a nontrivial additive character. Fix an idele 6 € A* in
such a way that for every finite place v of F' the restriction to F, of the additive
character ¢° : A — C* defined by ¢°(z) = (6 ') has conductor Op, and so
that for every archimedean place v the restriction of ¥° to F, = R is given by
¥9(x) = €2™_ This implies that F has absolute discriminant Dg = |6|~!. For any
finite place v of F' we normalize the additive Haar measure dz on F, in such a way
that the volume of Op, is equal to |J |$/ 2, and normalize the multiplicative Haar
measure d*z on F in such a way that the volume of OF , is 1. Then dz and d*x
are related by

(2.1) 61,21 — lel) -z = Ja|,* - do
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for any uniformizer w of F,. On R* we normalize the Haar measure d*z by
d*z = |z|~td"Px, where d“°Pz is the usual Lebesgue measure giving [0, 1] unit
mass. For an archimedean place v the additive Haar measure dx on F, = R is
normalized by dx = |5|11,/ bz In all cases the Haar measure on the additive
group F, is self-dual with respect to 1,. Endow A and A* with the product
measures; the quotient measure on A/F has total volume 1 by [33, Proposition
V.4.7].

Fix d € A* such that dOp = 0 and d, = 1 for v | co. Let S denote the set of

places of F' dividing 9, and for each v € S set h, = ( 1) € GLo(F,), viewed

—d,
as an element of GLg(A) with trivial components away from v. For each subset
T C S set hy = [],cr ho and view hp as an operator on automorphic forms on
GL2(A) via (hrd)(g) = ¢(ghr). For a € A* define ex(a) =[], €v(a) where

2e7 2™ if g, >0
0 otherwise.

v|oco
es(a) =

for each v | co. Define the usual gamma factors
Gi(s) = m%/?T(s/2) Ga(s) = 2(2m) ~°T'(s).

2.1. Automorphic forms. Let ¢ be an automorphic form on GLy(A). Then ¢
admits a Fourier expansion

$(9) = Cs(9) + QXF:X W ((a 1) g)

in which the constant term Cj; and Whittaker function Wi (with respect to )
are defined by [34, (2.4.3)] and [34] (2.4.4)], respectively. For every a € A* the

Whittaker coefficient
ad™!
B(a; ¢) =Wy 1

is independent of the choice of ¥, and a simple calculation shows that the Whittaker

coefficients of ¢ and ¢ are related by B(a; ¢) = B(—a; ¢). The zeta function of ¢ is
defined as the meromorphic continuation of

Z(s;0) = |52 / Bly:8) - [y*~V/2 ¥y

[ emca(t ) e
AXJFX

in which both integrals are convergent for Re(s) > 0. Asin [34] §3.5] we say that an
automorphic form ¢ of parallel weight 2 is holomorphic if its Whittaker coefficient
has the form

B(a; ¢) = |alwess(a) - B(a; ¢)
with a = aOp for some function B (a; ¢) on fractional ideals of Op which vanishes
on non-integral ideals.
Let v be a finite place of F'. If n, is an ideal of O, define the habitual congruence
subgroup

Kl(nv)—{c Z)EGLQ(OF,U) cenv,d€1+nv}.
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For an irreducible, admissible, infinite dimensional representation 7, of GLo(F,)
the conductor of m, is the largest ideal n,, such that 7, admits a K7 (n,)-fixed vector.
The space K1(n,)-fixed vectors is then 1-dimensional, and any nonzero vector on
this line will be called a newvector. If v is an infinite place of F' then any m, as
above has a unique line of vectors of minimal non-negative weight for the action of
SO2(R); a nonzero vector on this line is again called a newvector. If m = @, ,
is an irreducible automorphic representation of GL3(A) then a newvector in 7 is
a product of local newvectors. Such a newvector is unique up to scaling, and we
define the normalized newvector ¢, € w to be the unique newvector satisfying

Z(s, ¢x) = 8|2~ L(s, m).

If n is an ideal of Op set Ki(n) =[], Ki(n,), where the product is over all finite
places.

Suppose v is a finite place of F', ¢ is an automorphic form which is fixed by the
action of K1(n), and (a,n) = 1. We define

T = S oloh)
heH(a)/Ki(n)

where H(a,) is the set of elements of M3(Op,) whose determinant generates a,
and

H(a) =[] K1(no) - [] H ().

vta v|a

If a € A* satisfies a = aOp and a, = 1 for v | oo then the Hecke operator T,
satisfies [35, Proposition 3.1.4]

B(1;Ta¢) = Npjg(a) - B(a; ¢).

2.2. Eisenstein series. For any place v of F' and any subset X C F), let 1x denote
the characteristic function of X. Let S(A?) denote the space of Schwartz functions
on A? and fix Q € S(A?). Given a pair ) = (11, 72) of quasi-characters of AX /F*
we define

fams(g) = Idet(g)lsm(det(g))/AX Q([0, 2] - g) [t m (E)m2 (t1) d*t

for s a complex variable and g € GL2(A). Then fq, s lies in the space of the
induced representation B(n;| - [*~/2, na| - [1/27%) of [34} §2.2]. The Eisenstein series
defined by the meromorphic continuation of

ESl,n,s(g) = Z fﬂ-,n-,s(ﬁ)/g)

YEB(F)\GL2(F)

is an automorphic form with central character n;n2. If we set wog = (_1 1> then

according to [34, §3.3] Eq ,, s(g) has constant term

Can.s(9) = fans(g) +/Afsz.,n.,s (wo <1 a{) 9> dx

and Whittaker function

Wan,s(9) = /Afﬂ,n,s <wo <1 glc> g> Y(—x) da.
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To fix a particular Eisenstein series we let v be an Op-ideal relatively prime to
0 and choose r € A* so that rOp = v and r, = 1 for v | co. Define a Schwartz
function Q, =[] Q, on A% by

1., (@)1o., (¥) if v {000
Qe o(z,y) = wy(Y) 1o, (x)lo;’v (y) ifvlod
(iz 4 y)e ") if 4| co.

Taking n = (1,w) we abbreviate

By s(9) = B, n,s(9) fes(9) = fauns(9)-

Proposition 2.2.1. Fiz a € A* and set a = aOp. There is a product expansion

B(“; Et,s) = H BU((Z, Et,s)

over all places v of F', in which the local factors are given as follows.
(a) If v is a finite place which does not divide O then for any uniformizing

parameter w of F,

ord, (at™?1)
Bu(a; Ees) = wo(6) - laly - 55712 Y7 ||y > wa(w?).
j=0
if ord,(a) > ord,(v), and otherwise B,(a; Ey ) = 0.
(b) If v |0 then

By Be) = | @ @ladly - 10d17 % e0(1/2,00,40) if ordu(a) 20
AT RS 0 otherwise

and
By(a;hoEei—s) = Wv(_a)ldlgm_%|6|$_255v(1/27w7 )t Bu(a; Br,s)

where €,(1/2,w,vY) is the usual local epsilon factor as in [19, §3].
(c) If v is archimedean then

(s+1/2)

—S s— F
By(a; Be,s) = wy(ad)laly,™* 0372 =5 Va(—an)

where fort € R

e—27rit;ﬂ
VS t) = dLeb )
() /R(Z"’x)(l_FIQ)Sl/Q z

Proof. For v nonarchimedean these formulas are found in Lemmas 3.3.2 and 3.3.3
of [34]. For v archimedean see [34, Lemma 3.3.4]. At each place our formulas differ
from Zhang’s by a factor of w,(—1). As w(—1) = 1 this local factor does not change
the value of B(a; Ex 5). O

Proposition 2.2.2. The Eisenstein series E. 5(g) satisfies the functional equation
Ees(9) = Eea_s(ghs) - ()25 dP5=3/20(r - det g).
Proof. See §3.2 of [34], especially (3.2.1) and Lemmas 3.2.3 and 3.2.4. O
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Let L(s,w) =[], Lv(s,w) be the usual Dirichlet L-function attached to w, in-
cluding the gamma factors L,(s,w) = G1(s + 1) for v | co. Writing L(s,w) as the
quotient of the completed Dedekind (-functions of E and F and using the functional
equation and residue formulas of [33] VII.6] gives the functional equation

(2:2) L(s,w) = o2 L(1 — 5,)
and the special value formula

H .
23 L0.w) = 22 [0 : OF 279

in which Hr and Hp are the class numbers of F' and E, respectively.

-1
Proposition 2.2.3. Fiz a € A* and set o = (a5 1). ForanyT C S
| lal®|6]75L(2s,w) T =10
fes(ahr) = { 0 otherwise.

Furthermore if T = S then

/ft,s <w0 <1 ‘f) ahT> dzr
A
= iUy (ad)w(e)|r* al 762 d P L2 - 25,w),

and otherwise the integral is 0.

Proof. Let v be a place of F' and, if v is finite, let w be a uniformizing parameter
of F,. We may factor f; s =[], fe,s,0 where

fe,sw(g) = |det(9)l5 / . Qe ([0,] - 9)[t|2 5w (t) d*t.

v

For any place v one easily computes
fesw(a) = laly - 16],° - Ly(2s,w)
and, if v € 5,

Foon (ahy) = ad~ 1] / Qua(—rt, 0) |2y (1) d*¢
FX

which vanishes as Q. ,(—rt,0) = 0. This proves the first claim. If v is a finite place
with v {0 then

ot (5 e)

— |a5_1|f) /FX 1., (taé_l) (/ lo,,(tz) dw) |t|3swv(t) d*t

v v

= lal3sy/2 / 1., (tad )2y (1) d¥t

v

= wy(ad)laly |81yl w () Lo (28 — 1)
If v | @ then by 1))

/ 1o: (t2)w,(@) do = [5]1/2(1 - |=].) / lox (o) (@), d¥.
F, F,v F,v

EX
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The integral on the right vanishes, and hence so does

1 =z
t,s,v d
J e ( (" 5)a) e

= |a(5—1|f}/ /FX Qeo(—tad™t, —tz)|t|>w, (t) d*t dx

= Jad7'? /FX 1,,(tas™ 1) (/ 10;,U(m)w”(l’) da:) |t|25 d*t.

v

Still assuming v | 9,

[ e (o (* ) am) do

ladd™ |2 /FX </F lo,,(tx) da:) log,u(ta571)|t|12)swv(—a5) a*t

v v

alt 61z ()

FX

Lox (tas™ ') d*t

= wy(—ad)lal, (o[ 2 (d];.

Finally, if v is archimedean then

1 =z
t,s8,v d
J e ( (" 5)2)

= —|a|2|5|3/2‘8// t(ad Vi + x)e (100 e 25, (1) @¥¢ d-Py
R JRX

z-.wv(_a6)|a|z+l|5|;1/2—s/ e—w(ta671)2|t|12)s+1 (/ e—ﬂ(tw)2 dLeb,T) A%t
RX R

i (-ad)afs ol 20 [ e e e
RX

= 7- wv(—a6)|a|llfs|(5|f,71/27fsl"(3).

Putting everything together gives

/ fs (wo (1 x) ahT> dx
A 1
I

o 0 otherwise

and the second claim now follows from the functional equation (22)). O

2.3. Theta series. Asin [I7, §12] or [34] §2.2] (see also §12.6.1 and §12.6.5 of [27],
and the references therein) there is an irreducible automorphic representation II, of
GL2(A) of central character wxo and conductor dN(€) characterized by L(s,II,) =
L(s,x), where the right hand side is the Dirichlet L-function of x including the
gamma factors Ly (s, x) = Ga(s) for v | oo. Denote by 6, € II, the normalized

newvector and define
-1
o) =0, (s (7))

so that 8 has parallel weight —1.
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Proposition 2.3.1. Fiz a € A*. The Whittaker coefficient B(a;0) admits a prod-
uct decomposition B(a;0) = ], Bu(a;0) over all places of F in which the local
factors are given as follows. Let v be a place of F, and if v is finite let w be a
uniformizing parameter of F,.

a) If v is finite and inert in K then
(a)
Xv(w)%ord“(“) if ord,(a) > 0, ord,(a) even, x, unramified

By(a;60) = |a}/?-{ 1 if ord,(a) =0, x, ramified
0 otherwise.

(b) If v is finite and splits in K then identify E) = F* x . Set a = 0 if the
restriction of X, to the first factor is ramified, and a = x,(w, 1) otherwise.
Set B = 0 if the restriction of x, to the second factor is ramified, and
B = xv(1,@) otherwise. Then

By(a;60) =lal,* Y o
i+j=ord, (a)
i,7>0

Here we adopt the convention that 0° = 1 in case one or both of o, B is 0.
(¢) Ifv |0 (so that x, is unramified) let wg denote a uniformizer of E,. Then

Oy (112 Xo(wg) (@ if ord,(a) >0
Bu(a;6) = lal, { 0 otherwise.

(d) If v is archimedean then By (a;0) = |a|11,/260(—a).

Proof. When xo is trivial this is a restatement of Lemmas 3.3.6 and 3.3.7 of [34].
The proof of the general case is identical. O

Proposition 2.3.2. The local Whittaker coefficients of 0 satisfy

wy(a)By(a;0) = By(a;b) if vtd- 00
wy(a)By(a;0) = —By(a;0) if v oo
wy(a) By (a; hy0) Xo(D)ew(1/2,w,90) - By(a;0) if v | 0.

Furthermore 0 satisfies the global functional equation
6(g) = 0(ghs) - w(det g) - X(D) - (=),

Proof. When xq is trivial this is [34) Lemma 3.2.5], and the proof of the general
case is identical. O

Lemma 2.3.3. Let x*(t) = x(t) where t — t is the nontrivial involution of E/F,
extended to Aj,. The following are equivalent

(a) II, is noncuspidal

(b) there is a character v : A JF* — C* such that x =voN

(¢) X" =X

Proof. If (b) does not hold then II, is cuspidal by [17), Proposition 12.1]. Conversely,
if (b) does hold then comparing L-functions we see that II,, is isomorphic to (indeed,
is defined as) the principal series II(v, vw), hence is noncuspidal. Thus (a) and (b)
are equivalent. The equivalence of (b) and (c) is a consequence of Hilbert’s theorem
90. O
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Lemma 2.3.4. Assume that € = Og and that the equivalent conditions of Lemma
[2.3.3 hold. Then

(2.4) v(detg) - Eo.1/2(9) = (=) ¥|d|'/*0(g)

where Eo, s is the Eisenstein series of Y2.2 with v = Op.

Proof. As in the proof of Lemma 233 II, is isomorphic to II(v,vw), and so is
generated by v(det g)Ep,. 1/2(g). As both 6(g) and v(det g)Ep,. 1/2(g) are K1(0)-
fixed and of parallel weight —1, they must be scalar multiples of one another. To

compute the scalar we compute Whittaker coefficients. For any a € A*, comparing
Propositions 222.1] and 2.3T] gives

_ X, (@)|d? if vtoo
B (@i Bop.1/2) = Pula)en(ad) By (ash,0) - { TN I vtoc
Using Proposition [Z3] we see that both sides of (2:4) have the same Whittaker

coefficients. O

2.4. The kernel ©. For each v € S set 05, =1 +YU(©)|d|1l,/2_Shv and define the
symmetrized kernel

Gt,s(g) = <H 05,1}) : [e(g)Et,s(g)]
veSs
= > X ®)ldl* *0(ght) Br,s(ghr)

TCS

where the subscript 7" indicates the product over all v € T; e.g. x7 = [[,cr Xo-
For every place v of F' define

-1 if v|oo
(2.5) €o(s,1,0) = 012571 wy(r)|r|?*7t if vt
|d|2s—1 otherwise

and set €(s,t) =[], €,(s,t, %), so that
(s, ) = (—1)[F:Q]w(t)NF/Q(Ot)l_QsD};%.
Combining Propositions and gives the relation
0(9)Ev.s(9) = €(s,1)|d]*"/*X(D) - 0(ghs) Be,1-5(ghs)

and hence
<H Us,v) [H(Q)Et,s( - 5 S, T (H XU |d|S 1/205 'uh'u> [e(g)Et,l—s(g)] .
veS veS

For v € S the operator h2 acts as x0.,(0) = x»(D)? on automorphic forms of central
character xo. Thus we may replace the expression yv(©)|d|f,_1/ 2

to arrive at the functional equation

(2.6) Ors(g) = €(5,7) - Oc1-s(9)-
As in [34] §3.3], multiplying the Fourier expansions of 6(g) and E. s(g) shows
that the product 6(g) - E: s(g) has constant term

cu=cmeior = (" ) (¢ )5

n,EEF*
77+$:0

Osvhy With 1_5 4
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and Whittaker function

Wes(g) = Colg)Wes(g) + Cris(9)Wolg)
()9
nté=1

From the Fourier expansion of 6(g)F; s(g) and the definition of the symmetrized
kernel we find the decomposition

(2.7) B(a;Oc,s) = Ao(a;Ocs) + A1(;0c6) + D Bla,n,€0x)

n,EEF
n+&=1

in which the terms on the right hand side are defined by

Ao(a;0c0) = Y Xr(®)ldly*  Wy(ahr)Ce s (ahr)
TCS
A(@:0es) = Y Xp(@)|dly > Colahy)We o(ahr)
TCS
B(a,n,&0cs) = > Xr@)dly** B(na; hrt) B(as hr B )
TCS

-1
where we have abbreviated o = (a6 1) . If we define

Bv (au 777 6; ®t75)
B o[ Bu(€a; Exy) if vt
= b (770‘7 9) { Bv(ga; Et,s) + Wv(_n§)|d6|gs_lBU (ga; Etxl_s) if v | 0

then the local functional equations of Propositions 22211 and 2311 imply the fac-
torization

B(a,,&0cs) = [ [ Bula,n,& Ocs).

Lemma 2.4.1. For every place v of F, every a € A*, and everyn,§ € F*,
By(a,1,&0x,s) = wo(—n&)eu(s,t,9) - By(a,m,§;Oc1-5).

Proof. This follows from direct examination of the explicit formulas of Propositions
22T and 23Tl For v | co one also uses the functional equation satisfied by V;(t)
found in [I4, Proposition IV.3.3 (c)]. O

Proposition 2.4.2. Suppose n,§ € F*, n+ & =1, and w,(—n) = €,(1/2,t,9).
Fiz a € A* and abbreviate, here and later, ©, = O 1 5.
(a) If v is a finite place which is split in E then
By(a,n,& 0x) = lalu|ng], *wy (0) (ordy(§ar™ ) +1) 37 a'p

i+j=ord,(na)
,j20

if ord,(na) and ord,(£ar™!) are nonnegative, and is 0 otherwise. Here «
and 8 are as in Proposition [2.31]
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b) Suppose v is a finite place which is inert in E. If x, is unramified then
X
Bv(au , 5; Gt) = |a|v|77§|11,/2wv (6))(1) (w)%ordu(na)

if ord, (na) and ord,(£ar™1) are even and nonnegative, and is 0 otherwise.
If x, 1s ramified then

BU(CL, 7, 55 et) = |a|v|n€|111/2w11(5>

if ord,(na) = 0 and ord,(£av™!) is even and nonnegative, and is 0 other-
wise.
(c) Ifv |0 then

By(a,1,& 0:) = 2x0(@wr) " " w, (8)[ngd]y/*|alvey (1/2, wy, )

if ord,(na) and ord,(£a) are nonnegative, and is 0 otherwise.
(d) Ifv is archimedean then

Bv(au 7776; Gt) = 27’|77§|11)/2|a|1)wv(5) . e’U(_a)'

Proof. This follows from Propositions [Z2.T] and 23311 For v | co one also uses the
special value formula for V; 5(t) found in [I4, Proposition IV.3.3 (d)], which implies

Bv(a;Et,l/Q) = _i|a|11)/zwv(6) : ev(_a)'
([

2.5. The Rankin-Selberg L-function. Recall the automorphic representation IT

of GLy(A) of §I.11 and assume Hypothesis [[T.Jl Fix a Haar measure on GLo(Ay)
and let Z denote the center of GLsy. Setting Fi.o = F' ®g R we identify

GLy(Fro)/Z(Fso)SOs(Fao) = HIFC

in the usual way, where H = C — R is the union of the upper and lower half-planes
equipped with the hyperbolic volume form y~2dzdy. Suppose Fy and Fy are two
automorphic forms on GLy(A) for which FyF'; is a square integrable function on
GLo(F)\HFY x GLa(Af)/Z(Af). If K C GLg(Ay) is a compact open subgroup
we define the Petersson inner product of level K

(Fo, Fr)x = Vol(K)™! FoFy
GL2 (F)\HI U XGL2(Af)/Z(Ay)

where the quotient measure is induced by the Haar measure on Z(Ay) giving @IX,
-1

volume 1. For any b € A* with trivial archimedean components set R, = b 1

and view R; as an operator on automorphic forms by (Ry¢)(g) = ¢(gRp). Let b be

an ideal of OF dividing 9¢?s~! and fix b € A with trivial archimedean components

and bOp = b. Let L(s,II x IL, ) be the Rankin-Selberg L-function defined as in [34]

§2.5] (see also [27], §12.6.2] and the references therein).

Proposition 2.5.1. Let ¢ € II be the normalized newvector and set v = mc?.
Assume that 1, is a discrete series of weight 2 for each v | co. Then

Vol(Ko(at))*l/sbn(gRb)o(g)Et,s(g) dg = |8]"/272|b]* "1 B(b; ) L(s,II x TI,).

Proof. Hypothesis [LT] implies that for every finite place v either II, or IL, , is
a principal series. Hence the claim follows from Propositions 2.5.1 and 2.5.2 of
[34). O
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Under the notation and assumptions of Proposition 2.5.1] a direct calculation as
in [34, Lemma 3.1.2] gives

(28) <Rb¢H; ts>K0(Dt) = (S I H |5|1/2 ’ H"st
v|oc

where

[ i R

s0(b) = [b], /2By (b; 0
) = 28, :0) { | e

2.6. Central derivatives and holomorphic projection. Throughout we
assume that ¢(1/2,t) = —1. For any n,& € F* with n+ £ = 1 define the difference
set
Diff(n, &) = {places v of F' | wy,(—nE) # €,(1/2,¢,9)}.

Note that the cardinality of Diff(n, ) is odd, and that Lemma 241 implies that
By(a,n,£,0,) = 0 for each v € Diffy(n,&). In particular B(a,n,&;0,) = 0. Note
also that Diff (n, £) contains only places which are nonsplit in F, as v split implies
that both w,(—n¢) and €,(1/2,t,4) are equal to 1. Define

d

/ = —
O:(9) = ds Or,5(9) 12
and, with notation as in (27]), abbreviate
d
Ai (a; @;) = EAl (CL; et,s) |s:1/2
d
B(aﬂ?,@@;) = EB(avnag;@f,S)L:l/g

and similarly with B(-) replaced by B,(-). For t a positive real number define

qo(t) :/ e d*x.
1

Proposition 2.6.1. If w € Diff .(n, &) then
B(G/, m, 57 91) = B’w(a/u m, 57 91) : H B’U(a/u m, 57 ®t)
vFW
The value of By/(a,n,&,0%) is given as follows.

(a) Suppose wt oo is inert in E. If x. is unramified then

By, (a, ;s 57 @;) = Ww (5)|77§|%u/2|a|w 1Og |§arilw|w><w (w)%ordv(an)

if ordy, (na) is even and nonnegative and ord,, (£ar™!) is odd and nonnega-
tive; otherwise the left hand side is 0. If x is ramified then

Bu(a,m,€,07) = wu(0) €]/ *alw log [gar™ @

if ordy (na) = 0 and ord,, (€ar—1) is odd and nonnegative; otherwise the left
hand side is 0.
(b) If w1 oo is ramified in E then

Bu(a,1,€,01) = 2w (8) €]/ aluw|dl*xw (@r) "4 ) - e (w, ¥f)) - log|€ad].

if ordy (na) and ord,(€a) are nonnegative; otherwise the left hand side is
0.
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(¢) If w| oo then
Bu(a,1,&,05) = —4iw,(8)[n€] 1/ |alwe®™ go (47w )
if Nwaw < 0 and &yay > 0; otherwise the left hand side is 0.

Proof. The first claim follows from Lemma [ZZ4.1] and the remaining claims follow
from the formulas of Propositions 2.2.1] and 2.3.1] together with the equality

d
—Vi(t) = —2mie 2" qo(—4nt)
ds s=1/2
for t < 0, which is found in [I4] Proposition IV.3.3(e)]. O

Remark 2.6.2. Tt follows from Lemma [2.4.T] and the first claim of Proposition [Z.6.1]
that B(a,n,&; ©L) vanishes unless Diff (1, £) consists of a single place, necessarily
nonsplit in F.

Let ®.(g) be the holomorphic projection of ©%(g). Thus @, is the unique holo-
morphic cusp form on GLz(A) of parallel weight 2 such that (¢, @) = (¢, OL)
for any cusp form ¢ and any compact open subgroup K. If the representation II of
§2.5 is discrete of weight 2 at every archimedean place then (28] implies

(611, @) 1o 0r) = 25117 (1/2, 1T x 1, ).

We now describe the coefficients B(a, ®;) as in [34] §3.5] (sec also [35, §6.4]). If w
is a finite place of F' define

(2.9) B"(a; @) = (—2i)" U Z|n§|1/2 w(@,n,600) [ Bu(a,n,&60)

viwoo

where the sum is over all ), £ € F* with n4+ £ = 1 and Diff (1, £) = {w}. This sum
is finite and is 0 for all but finitely many w. For t,0 € R with ¢ > 0 define

o0 _ Lebz )
My (t) = i m(l,dtw ift<0
0 otherwise.

If w | oo then we set

@10 Bl = (201 () 3 M6 [T B0 560
vfoo
where the sum is over all n,& € F* with n 4+ & =1 and Diff,(n, &) = {w}.
Proposition 2.6.3. The Fourier coefficient E(a; D) decomposes as
B(a;®,) = A(a) + D(a) + ZB“’ (a; @ )—i—const,,_mZB (0,0, D)

wfoo w]|oo

in which A(a) is a derivation of Ty @ | - |Y/2 and D(a) is a sum of derivations of
principal series in the sense of [34, Definition 3.5.3].

Proof. When xg is trivial this is exactly [34] Proposition 3.5.5], and the proof when
Xo is nontrivial is exactly the same. (I
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2.7. The weight zero kernel. We define an automorphic form ©5, in exactly
the same way as O, s but replacing 6 by 6, everywhere in the construction of §2.41

Thus
_ <H a> [0(9)Ees(9)]

is a nonholomorphic form of parallel weight 0. Using the relation
' | By(a;6) ifvtoo
By(a;6x) = { B,(—a;0) if v|oo

and repeating the arguments of §2.4] we find that the weight zero kernel satisfies
the functional equation

0:.(9) = (=11 e(s,v) - 071 _.(9)

and admits a decomposition

B(a;07,) = Ao(a;07,) + Au(;07,) + > Bla,n,07,)

n,EEF
n+&=1

in which Ay and A, are defined exactly as in §2.4] but with 6 replaced by 6, . There
is a further product decomposition

B(a,n,& 05 ,) = [[ Bu(a,n,& 65,)
where for v { 0o one has B, (a,n,&; 05 ) = By(a,n,§; O, ) while for v | oo

T 1/2 —27a, (1—2&,) _ _
By(a,n, & @tys) _ dilalv[n€lv’"w,(d)e if wy ( 775) =1,8ay, <0
0 otherwise.

Assume that the representation II of §I.]] satisfies Hypothesis [[L1.]] and is a
weight 0 principal series for every archimedean v. The Rankin-Selberg L-function
L(s,II x IL) is defined exactly as in 25 but with the archimedean factors now
given by [36, (5.4)]. With notation as in Proposition 2.5 one again has the integral
representation of the Rankin-Selberg L-function

(2.11) (Rp¢rr, O3 5>K0(0t) = L(s, 11 x II) |5|1/2 ’ H Vs,

v|oe

exactly as in (Z8]).

2.8. The quasi-new line. Suppose the representation II of §I.1] satisfies Hypoth-
esis [LT1] and is unitary. Set v = mc?. Fix a place v of F dividing dc and a
uniformizer w of F,. As IL, has conductor s, = n,, [34] Proposition 2.3.1] implies
that the space of Kj(t,) fixed vectors of I, is finite dimensional with basis

{Ror¢me | 0 <k <ord,(ts 1)}

where ¢, is any newvector in II, and Ry is as in §2.51 Define a linear functional
A, on this finite dimensional vector space by the condition

Av(ka¢H,v) = Vé,v(wk)
where, in the notation of (2.3]),

_ 2 ifvld
10 =B, 0 { 3 YLD



TWISTED GROSS-ZAGIER THEOREMS 17

Definition 2.8.1. If v | dc then the quasi-new line in II, is the orthogonal com-
plement, in the space of Kj(t,) fixed vectors, of the kernel of A,. If v f d¢ then
the quasi-new line is defined to be the span of the newvectors in II,, i.e. the line
of Ki(m,) = Ki(t,) fixed vectors. The quasi-new line in IT = @), II, is the ten-
sor product of the local quasi-new lines, and a quasi-newform in II is any nonzero
vector on the quasi-new line.

Proposition 2.8.2. Assume that either I1 or 11, is cuspidal and that 11, is discrete

of weight 2 at each archimedean v. The projection of ©.(g) to II lies on the quasi-
new line; if, in addition, €(1/2,t) = —1 then the projection of ®.(g) to II lies on
the quasi-new line. If we instead assume that I has weight 0 at every archimedean
place then the projection of ©%(g) to II lies on the quasi-new line.

Proof. There is an evident global characterization of the quasi-new line in II: for
each b | vts—! fix b € A* with bOp = b. The set {Rp¢r | b divides ts~ 1} is a basis
for the space of K;(t)-fixed vectors in II, and the quasi-new line is the orthogonal
complement (in the Kj(v)-fixed vectors) of the kernel of the linear functional A
defined by

ARyp) = [] 72.,.(0)-

v|dc

In the weight 2 case (Z.8) implies that the projection of ©, to II is orthogonal to

any form in the kernel of A, hence lies on the quasi-new line. If €(1/2,t) = —1 then
L(1/2,1I x II,) = 0 and again (28] shows that the projection of @, to II lies on
the quasi-new line. In the weight 0 case one uses (ZI1)) in place of (23). O

3. CM CYCLES ON QUATERNION ALGEBRAS

Let B be a quaternion algebra over F' and assume that there is an embedding
E — B, which we fix once and for all. Let T" and G denote the algebraic groups
over F' determined by

T(A)=(E®p A)* G(A) = (Bap A)*

for any F-algebra A, and let Z denote the center of G. We denote by N both the
norm 7" — Z and the reduced norm G — Z. Let t — ¢ be the involution of T'(A)
induced by the nontrivial Galois automorphism of E/F.

3.1. Preliminaries. Define BT = Eand B~ = {b€ B | bt = bVt € E}. It follows
from the Noether-Skolem theorem that B~ is nontrivial, and from this one deduces
that B = BT @ B~ with each summand free of rank one as a left E-module. For
any v € G(F) the two invariants

_ NG _ N6
N(v) N(v)

where 4% denote the projection of v to B¥, depend only on the double coset
T(F)yT(F) and not on + itself. A simple calculation shows that all elements
of B~ are trace-free and that N(v) = N(y%) + N(y~). For any place v of F' let
BF = B*®pF,. We say that « is degenerate if {n,¢} = {0,1} (i.e. ify € BYTUB™),
and that v is nondegenerate otherwise. Of course we may make similar definitions
for v € G(F,) for v any place of F.

(3.1)



18 BENJAMIN HOWARD

Lemma 3.1.1. The function v — (n,&) defines an injection
T(F)\G(F)/T(F)— F x F.

The image of this injection is the union of {(1,0),(0,1)} and the set of pairs (n,§)
such that n,§ #0, n+ & = 1, and for every place v of F

B 1 if B, is split
(3.2) wo(=n&) = { —1 otherwise.

Proof. This is stated without proof in [34] §4.1]. We leave the injectivity as an easy
exercise, and sketch a proof of the second claim. Choose a generator € for B~ as a
left E-module and write E = F[v/A]. Then B has as an F-basis {1, VA, ¢, VA ¢},

or, in the standard notation (as in [4, Example A.2]), B = (A_TN(E)> It follows
that the right hand side of (8.2]) is equal to the Hilbert symbol
(A, =N(€))y = wu(—=N(e)).

On the other hand it is easy to see that for any nondegenerate v € G(F') we have
wy(N€) = wy(N(e)), so that (n, &) satisfies B2]). The condition n+¢& = 1 is clear from
the additivity of N with respect to the decomposition B = BT @® B~ noted earlier.
Conversely, given a pair 7,£ € F* satisfying (32)) and n + £ = 1 we must have
(A, =N(€))y = (A, —n&), for every place v. It follows from the Hasse-Minkowski
theorem that there are z,y € F' such that

EnTIN(e) ™! = 22 — 2A.

Taking v = 1 4 (z 4+ yv/A)e shows that (1, &) arises from a nondegenerate v. Any
degenerate v generates either BT or B~ as a left E-module and so has image either
(1,0) or (0,1), respectively. O

Lemma 3.1.2. For any nondegenerate v € G(F) and any place v of F set
7o (7) = wo ()€1 x0 (MX (7 )ew (1/2,0,47).
Then [], 7o(v) = 1 where the product is over all places of F. If v is an archimedean
. 1/2
place then 7,(y) = wy(8) - i - n&ly’~.

Proof. The functional equation (Z2) and [19, Corollary 4.4] imply €(s,w) = |d5|*~1/2
while [19, (3.29)] gives

181571 2w, (8)en (5, w, 10) = €4 (5, w, ).

From this it is clear that [], 7,(y) = 1. If v is archimedean then €(s,w,9J) = i by
[19, Proposition 3.8(iii)]. As X, is the trivial character, the final claim follows. O

3.2. Heights of CM-cycles. If U C G(Ay) is a compact open subgroup we define
the set of CM points of level U

Cy = T(F)\G(Ay)/U.

By a CM-cycle of level U we mean a compactly supported (i.e. finitely supported)
function on Cy. There is a unique left T'(Af)-invariant measure on Cy with the

property that
f(g) dg = / f(tg) dg
IR D S ()

UteT(F)/(Z(F)NU)
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for every locally constant compactly supported function f on G(Ay)/U, where the
measure on G(Ay)/U gives every coset volume one. The measure on Cyy assigns to
each double coset T'(F)gU a volume equal to the inverse of

[T(F)NgUg™': Z(F)NU].

Given compact open subgroups U C V the measures on Cyy and Cy are related by

(3.3) /C S foh) dg=2Y [ 1(g) dg

DY
V heV/U vV Jcu

for any CM-cycle f of level U, where \y = [Of : OF NU] and similarly with U
replaced by V.

Given a T'(F) bi-invariant function m on G(F') define a function kj} on G(Ay) x
G(Ay) by

(3.4) k' (@, y) = > Ly(z~ yy) - m(7)
YEG(F)[(Z(F)U)

where 1 is the characteristic function of U. We will address the convergence of this
sum as the need arises; for the moment assume that the sum converges absolutely
for every x,y. Note that kf} descends to a function on Cy x Cy. If P,Q are
CM-cycles of level U define the height pairing in level U with multiplicity m

(35) PQE= [ P@- k) Q) d dy
CU><CU
As in [34, (4.1.9)] a simple calculation shows that there is a decomposition
(3.6) PQEG= Y (PQF mO)
YET(FN\G(F)/T(F)

where for every v € G(F)

Pay=[ Y PEQw d

Y SeT(F)\T (F)yT(F)

is the linking number of P and @) at ~.

Abbreviate Uz = U N Z(Ay) and Ur = U NT(Ay) and suppose now that U is
small enough that x is trivial on Up. We will say that a CM-cycle P of level U is
x-isotypic if for all t € T(As) and g € G(A) we have P(tg) = x(¢t)P(g).

Lemma 3.2.1. Set x*(t) = x(f). Suppose P and Q are x-isotypic CM-cycles of
level U and that Q is supported on the image of T(Ay) — Cy. If v € G(F) is
degenerate then

v _mmy.  [T(Ay) : T(F)Ur] P(y) 1f (1,€) = (1,0) o

If v is nondegenerate then

(P,Q)f = Q) - [Z(Af) : Z(F)Uy] > P(t~'q1).

teZ(Ap)\T(Ag)/Ur
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Proof. First suppose that v is degenerate. Then ~ normalizes T'(F') and so

P.Qy = /C POv)Q) dy

/ Py 'yy)Q(1) dy.
T(F\T(Ag)/Ur

If (n,€) = (1,0) then v € T(F) leaving

(P,Q)}, = VoU(T(F\T (Ay)/Ur) - P(7)Q(1).

If (n,€) = (0,1) then vy = gy for every y € T'(Ay), leaving

(P,Q)} = P()Q(1) y) X (y) dy.

1)- / X
T(F)\T(Ay)/Ur

In either case the first claim follows. Now suppose that v is nondegenerate. The
nondegeneracy of v implies that v~ 1T(F)yNT(F) = Z(F) and so

Py~ 'oy)Q(1) dy

way - |
T(F)\T(Af)/UT 5€T(F)\T(F)’yT(F)

Py~ 'vty)Q(1) dy
F)/Z(F)

S Te) / Py yy) dy
Z(F)\T(Ay)/Ur

where the measure on Z(F)\T(A;)/Ur gives each coset volume 1. The second
claim follows. g

/T<F>\T<Af>/UT seT(

In particular, if the U =[], U, and P =[], P, of Lemma [B.2] are factorizable
and v is nondegenerate then there is a decomposition

(3.7) (P,Q); = Q1) - [Z(Ag) : Z(F)UZ] - [T Ob(P.)
where the product is over all finite places of F' and

(38) Og (Pv> = Z P, (tilﬁyt)

tEFS\EYS /UT,»

is the orbital integral of P, at -y, where we abbreviate Ur, = E* N U,.

The remainder of §3lis devoted to the computations of orbital integrals for specific
CM-cycles, and we fix the following data throughout §3.3]and 3.4 Let v be a finite
place of F and fix €, € B} such that F,e, = B, . We assume that N(¢,) € Op,
and let e be an ideal of O satistying e, = N(€,)Op,. Define an order of B, by

Rv = OE,'U + OE,vev-

Fix a uniformizing parameter w € F,.
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3.3. Local calculations at primes away from N(¢). Assume that v { N(¢) and
set U, = R} . Define a function on G(F,)/U, by

Peo(g) = > x®lu,(t'g).
teE) /OF
For each ideal a C Op set H(a,) = {h € R, | N(h)Op, = a,} and define another
function on G(F,)/U,

Px,u,v(g) = Z Px,v(gh)

h€H (ay) /U,
= Xo(a) Z Xv(t)lH(av)(t_lg)'
teEy /OF |
For each nondegenerate v € G(F,) we wish to compute the orbital integral
(3.9) Og(Px,aw) = Z Px,a,v(t_l’Yt)-
teF\EY /O,

Proposition 3.3.1. Suppose v is inert in E and v € G(F,) is nondegenerate.
Then (39) is nonzero if and only if ord,(na) and ord,(éae™1t) are both even and
nonnegative. When this is the case

ordy (na)

O (Py,aw) = Xo ()Xo (Y )xu(@) 2
Proof. Suppose v = 1, so that v = 1 + B¢, with 8 € E. The expression (3.9)

reduces to

OgJ(PXﬂl,v) = Pyao(7)

oo

= Xo(a) Z Xv(w)le(av)(wik'V)

k=—0o0

Using ord,(n) = —ord,(N(7y)) we see that the only possible contribution to the
inner sum is for k satisfying 2k = —ord, (na). Thus we may assume that ord,(na)
is even, leaving

OF(Paw) = Xol@)xo(@) 2701y (w70 (10))
X(0)xo (@) 2 (1 1 g (e z0rde (7))
which is nonzero if and only if
w%ordv(na)(l + ﬂev) € OE,U + OE,ve'u-
Thus O}, (Py,a,0) is nonzero if and only if both
ord,(na) >0 ord, (na) > —ord, (N(5))
hold. The observation that
ord,(¢ae™!) = ord, (a) + ord, (N(B)) — ord,(N(v)) = ord,(na) + ord,(N(3)),

together with ord, (N(8)) € 2Z completes the proof when 4+ = 1. For the general
case simply note that if 7 is replaced by ty with ¢ € E) then both sides of the
stated equality are multiplied by x,(t). Thus it suffices to prove the claim for a
single element of E 7. O
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Remark 3.3.2. In the proof of Proposition B.3.1]it sufficed to treat the case v+ = 1.
This will remain true in all remaining computations of orbital integrals in §3.3] and
g3.41 We will continue to state the results for arbitrary ~, but in the proofs we will
assume that v7 = 1.

Proposition 3.3.3. Suppose v is ramified in E and v € G(F,) is nondegenerate.
Then ([39) is nonzero if and only if ord,(na) and ord,(£ae™1) are both nonnegative.
When this is the case

O’I}(Px,a,v) =2 Xv(n)Xv (7+)XU(WE)OrdU(na)

for any uniformizer wg € E,.
Proof. Write v = 1 + Be, with g € EX. Equation [B.9)) reduces to
O (Praw) = Prav(y)+ Pran(@g 7@E)

oo

= xo(@) D Xo(@e) F[1u(a,) (@) + 1a (o, (@ y@m)].

k=—0o0

The only possible contribution to the final sum is the term k = ord, (na), leaving

Oy (Py,a,0)
—or rd, rd, -1
= xo(@xu(@r) O [1g, (@5 ") + L, (@5 " T @)
The remainder of the proof is exactly as the proof of Proposition [3.3.1] O
Proposition 3.3.4. Suppose v is split in E and v € G(F,) is nondegenerate. Then

(2:9) is nonzero if and only if ord(na) and ord,(£ae™t) are both nonnegative. When
this is the case

Of(Pyan) = Xo(Mxu(v") - (L+ ordy(gae™ ) > a'p

i+j=ord,(na)
4,520

where, under the identification E) = F) x F.*,
a = xy(w,1) B =xo(l,@).
Proof. Write v =1+ Be, with § € E, so that
ordy (n) = —ord, (N(7)) and  ord,(¢e™") = ordy (1) + ordy (N(5)).
For any ¢t € T(F,)
Prao('9t) = xu(@) D" Xol8) - Laga,) (st 70),
s€B) /O

and the only terms in the final sum which may contribute are from those s satisfying
ord,(N(s)) = ordy(na). Fix an isomorphism Og, = Op, X Op, and set ¢; ; =
(w',@w’). Then

(3.10) Py a0t 1yt) = xu(a) Z QBT 1p, (e it ).
i+j=ord, (na)

The set {er,0 | k € Z} is a complete set of coset representatives for F;\E)/Of
and

6;;10 "Y€k = 6,;75(1 + Bey)ero = 1+ e_g 1 fey.
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Combining (39) and BI0) therefore gives

(311)  OF(Pyaw) =xu(@) Y. @ 'B7 > 1g(ei;j(1+e_knrBe)).

i+j=ord, (na) k=—o0
The inner sum counts the number of k£ such that
€ij + ik j+kB€ € Opy + Op y€y.

When i+j = ord,(na) the condition e; ; € O, is equivalent to 0 < 4, j < ord,(na),
and so the outer sum may be restricted to ¢, 7 > 0. The inner sum then counts the
number of k£ such that

€i—kj+kB € Op.
Replacing S by an Ogyv—multiple does not change the number of such k, and so we

may assume that 8 = eg; for some s,¢t € Z. The inner sum of (1T is then equal
to

kel |i-k+s>0, j+k+t>0} = i+j+s+t+1
= ordy(na) + ord,(N(B)) + 1
= ord,(éae™h) +1
if ord,(€ae™!) > 0, and is equal to 0 otherwise. Thus ([B.11]) reduces to
OF (Pyaw) = xola)(ord,(€ae™) +1) Y~ a7'p™

i+j=ord, (na)
,§20

when ord, (éae™1) > 0. Using x,(na) = o731 the proposition follows. O

Corollary 3.3.5. Suppose v1{N(€), v € G(F,) is nondegenerate, and ¢ is an ideal
of O with v, =¢,. Then

[aluldly/*70(7) - OF (P.av) = Bu(a,n, & )
where 7,(v) is as in Lemma 312

Proof. Propositions B.3.1] 3.3.3] and [B.3.4] give explicit formulas for the left hand
side, while Proposition 2.4.2] gives explicit formulas for the right hand side. ]

We now turn to the calculation of Py 4, (1) and Py q . (€y).

Lemma 3.3.6. Suppose that v is inert in E. Then

Pran(l) = Xo(@) 294 (@) if ord,(a) is even and nonnegative
e 0 otherwise

me,v(ev)

Xv(e)xv(w)%ord”(“il) if ord,(ae~!) is even and nonnegative
0 otherwise.

Proof. Exactly as in Proposition 3.3.1]

oo

Px,u,v(g) = Xv(a) Z Xv(w)_le(av)(wkg)-

k=—o00

If g = 1 then ord,(N(g)) = 0 and the only contribution to the final sum is when
2k = ord,(a). Thus we may assume that ord,(a) is even, leaving

Py (1) = XU(W)%Ordv(a)le (w%‘"dv(“))
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which proves the first claim. If ¢ = ¢, then ord,(N(g)) = ord,(e) and the only
contribution to the above sum is for k satisfying 2k + ord, (¢) = ord,(a). Thus we
may assume ord,(ae~1) is even, leaving

Pyao(€n) = xo(a)xu (@) 20900 D 5 (grordu(ae™ )

which proves the second claim. ([

Lemma 3.3.7. Suppose that v is ramified in E, and let wg be a uniformizer of

FE,. Then
- Xo(@wg) (@) if ord,(a) >0
Pranl) = { 0 otherwise
P, (€y) = Xv(e)Xv(wE‘)ordv(aeil) if ord,(ae™!) >0
X e AT 0 otherwise.

Proof. The proof is nearly identical to that of Lemma [B33.6] and the details are
omitted. |

Lemma 3.3.8. Suppose that v is split in E, and let o and B be as in Proposition

[3-34] Then
Pyan(l) = Z o'

i+j=ord,(a)
4,j20

Px,a,v(ev) = Xv(e) Z aiﬁj-
i4j=ord,(ae™ 1)
i,j>0
Proof. On the right hand side of
Pyao(g) =xo(@) > X,(t)la(a,)(tg)
teEy /OF
the only terms which may contribute are from those t satisfying
ord, (N(¢)) = ord,(a) — ord,(N(g)).
Fix an isomorphism Og , 2 Op, x Op, and set e; ; = (w®, @w’). Then
Pyaw(9) = xv(a) > a”' B 1k, (ei;9)-
i+j=ord, (a)—ord, (N(g))

The lemma follows easily from this equality, using af = x,(@). O

Corollary 3.3.9. Suppose v does not divide N(€) and that a € A* satisfies aQp =
a. Then

Pya0(1) = |al;/? By (a; 6).
If we pick e € A* such that eOp = ¢ then
Py.av(en) = xo(e)lel/?|al; /2 By(ae™t;6)
Proof. Compare Lemmas [3.3.0] B.3.7, and with Proposition 22311 O
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3.4. Local calculations at primes dividing N(€). Let v be a finite place of F'
dividing N(€) (in particular v 1 9). Assume that
(3.12) ord, (N(€)) < ord,(e)

and let U, C R} be the kernel of the homomorphism R} — (Og,/€,)* given by
z + ye, — x. Define a function P, , on G(F,) by

Poo(g) = Y. xe®lu,(t'9).
tGEg/UT,u
For each nondegenerate v € G(F,) we wish to compute the orbital integral
(3.13) O (Pyw) = Z Px,v(t717t)'
teFS\ES /U,y

In accordance with Remark [3.3.2 we will state the results for any nondegenerate
but will assume in the proofs that v+ = 1 and write v = 1 + B¢, with 8 € EX.

Proposition 3.4.1. Suppose v is inert in E and v € G(F,) is nondegenerate.
Then (F13) is nonzero if and only if ord,(n) = 0 and ord,(e™!) is even and

nonnegative. When this is the case
O'I} (Pyw) = [OE,U : O;‘,UUT,U] Xo(7F):
Proof. In this case B.I3]) gives

Oy (Pyw) = > Peo(t™1)

tEO;v\OE’v/UTYU

Z Z Xo(8) 1y, (s 71 t).

tEO;YU\Ogyu/UTYU SEE&< /UT,U

As U, = Ury + O €y, the only way that s~ 1yt = s71(1 + ¢t77B¢,) can lie
in Uy is if s € Ur,. Therefore only the term s = 1 contributes to the inner sum,
leaving

O} (Py) = > 1y, (14t 118¢,).
teOp \OF ,/Ur

If ord, (N(/)) > 0 then every term in the sum is 1, and otherwise every term is 0.
As

ord,(¢e7 ') = ord,(n) + ord, (N(3))
the condition ord,(N(8)) > 0 is equivalent to ord,(£e!) > ord,(n), and using
n+&=1and ord,(¢) >0
ord, (¢e7!) > ord,(n) <= ord,(n) =0 and ord,(¢e™ ") > 0.

O

Proposition 3.4.2. Suppose v is split in E and v € G(F,) is nondegenerate. Then
(Z13) is nonzero if and only if ord,(n) = 0 and ord,((e~1) > 0. When this is the

case

OF(Pys) = 0%, - O, U] - xolr)(1 + ordy (ge 7)),
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Proof. Using the notation of Proposition B34, so that e;; = (@', w@’), for any
t € T(F,) we have

Poot ') = > X,(8) Ly, (st 1)
s€EE) /Ur
= YY) Xlseny)-1u,(seiy(1+1t"T8e,))
1,JE€L SEOE,U/UT,W
As U, = Ur,+OE, vey, only terms for which se; j € Ur,,, can contribute to the inner

sum, and so the only nonzero term can be the one with ¢ = j = 0 and s € Ur,.
This leaves

Py (t7'yt) = 1y, (1 + t'1Bey)
and so (BI3) becomes

Op(Pyo) = > 1p,(1+t78e,)
te F,\ES /Ur

Z Z 1y, (1 + e_;g)kt_lfﬁev)
k=-ocote0f \OX ,/Ur.

o0

= [OE:,U : O;yvUT,v] . Z ]-Uy(l + e,kﬂkﬂev).

k=—o0

Every term in the final sum is 0 unless the quantity
N(1L +e_prfe,) =N(y) =n~"

lies in OF. Thus we may assume ord,(n) = 0, so that the sum simply counts the
number of k for which e_j ;8 € Og,. Multiplying 8 by an element of OEU, we
may assume that 5 = e, for some s,t € Z. The k for which e_j 18 € Og,, holds
are then precisely those for which s — k& > 0 and ¢ + k£ > 0, and there are

s+t+1=ord,(N(B)) +1=ord,(ée )+ 1
such k if ord,(£e~!) > 0, and no such k otherwise. (]
Corollary 3.4.3. Suppose v divides N(€) and v is nondegenerate. Then
70(7) - O (Pxw) = [Og, : O, U] - Bu(1,1,§ )
where 7,(v) is as in Lemma 312 and v, = ¢,.

Proof. Propositions[3.4.1]and B.4.2 give explicit formulas for the left hand side while
Proposition 2.4.2 gives explicit formulas for the right hand side. O

Lemma 3.4.4. We have the equalities Py (1) =1 and P, ,(ey) = 0.
Proof. Clearly P, (1) =1 simply by definition of P, ,. On the other hand
Pyo(e) = Z Xo(t™ 1)1, (tey).
teT(Fy)/Ur,»

If this sum is nonzero then te, € R for some t € T'(F,). But this would imply both
N(te,) € Op,, and te, € Op,y€,, which implies ord,(N(e,)) < 0. But ord,(N(e,)) =
ord,(e) > 0 by BI2), a contradiction. O
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Corollary 3.4.5. Choose e € A* with eOp =e¢. Then
Py (1) = B,(1;0) Pyo(€n) = xu(e)le]Y/2 B, (e 0).
Proof. Compare Lemma [3.4.4] with Proposition 2311 O

4. CENTRAL VALUES

Suppose the representation IT of §I.7] satisfies Hypothesis [[LT.Il Recall that II
has conductor n = ms and that x has conductor € = ¢Op for some Op-ideal ¢. Let
B be a quaternion algebra over F satisfying
(4.1) B, is split < €,(1/2,t,9) =1
for every finite place v of F', where v = mc? and the local epsilon factor is defined
by (Z35). This implies that the reduced discriminant of B divides m and, as E, is
a field whenever B, is nonsplit, that there is an embedding F — B which we fix.
For the moment we do not specify the behavior of B at archimedean places. Let G

and T be the algebraic groups over F' defined at the beginning of §3l For any ideal
b C Of let Oy = OfF + bOg denote the order of Of of conductor b.

4.1. Special CM cycles. We construct two particular compact open subgroups
U C V of G(Ay) and two special CM-cycles @, and P, of level V and U, respec-
tively. It is ultimately the cycle @), in which we are interested, but the local orbital
integrals (B8] of cycles of level V' seem too difficult to compute directly. The sub-
group U is chosen to make these orbital integrals more readily computable (indeed,
they have already been computed in §3.3] and B.3]).

Lemma 4.1.1. For every finite place v there is an order in B, of reduced discrim-
inant m,, which contains O ,. Such an order is unique up to E.S-conjugacy.

Proof. If v is inert in E then (@I implies that
ord, (m) = ord, (disc(B,)) (mod 2)

where disc(B,) is the reduced discriminant of B,. Thus the lemma follows from
[11l, Proposition 3.4]. O

If v is a place of F dividing ¢ then, in particular, v 1 dm and B, = Ms(F,). Let
W, denote a two dimensional F),-vector space on which B, acts on the left. As W,
is free of rank one over F,,, we may choose wg € W,, such that W,, = E,, - wg. For
each rank two Op,-submodule A, C W, set

OAy)=1{be B, |b-A, CA,L,

a maximal order of B,. As s | ¢ by Hypothesis [[T.J] we may consider the two
lattices in W,
L; = Oc,vwo L,= Ocs*l,vwo-

Choose a global order S C B such that S, = O(L,) N O(L,)) for every place
v | ¢ and such that for every finite place v { ¢, S, has reduced discriminant m,
and contains Og, (which can be done by Lemma [I.T). The group S* acts on
[1,c Lv/L}, = Or/s through a homomorphism o : 5% = (Op/s)*, and we define
V to be the kernel of ¥. One should regard V' C G(Ay) as a quaternion analogue
of the congruence subgroup Ky(m) N K;(s). Define a CM-cycle of level V

B x(t) if g=tvforsomet e T(As), veV
@xlg) = { 0 otherwise.
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For this definition to make sense we need to know that x is trivial on T(Af) NV.
This is immediate from the following

Lemma 4.1.2. We have @f =T(Af)N S*, and xo o9 and x have the same
restriction to OF.

Proof. For v 1 ¢ a finite place of F', O, C Sy. As O, is a maximal order in E, we
must therefore have O, , = E,NS,. Forv | cit follows from O = {z € E, | 20 C O}
for any order O C E, that

Oco =0cy NOs-1, = E,NO(Ly) NO(L) = E, NSy,

proving the first claim. For the second claim, if v 1 s then both ¥, and x, are
trivial on O, = Op (14 ¢Op,)*. If v | s then ¥, : OF, = (OF./5,)* is given
by 9y (2(1 + cy)) =z for x € O, y € Opy, and ¢ € OF,, satistying cOp, = c,.
Thus

(x0,0 0 9)(2(1 + cy)) = x0,0(7) = Xo(®) = Xo(2(1 + cy)).

Lemma 4.1.3. For every finite place v there is an €, € B, satisfying
(a) Eye, = By,

(b) ord,(N(c,)) = ord, (x)

(c) Ifvtc then e, €S,

(d) if v | ¢ then e,wy € cOp ywo.

Proof. First fix an €, which generates B, as a left E,-module. If v is split or
ramified in £ then we may multiply €, on the left by an element of E¢ to ensure
that (b) holds. If v is inert in F then it follows from the proof of Lemma BT
that w,(N(e,)) is 1 if B, is split and is —1 if B, is ramified. Condition (ZI]) then
implies that w,(N(€,)) = wy(t), and so again we may multiply €, on the left by
an element of E so that (b) holds. Assume now that v { ¢ and define an order
R, = Op,v + Ogv€,. An easy calculation shows that R, has reduced discriminant
0,m,, and so may be enlarged to an order R! of reduced discriminant m,. By
LemmaETIItR)t~! = S, forsome t € E)*. Replacing €, by te,t~! =t ~le, we find
that (c) holds. Now assume that v | c. As W, is free of rank one over E, there is an
x € E, such that €, -wy = 2wy, and it follows that N(e,)wog = —€2wy = —N(z)wp.
Therefore ord, (¢?) = ord,(N(z)). If v is inert in E then this implies = € ¢Op,, and
hence (d) holds. If v is split in E then we need not have x € ¢Og ,, but there is
some ¢ € E satisfying N(¢) = 1 and tx € ¢Og,,. Replacing €, by te, we again find
that (d) holds. O

Let R C B be a global order such that R, = Og , + O €, at every finite place
v, with €, satisfying the properties of Lemma LT3l There is a natural Og-algebra
homomorphism R — Og/¢Of defined by b + b™ (with notation as in §3.1]), and
the kernel of the induced homomorphism R* — (Og/cOg)* will be denoted U.
Define a CM-cycle of level U

P(g) = x(t) if g =tu for some t € T(Ay), ue U
X\ = 0 otherwise

so that P, =[], Py,0 where the function Px » on G(F,)/U, agrees with that con-
structed in §3.3] and §3.4 (with ¢ = v = mc?). The compact open subgroups and
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CM-cycles constructed above satisfy U C V and

(42) Vi :Ur]-Qx(9) = Y Pylgh).

hev/U
For each ideal a prime to ¢ we have, from §3.3 and §3.4] a CM-cycle of level U
defined as the product

Pea(9) = [ [ Peanw(go) [ Prw(90)-

v|a vta

If a is prime to ot then R, is a maximal order for each v | a. and we define the
Hecke operator Ty on CM-cycles of level U

(T.P)(g)= Y, Plgh),
heH(a)/U
where H(a) = [[,, H(av) - [, Uv and H(a,) was defined in §3.3 for v | a. One
then has the relation T4 P, = P q.
For the remainder of §l the letters U and V will be used exclusively for the
compact open subgroups constructed above.

4.2. Toric newvectors and the Jacquet-Langlands correspondence. Let
Ram(B) denote the set of places of F' at which B is nonsplit and let 7 be a cus-
pidal automorphic representation of GLo(A). If 7, is square-integrable for every
v € Ram(B) then there is a unique infinite-dimensional automorphic represen-
tation 7' of G(A) such that for every v ¢ Ram(B), m, = 7, as representations
of G(F,) = GLa(F,). We then say that 7 is the Jacquet-Langlands lift of «'.
There are many references for the Jacquet-Langlands correspondence including
[, 8L 17, 18] 21]

Lemma 4.2.1. With II the automorphic representation fized at the beginning of
44, if v € Ram(B) is a nonarchimedean place then either

(a) ordy(m) =1 and 11, is a twist of the Steinberg representation by an unram-
ified character
(b) orord,(m) > 1 and I, is supercuspidal.

In particular 11, is square integrable.

Proof. If v € Ram(B) is nonarchimedean then (£1) implies that ord, (m) = ord,(n)
is odd and II, has unramified central character. The lemma now follows from

standard formulas for the conductor of irreducible admissible representations as in
27, (12.3.9.1)] O

For the remainder of §4.2] we assume that II is cuspidal and that either II, is
a weight 2 discrete series at each archimedean v and B is totally definite, or that
II, is a weight O principal series at each archimedean v and B is totally indefinite.
In either case it follows from Lemma H.2.1] that II, is square integrable for each
v € Ram(B) and so II is the Jacquet-Langlands lift of some IT'.

Definition 4.2.2. For any place v of F' we define a newvector ¢ € II, to be a
nonzero vector such that
(a) if v is a nonarchimedean place then ¢ is V,-fixed,

(b) If v is an archimedean place and we are in the weight 0 case above, then ¢
is fixed by the action of E¢ = R* - SO2(R),
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(c) if v is an archimedean place and we are in weight 2 case then we impose no
condition on ¢.

A newvector in II' = @), I, is a product of local newvectors.
Lemma 4.2.3. Up to scaling there is a unique newvector in IT'.

Proof. Tt suffices to prove existence and uniqueness everywhere locally. If v is
archimedean this is clear (in the weight 2 case II/ is the one-dimensional triv-
ial representation of G(F,) by [I8 Lemma 4.2(2)]), so assume that v is nonar-
chimedean. If B, is split then there is an isomorphism B, = My (F,) which identi-
fies V,, & Ko(m,) N K1(sy), and so the claim follows from the theory of newvectors
for GLy(F,) as in §211 If B, is nonsplit then (A1) implies that v | m and v {c¢. As
Vi, = S with S, an order of B, of discriminant m,, containing Og,, the claim is
a special case of [I1], Proposition 6.4]. O

Definition 4.2.4. For any place v of F let E act on I/ via the embedding
T(F,) — G(F,). We define a toric newvector ¢ € Il to be a nonzero vector such
that

(a) if v {9t then ¢ is a newvector,
(b) if v | d then ¢ is U,-fixed and satisfies ¢ - ¢ =X, (t) - ¢ for every t € E,
(c) if v | v then ¢ is U,-fixed and satisfies ¢ - ¢ = X, (t) - ¢ for every t € Op .

A toric newvector in II' 2 Q11 is a product of local toric newvectors.
Lemma 4.2.5. Up to scaling there is a unique toric newvector in II'.

Proof. Again it suffices to prove the claim everywhere locally. If v { dv then the
claim is a restatement of Lemma.2:3 If v | 0 then x, has the form x, = v, oN for
some unramified character v, of F,*. By a theorem of Waldspurger [34, Theorem
2.3.2] the representation I} ® v, has a unique line of E)-fixed vectors, and by a
theorem of Gross-Prasad [34, Theorem 2.3.3] this line is also fixed by the unit group
of any maximal order of B, containing Og ,. As R, may be enlarged to such an
order, the E}-fixed vectors in I, ® v, are also fixed by U, = R}. It follows that
IT’, has a unique line of U,-fixed vectors on which E¢ acts through y;!.

If v | m then R, = S, (as R, C S, and both have reduced discriminant m,,),
U, =V,, and a toric newvector is just a nonzero V,-fixed vector; again the claim
follows from Lemma23l If v | ¢ but v { s then X, is trivial on Of; ,, and so we may
find a character x;, of S which is trivial on ;) but agrees with x, on O . By [34,
Theorem 2.3.5] (Zhang’s T is our R} = Of U,) there is a unique line of U,-fixed
vectors in IT/, on which (’)EU acts through ¥/, and thus a unique toric newvector in
IT,. If v | s then I}, 2 11, is a principal series I, 2 TI(p,, Xaﬂl“u;l) and x, = vy oN
for some character v, of F,* of conductor ¢ (both claims by Hypothesis [LT.T]).
It follows that IT) ® 1, has trivial central character and conductor ¢2. As R, has
reduced discriminant ¢ and contains O, there is a unique line of R.¢-fixed vectors
in I, ® v, by [34, Theorem 2.3.3]. As R} = O, - U, we find that II; ® v, has
a unique line of U,-fixed vectors on which Og,v acts through the trivial character,
and the claim now follows from the observation that N(U,) C 1+¢, C ker(v,). O

4.3. Central values for holomorphic forms. In addition to Hypothesis [[T.1]
we assume that I, is a discrete series of weight 2 for every archimedean place v,
and that €(1/2,v) = 1. Let B be the (unique up to isomorphism) totally definite
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quaternion algebra over F satisfying (@1]) for all finite places of F'. Taking m to be
the constant function 1 on G(F), let ky(x,y) be the function on Cy x Cy defined
by 4) and let (P, Q)y be the associated height pairing on CM-cycles of level U
defined by [B3). According to [31] §7.2] the sum defining ki (z,y) is actually finite.
Recall that we have set t = mc? and abbreviate ©, = O¢,1/2-

Proposition 4.3.1. Fiz a € A* and assume that a = aOp is prime to ¢. Then
Hp
AU

where, as in §3.2, Hr is the class number of F and \y = [Of : Op NUJ.

05 : Ur) - B(=a;0¢) = 2179 d|/2|a|(Py o, P)u - €o(a)

Proof. Suppose v € G(F) is nondegenerate and let 7 and £ be defined by (B.I]).
Then Corollaries and show that

[OE,U : O;‘,vUT,v] “By(a,n,§0¢) = 70(7) - |a|v|d|11;/2 'O’(}(Px,a,v)
for every finite place v of F. By [B.1)

(Pea PG = [2(Af) : Z(F)UZ] - [] OF(Pra)

vfoo

By the final claims of Proposition 24.2] and Lemma [B.1.2] for v an archimedean
place

By(a,n,& 0¢) = 27, (7)|alves (—a).
Combining these equalities gives

Hp ~ .
)\—5[02 :Ur] - B(a,n,§;0.1/2) = 2141120 ( Py, P)Y - eco(—a).

By Lemmal[ZZT] given n, £ € F* with n+£ = 1 we have B(a,n,&; O,) = 0 unless
wy(—n&) = €,(1/2,¢,%) for every place v of F'. Combining (A1) with Lemma BTl
we find that B(a,n,&;0,) = 0 unless the pair 1, is of the form B3I for some
v € G(F). Therefore

Hr ~
o105 :Ur] - Y7 B(-a,n.66x)
v n,EeF*
n+&=1
(4.3) = olF:Q|g|1/2 g > (Py.as Py)Jr - ecola).
VET(F)\G(F)/T(F)

7 nondegenerate

It remains to compare the linking numbers at the two degenerate choices of ~y
(i.e. v € B¥) with the degenerate terms Ag(a;©.) and A;(a; O,) of 7). First
suppose 7 = €° where €° satisfies B~ = E¢°, so that (7,£) = (0,1). Let z € A}
be such that € = z,¢, for every finite place v. If x # x* then both 4;(a;©.) and
(Py,a, Py){; vanish, by Lemmas and B:2T] respectively. We therefore assume
that x = x*. If x is ramified then B, (a; E; ) = 0 for any v | ¢ by Proposition 22211

-1
and the inequality ord,(ar™!) = —ord,(r) < 0. Abbreviating a = <a5 1>, it

follows that Wy s (ahr) = 0 for any T C S and so Aj(a;©,) = 0. Similarly if x
is ramified then P, 4(¢°) = 0 by Lemma [3.4.4] and so also (Py,q, Py)uy = 0 by
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Lemma B21l We therefore assume that x is unramified. By (22]), Proposition
223 and Lemma 234 Cy(ahr) =0 unless T =0 or S, and so

A1(a;0:) = > Xp(D)Co(ahy)We1)2(ahr)
TCS

= Bl(a; Ei,1/2)Co(a) + X(D)B(a; hs Ey1/2)Co(ahs)
2- B(a; E¢1/2)Co(c)
where we have used Propositions and for the third equality. Again using
Proposition 2.2.3] and Lemma 2.3.4] we find
Cole) = (=) Up(ad=Y)|ad 6720 (1, w)
B(a; Beyp2) = |r|'?Blar™ Eo,p2)
(—1)E Y ar[V 2 (ar= 67 ) B(ar™; 0)
where rOp = ¢ for r € A* with r, = 1 at each archimedean v. Therefore
A1 (a;0;) = 2v(v)|ard Y2 B(ar™ ' 0)L(1,w).
On the other hand using Corollary B.3.9] Lemma B.4.4] and
X(rz) = v(r)’v(N(2)) = v(r)*v(N(e*) ") = v(r)
we find
Pya(€) - ecc(—a) = v(v)[r[*/?|a| /2 B(ar™"; 6)
and now (Z2)), 23), and Lemma B2 imply that (for v = €°)
(4.4) HpAG O} : U] - Ai(—a; ©;) = 2P |d|V2|a(Py o, P - eco(a).

A similar, but easier, argument also shows that (£4)) continues to hold if v =1
and A; is replaced by Ag. The theorem follows from this together with equation

#3), equation (B6), and the decomposition (7). O

We now construct a pairing [P, Q] on CM-cycles of level U taking values in the
space of automorphic forms on GL2(A) as in [34, (4.4.5)]. Endow the (finite) set
Sy = G(F)\G(Ay)/U with the measure determined by

/SU > Py dg:/c P(g) dg

YET(F)\G(F) v
for any CM-cycle P of level U. For each a prime to dt there is a Hecke operator

(Ta®)(g) = > #(gh) on L*(Sy) where the sum is over h € H(a)/U as in §411 For
any ¢ € L?(Sy) we have

/S ko (2, 9)6(y) dy = 6(x)

and it follows that that there is a decomposition ky (z,y) = Zle fl () fl(y) where
{fi,..., f;} is any orthonormal basis for L?(Sy). We choose this basis in such
a way that each f/ is a simultaneous eigenvector for every T, with (a,0t) = 1.
The Jacquet-Langlands correspondence implies that for each f! there is a (not
necessarily unique) holomorphic automorphic form f; of weight 2 on GLy(A) fixed
by Ki(dt) having the same Hecke eigenvalues as f/. Indeed, if f! generates an
infinite dimensional representation 7’ of G(A) then take f; to be a newvector in the
Jacquet-Langlands lift of 7/. If f/ generates a finite dimensional representation of
G(A) then f/(g) = n(N(g)) with p some character of A*/F*  and one takes f; to
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be an Eisenstein series constructed from a function in the induced representation
B(u| - Y2, 4] - |71/2). We may, and do, assume that B(Op, fi) = 1 for every i.
For any CM-cycles P and @ of level U we define a parallel weight 2, holomorphic,
K, (dv)-fixed automorphic form on GLy(A)

y4

A=Y ([ P@n@ew dd) f.

i=1 uxCu
This form satisfies B(Op, [P,Q]) = (P,Q)y and, for any ideal a relatively prime

to ot, Ty - [P,Q] = [P, T.Q]. Set ¥ = [P,, P,], an automorphic form of central
character ! satisfying

(4.5) B(Op; T,0) = (Py, Py,a)u-

Let TI' be the automorphic representation of G(A) whose Jacquet-Langlands lift
is I1, let ¢f;, be the toric newvector in II' normalized by [ [dr, |2 =1 and let ¥|
denote the projection of ¥ to II. We may choose the basis {f/} so that ¢f, = f1.
If we set Py(g9) = >_, Px(vg) where the sum is over v € T'(F)\G(F) then
2

B(Op; Ulu) = Y

1<i<¢
T =T1

| Paos
Su

The projection of 5)( to 7 is a toric newvector, hence a scalar multiple of f7, and
so only the term 7 = 1 contributes to the sum. It follows that

N 2
(4.6) B(Op; V) = /C P\ (t)ox, (t) dt

Proposition 4.3.2. Let ¢§ be the orthogonal projection of the normalized newform
on € II to the quasi-new line (defined in §2.8). Then

2SI Hp A OF - Ur|B(Op; ¢7)L(1/2,T1 x 11,

_ MWW@W§%myM;&@%ﬁMt
U

in which S is the set of prime divisors of 0.

2

Proof. Let O and | denote the projections of ©, and ¥ to II. Combining
Proposition 431 and (@3] gives

HF)‘{JI[@E‘ : UT] ’ §(0F§Ta@t) = 2[F:Q]|d|1/2§(OF,Ta\IJ)

for all a prime to dt. The action of the operators T, with (a,dt) = 1 on the space
of all K (dv)-fixed, holomorphic, parallel weight two automorphic forms on GL2(A)
of central character ! generates a semi-simple C-algebra, and it follows from this
and strong multiplicity one that there is a polynomial er; in the Hecke operators
T, such that O,|g = ery - ©, and V| = ey - ¥. We therefore deduce that

(4.7) HpAGH[OF - Ur] - B(Op; ) = 25Y|d|' 2 B(Op; U|n).

Under the decomposition IT = @), II,, the newform ¢ry is decomposable as a pure
tensor ¢ = ®¢r,». In the notation of 8 A, (¢pm,) # 0 for v | v¢, and so ¢y, has
nontrivial projection to the quasi-new line in II,. It follows that (bﬁ # 0. The form
O.|11 lies on the quasi-new line of II by Proposition 2.8.2] and so if E(OF; (bﬁ) =0
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then also B(Op;O,|n) = 0. Using ([@0) and (@7) we then see that both sides of
the stated equality are 0. Therefore we may assume B(Op; gbﬁ) # 0 so that

B(Op;On) ,»
t|H - = '¢H-
B(0F7 ¢#)
Combining this with 28) (with b = 1) gives
B(Op;®:ln) 6§ |kory = B(Op;®:ln) - (b1, 0% ko(o0)

B(Or; ¢ft) - (611, 00) k(o)
251 B(Op; ¢%)L(1/2,T1 x 11,).
The claim now follows from (48] and {Z1). O

Theorem 4.3.3. Let ¢np € II be the normalized newvector (in the sense of 2.1))
and let ¢rv € II' be the newvector (in the sense of Definition [{.2.2) normalized by
fSV |¢H/|2 =1. Then

L(1/2,T0 x T1,) 2lF-Q]

5 = .
||¢H||K0(") HF15\/NF/Q(0C2)

where Hp s = [Z(Ay) : F*Vy] is the order of the ray class group of conductor s.

2

Qx(t)or () dt

Cv

Proof. The proof is postponed until §4.6l O

4.4. Central values for Maass forms. In addition to Hypothesis[[LT.T]we assume
that II, is a weight zero principal series for every archimedean place v, and that
€(1/2,t) = (=1)F*U. Thus the weight 0 kernel of §2.7 satisfies Ors =071 Let
B be the (unique up to isomorphism) totally indefinite quaternion algebra over F'
satisfying ([@.I)) for every finite place v. Let S = Resc/rGy, and set Fioo = F ®@q R.

As F is naturally an R-algebra,
T/Foo =T XSpcc(F) Spec(FOO) G/Fao =G XSpcc(F) Spec(Foo)

are naturally algebraic groups over R. Fixing an embedding of real algebraic groups
S = T)p, the embedding T" — G determines an embedding zo : S — G,p_, and
we let X denote the G(Fu)-conjugacy class of zg. As T'(Fu) is the stabilizer of
xo we may identify X = G(Fx)/T(Fx). Writing H = C — R and choosing an
isomorphism G(F.) = GLa(R)F¥ we may fix a point in H[F*? whose stabilizer
under the action of G(F..) is T(Fs). This allows us to identify X = H[F:Q,
Endowing H with the usual hyperbolic volume form y~2dzdy we obtain a measure
on X. Define
Su = GIF)\X x G(A))/U

endowed with the quotient measure induced from that on G(Af)/U giving each
coset volume 1. The map G(Ay) — X x G(Ay) defined by g — (o, g) restricts to
a function on T'(Ay) and determines an embedding Cy — Su.

If ¢ is a weight 0 Maass form on GLy(A) with parameter t, in the sense of [36,
§4] at an archimedean place v then we set

Bv(a;(b) = |a|$/2/ 6_7"|a|u(’y+y71)yitu dxy
0
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Define By (a; @) = HU‘OO B,(a; ¢) and define E(a; ¢) for a = aOp by

B(a; ¢) = Boo(a; ¢) - B(a; ¢).

Let I be the automorphic representation of G(A) whose Jacquet-Langlands lift is
II, and let ¢35, be the toric newvector in II' normalized by |, s o] =1

Proposition 4.4.1. Let ¢# be the orthogonal projection of the normalized newform
¢m € 11 to the quasi-new line in II. Then

2SI Hp A OF - Ur|B(Op; ¢7)L(1/2, 11 x 11,

= AT G ] | nvss o a
U

in which S is the set of prime divisors of 0.

2

Proof. Fix a € A* and assume that a = aOp is prime to ¢. We abbreviate O} =
or 1/2° Suppose v is an infinite place of F. For each a € A*, v € G(F,), and 0, ¢

as in (3) define the multiplicity function

m*(a, ) = 4e2mav (=) if £q, < 0 and na, > 0
BT = otherwise.

If v € G(Fx) set mZ,(a,7) = [],)c mi(a, 7). Exactly as in Proposition H.3.]
using the formulas of §2.7 to supplement those of §2.4] we find
Hp

(48) 3

05 :Url-B@oy) = a2l Y (P POY - mi(ai).
YET(F)\G(F)/T(F)

The remainder of the proof is similar to that of Proposition .32} see [34] §4.4] for
details. Briefly, for any Maass form ¢ on Sy the kernel
ku(a;z,y) = > Lo (a7 vy p)mi (a; 22 Yoo )
YEG(F)/(Z(F)NU)

satisfies

/ ko (a2, 9)(y) dy / 3 (05 Yo0) $(@Yo0) s
Su X

= 4B (a;0) - ().

Exactly as in [34] Lemma 4.4.3] or [36] §16] this leads to a spectral decomposition of
the kernel ky (a; 2, y), and the proposition follows from (8], which is our analogue
of [36, (16.1)], exactly as in [36] §16]. O

Theorem 4.4.2. Let ¢y € II be the normalized newvector (in the sense of J2.1))
and let ¢riv € II' be the newvector (in the sense of Definition [{.2-2) normalized by

fSV |¢H’|2 =1. Then

L(1/2,T0 x T1,) 4lF:al

5 =
||¢H||K0(") HFM/NF/@(DCQ)

where Hr s is the order of the ray class group of F' of conductor s.

Proof. The proof is postponed until §4.61 O

2

Qx(t) ¢ (t) dt

Cv
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4.5. A particular family of Maass forms. Fix a 7 € C and if y( is trivial
assume that 7 # 0,1. Let I, denote the (irreducible) weight zero principal series
representation

L =I0( - 720 - 1V27)

of GLa(A) of conductor s and central character y,'. We construct an Eisenstein
series &; € I, as follows. Define a Schwartz function Q =[], Q, on A x A by

log., (@)1or,, (v) if v 1800
Q’U(:I;7 y) — Xa,v(y)lsu (x)]-(g;;w (y) lf v | 5
e—ﬂ(w2+y2) if v | 0.

The function

Folg) = detta)” [ (10,01 -g) P xole) d*a

is a newvector in the induced representation B(| - |77/, x| - |'/?277) defined in
[34, §2.2] and therefore the Eisenstein series (initially defined for Re(r) > 0 and
continued analytically)

&)= >,  F)

YEB(F)\GL2(F)

is a newvector in II,. The discrepancy between &£, and the normalized newvector
is determined by the following

Lemma 4.5.1.

0 2e(1/2,v0)

Nealopr 17z o)

/ B(a; &) - a2 d*a
AX
Proof. As in §2.2] using
B(Q;ET) = /A‘FT (_a5—1 y> 1/}(_34) dy
we see that B(a;&;) =[], Bv(a; &) where
Bu(wi€) = 2 lalixan®) [ 02 [ (e alalt o, (e) dady,

If v  s0o then a short calculation shows

ord, (a)
| o) [ Sulanaplelraona) dady =623 =M =)
v v k=0

from which we deduce

/ By(a; Er) - |a|f)*1/2 d%a = XO,v(5)|5|571/2LU(S,YO| . |1/277)Lv(s, - |;71/2)-
FX

v



TWISTED GROSS-ZAGIER THEOREMS 37
If v | s then choose o € F with 0Op, = s,. We have

/ #(y) / O, (az, 29) 22" x0.0(x) &z dy
F, FX

v

B /F [/F B oy (veo) dy} Lo, (az) |22 0,0 (2) d*z

= |5U|};/2€U(XO;¢S)/ 10; (Ux_l)lﬁv(a$)|$|g7—_l dX.I
FX v

16]0/2] 271 %€y (x0, ¥0) 105, (a).-
Therefore

| Buaen) Jali 2 d*a = xou @8l ol e (xos w2
F><

v

If v | 0o then

/ #(y) / Q (az, 2)| 227 0.0 () d*zdy
F, X

K
o0 - o0 2 2 2
_ |5|11)/2/ e27my/ e (a®+y )|$|37—1 dLebdeeby.
— 00 — 00
We therefore have

Xoul0 YT [ By lali 2 a7
FX

oo
_ 2.2 2.2
_ / / (/ |a|7'+s 1/2e T a dxa) eQﬂ'zye Ty |I|2T chby d*r
R* J—00 RX

— G1(8—|—7'— 1/2)/ (/ 672ﬂiymefﬂ-y2 chby) |I|sf‘r+1/2 d*z

RX —o00

G1(8+T—1/2)/ e—wmzlxls—'r-i-l/Z A"z
RX
= Gi(s+7—-1/2)Gi(s—T7+1/2).
Combining these calculations proves the lemma. (I

We now assume that I, satisfies Hypothesis [LI.1] which is really just the con-
dition that x, factors through N : E)X — F* for each v | 5. Choosing II = II, in
the introduction to § we wish to prove an analogue (Corollary £.5.3]) of Theorem
for the noncuspidal representation IL. by brute force. Note that now m = Op
and €(1/2,t) = (=1)F*Q, To put ourselves in the situation of &4, suppose B is a
split quaternion algebra over F' (so that (&I]) holds for all finite v) and as always
fix an embedding F — B. Let W be a two dimensional F-vector space on which B
acts on the left, and fix an isomorphism of F-vector spaces W = F' x F. Writing
elements of W as row vectors, there is an isomorphism p : B 2 Ms(F') determined
by b [z,y] = [x,y] - p(b)}, where the action on the left is the action of B on W,
the action on the right is matrix multiplication, and the superscript ¢ indicates
transpose. The element wy = [0,1] € W generates W as a left E-module, and we
define

L:ch—l *Wo L/:Oc s wo.-

We may pick a j € GL2(A) having the following properties:
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(a) if v | s then j, satisfies [0,1] - j, ' = wp and
Lv = (OF,'U X OF,U) . .7;1 L'/U = (51) X OF,'U) 'j;lv

(b) if v ts is a finite place of F' then j; - Ko(m) ~j;1 = p(Va),
(c) if v is an archimedean place then j,-SO(F,)-j, ! is set of norm one elements
of p(T'(Fy)).

For every automorphic form ¢ on GL2(A) we define an automorphic form ¢’ on
G(A) by ¢'(g9) = ¢(p(g)j). The space II, of automorphic forms on GL2(A) thereby
determines a space II’. of automorphic forms on G(A). Of course G = GLy and
I/, = 11, but it is useful to maintain these notational distinctions. Under the
definition of §L2/ T, is the Jacquet-Langlands lift of IT/. (a highly degenerate case).
If ¢ € T is a newvector in the sense of §2.1] then ¢’ € II, is a newvector in the

sense of 4.2

Proposition 4.5.2. Normalize the Haar measures on T'(As) and Z(Ay) to give
OF and OF each volume one, respectively, and give T(F)\T(Ay)/Z(Ay) the induced
quotient measure. For every T € C

_o\T/2 1
Np/g (0c%57%) 2[F:Q]L(T, X) =

/ X(BEL() dt.
T(F)O\T(Af)/Z(Ay)

Proof. The restriction of £ to T'(As) does not depend on the choice of embedding
E — B, and this embedding may be chosen so that

pla+ BV=-A) = (féﬂ ﬂaA)

where E = F[y/—A] with A € F totally positive. As the embedding p : T — GLs
identifies Z(F)\T(F) with B(F)\GLy(F) we have

/’ xwaww=/‘ NOF (o)) dt.
T(F)\T(Af)/Z(Ay) T(Ay)/Z(Ay)

Combining this with

X(t)Fr(p(t)g) = Idet(j)lf/ Q([0,1] - p(t) ) IN(t)|" x(tx) dx
Z(A)
we find

X&) dt = |det(5)[” /T(A )Q([(L 1] - p(t)5) IN()["x(t) dt

l_olo/F 20 ([0,1] - 2) 217" x0.0 (2) 4.

/T(F)\T(Af)/Z(Af)

We now compute the right hand side place-by-place. For an archimedean place

(V3 ) so that

v we may take j, = 1

oo

/ Q0 ([0,1] - ) 22" x0,0(2) d*z = / 67”2|x|2771 d“Py.
fols

— 00



TWISTED GROSS-ZAGIER THEOREMS 39

The integral on the right is 277 1Ga(7) = 2771L, (7, x). If v is a finite place of F
with v { s then

/ Qu([0,1] - p(t)7)IN(8) 7 x0 () dt :/ 1p, (T wo)|[N(#)[7x0(t) dt
T(F,) T(F,)

[ 1o, ON@RW0 d
T(Fv)
= VO](O:’U) ’ L'U(Tv X)a

the final equality by the argument of [36, p. 238]. Finally suppose that v | 5. For
any t € E the value of Q, ([0, 1]- p(¢)7) is nonzero if and only if [0, 1]p(t);j generates
the Op-module (s, x Op,)/ (s, X 5,), and when this is the case Q,([0, 1] - p(t)j) =
xai(y) where y € OF  satisfies [0, 1]p(t)j € [0,y] +s. This condition is equivalent
to twy being an Op -generator of L/ /s,L,, in which case the y € O;ﬁv above
satisfies twy € ywo + 5y L,. Thus y = 9,(f) = J,,(¢) (mod s,) in the notation of
411 By Lemma Xa})(y) = X, '(t). As the generators of O, /6,0cs-1,, are
exactly the units of O, we find

[ o Nokw® d = [ 60 NOF d
T(Fy) 4

c,v

= Vol(OF,).
It only remains to compute det(j). From the relation
[(OF + OpV=A) -wo] - j ' = Oe-1 - wo
we find
4A det(§)720F = disc(Op + OpV—A) - det(j) 2OF = disc(O-1) = 0(c¢/5)>.
Using |det(j)]2 = A, for v | oo we obtain 2UF:¥|det(j)| = /N(oc¢?s~2). The
(]

proposition follows by combining these calculations.

Corollary 4.5.3. Suppose Re(1) = 1/2 and let ¢, € IL; be the normalized newvec-
tor. Then
2

AlF:Q)]
Qx(9)97(9) dg

1
) = H
\/Nrjg(de?) | HFe Jov

where Sy is the measure space of defined with V in place of U.

L(1/2,11, x 11,

Proof. Using @CX /Vr = (Op/s)*, the measures on T(F)\T'(Ay)/Z(Ay) and Cy are
related by

Qx (D), () dg = Hrs / QD)) (2) dg

Cv T(FNT (Ay)/Z(Ay)

while Lemma [£5.T] implies
6(1/2, XQ) . ¢7— = NF/Q(5)2T_1/2 . 57—.

The corollary now follows immediately from |L(r, x)|> = L(1/2,IL, x I1,,), Propo-
sition €.5.2] and the fact that the restriction of @, to T'(Ay) is simply x. O
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4.6. Descent to low level. Assume that either II, is a weight 2 discrete series at
each archimedean v or that II, is a weight 0 principal series at each archimedean
v. In the weight 2 case we assume that €(1/2,t) = 1 and B is totally definite, as
in ¥3 and in the weight 0 case we assume that €(1/2,t) = (=1)F*% and B is
totally indefinite, as in §4.41 For each v | d¢ the representation II, is isomorphic to
a principal series H(uv,xaiugl) with 1, unramified, and we set o, = p,(w) for
any uniformizer w of F,. By the argument of [36, §17] for each v | dc¢ there are
rational functions a,, by, ¢, which, crucially, depend only on the data (F,, E,, Xv)
and not on the representation II, such that

B(Or; ¢fi) = B(Ori¢n) - [ [ av(ow)
v|dc

and

1671 k0 (0e) = [l én1l [Ty () - [ ] Polw)

v|oc

where ¢ € II is the normalized newvector and ¢# € II is the projection of ¢ to
the quasi-new line. Using ([@2]) in place of [36, Lemma 17.2], the rational function

¢, is defined by the relation
LT
= — (b ,
TP |fo, 0

1
TP
where II’ is the automorphic representation of G(A) whose Jacquet-Langlands lift
is II, ¢5, is a toric newvector in I’ in the sense of Definition 24, ¢ € IT' is a
newvector in the sense of Definition 2.2 and || - || is any G(A)-invariant norm on
I (e.g. ||-]|* = fSU |-|?). If v { 5 then o, is unramfied and we must have a, (a,) =

2

e

v|dc

Qx(9)omr (g) dg
Cu

a, (o, ' xg.0(@)) due to the the isomorphism II(tiy, xg ity ') = H(xg 4y s b)), and
similarly for b, and c,. Set ay = Hv|a cay(ay) and define by and cyy similarly.
Proposition 232 (for the weight 2 case) and Proposition 41] (for the weight 0
case) give

215 e (O - Ur) B(Or: 6)L(1/2, eru
‘ch ¢H/ dg‘z
fsU |¢H/ )I? dg

where f = 1 in the weight 2 case and f = 2 in the weight 0 case. As E(OF, ¢n) =1
we find, using A\y Hp s = Hp[OX : V] and B3] (which holds also with Cy and Cy
replaced by Sy and Sy ), that

|22 Q)R o

2
L(1/2,1I x II,) by - 2/ [F:Q ‘fcv Qx () (t) dt
(49) K - ancyy - 5 _ ] 2 d
ol 5, (m) Hpo\/Np/o(262) Js, 1o (92 dg
Here k = H'U|Dc K, With
L 0% : Urol el { 2 ifv|o
’ [(/9\i><,v : VT,v] Vo : U] 1 ifwv]ec

where ¢ € A* satisfies cOp = ¢.
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Proof of Theorems[{.3.3 and [{-4.2 It follows from the definition of the quasi-new
line that qﬁlﬁf # 0 (in the notation of §2.8 we have A, (¢m,) # 0 for each v | 9t, and
SO ¢, has nontrivial projection to the quasi-new line in II,), and hence by # 0.
It therefore suffices by ([@9) to prove that k- agcy = byy. Let us suppose for the
moment that IT is of parallel weight 0 and that m = Op. Thus €(1/2,t) = (=1)[F@
and we are in the situation of §.41 The quaternion algebra B is split, and we let
p: G = GLy and j € GLa(A) be as in §L0 Set IT" = II and for each ¢ € II set
¢'(9) = ¢(p(g)j). Fix a Haar measure on GLa(Af) and, as always, normalize the
Haar measure on Z(Ay) to give (5?7 volume 1. Define a Haar measure on G(Ay)
by demanding that p be an isomorphism of measure spaces. For any ¢ € II we now
have, tediously keeping track of the normalizations of measures,

[ wr = vouyy &
Sv

/G<F>\XxG<Af>/v

Vol(V) ! ! / ¢/
Z(F)NOF : Z(F)NV] Ja(F)\XxG(As)/O%

_ ol(y)-1 L2 hy) : Z(F)OF] /
[Z(F)N (5; Z(F)NV] JGFN\XxG(Ay)/Z(Af)

Using jKj~'=p(V) and Vz = {z € 5; | z € 145} we find that

/S 02 = HeAZ 1613 = Hiral 9] o)
\%

|61

We may now write (€3] as
bn of-[F:Q

1
\/Nr/ol DC ‘HF’s Cv

The point is that in this formulation no L? norms appear, and the statement of the
formula makes sense even if I is noncuspidal. The argument of [36], §18] shows that
the equality (£I0) can be extended to the principal series representation IT, of §4.5]
for any 7 € C with Re(r) = 1/2 (so that IL; is unitary), provided that x does not
factor through the norm map Ay — A* (so that II, is cuspidal by Lemma
and (ZI1)) still holds).

If for each v | D¢ we let ¢, denote the cardinality of the residue field of v, then
taking IT =TI, and ¢i1 = ¢, in (EI0) and comparing with Lemma [£5.3] (and still
assuming that IT, is cuspidal) gives

Hﬁvav 1/2— T 1/2 T Hb 1/2 ‘r

v|oc v|oe

(4.10) & -agen - L(1/2,1 x I1,)

Qx ()¢ (t) dt

As in the proof of [36], Proposition 19.2], letting 7 vary and letting x vary over
characters which do not factor through the norm while holding the components .,
for v | ¢ fixed, we find the equality of rational functions x[]a,c, = [[ b, where
each product is over all v | dc. 0

5. CENTRAL DERIVATIVES

In this section we relate the Néron-Tate heights of certain CM points on Shimura
curves to derivatives of automorphic L-functions. As in [34] the method is to com-
pute the arithmetic intersection pairings of various CM-divisors and compare these
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intersection multiplicities to the Whittaker coefficients of the automorphic form @,
of §2.61 These intersection multiplicities decompose as a sum of local intersection
multiplicities, and the calculations of §5 and §6 of [34] show that the calculation
of local multiplicities can be reduced to the calculation of linking numbers of CM-
cycles on totally definite quaternion algebras. Fortunately for us, this reduction
step is done in [34] in a very general context, and includes not only on Shimura
curves with arbitrary level structure but also Shimura curves associated to the alge-
braic group G below (as opposed to the group G/Z). Thus we may cite from Zhang
the crucial Propositions [5.3.1] and [5.4.7] below, which reduce the local intersection
theory at nonsplit primes to the calculations we have done in §3l

Throughout §5] we assume that the representation II of §I. 1] satisfies Hypothesis
[T and that II, lies in the discrete series of weight 2 for every archimedean v. Set
t = mc? and assume that w(m) = (—1)F*@=1, The epsilon factor of g4 then satisi-
fies €(1/2,t) = —1 and so L(1/2,1I x II,) = 0 by the functional equation ([2.6) and
the Rankin-Selberg integral representation ([2.8]) with b = 1. Fix an archimedean
place we of F and let B be the quaternion algebra over F' characterized by

B, issplit <= €,(1/2,v,9) =1 or v = Weo

for every place v. Thus B is indefinite at w, and definite at all other archimedean
places. The reduced discriminant of B divides m and, as F,, is a field whenever B,
is nonsplit, there is an embedding £ — B which we fix. Let G, T, and Z be the
algebraic groups over F defined at the beginning of §8l For any ideal b C Op let
Op = Op + bOg denote the order of O of conductor b. Fix an algebraic closure
F#8& of I containing E and an embedding F*& < C lying above wq..

General references for Shimura curves include [3] 23] 241 26] 35 [34].

5.1. Shimura curves. Throughout §5.1] we let U be an arbitrary compact open
subgroup of G(Ay). The chosen embedding F — C determines an isomorphism of
real algebraic groups S = T' x ¢ R, where S = Resc/rGy,. The embedding T' — G
therefore determines an embedding of real algebraic groups

z0:S—=GxpR— (RGSF/QG) XQR.

Let X be the G(R)-conjugacy class of g in the set of all such embeddings. If F' # Q
or if B 2 M>(F') we define a compact Riemann surface

(5.1) Xv(C) = G(F)\X x G(Ay)/U.
For z € X and g € G(Ay) let [z, g] denote the image of (z,¢) in Xy (C). If F =Q
and B is split then the right hand side of (&) is noncompact, and Xy (C) is defined

as the usual compactification of the right hand side obtained by adjoining finitely
many cusps. The connected components of Xy (C) are indexed by the set

Zy(C) = Z(F)"\Z(As)/N(U)

where Z(F)* C Z(F) = F* is the subgroup of totally positive elements and N(U)
is the image of U under the reduced norm G(A;) — Z(As). The canonical map
Xv(C) = Zy(C) is given by [z, g] — N(g).

Let Xy denote Shimura’s canonical model of X7 (C) over Spec(F'). Let Fy /F be
the abelian extension of F' which, under the reciprocity map of class field theory,
has Gal(Fy/F) = Zy(C). The component map Xy(C) — Zy(C) arises from
a morphism of F-schemes Xy — Zy where Zy is (noncanonically) isomorphic
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to Spec(Fy). For each geometric point o : Spec(F28) — Zy define a smooth
connected projective curve over F&

X& = Xy Xz, Spec(F™#).
The Jacobian Jy of Xy is the abelian variety over F' defined by

JU = ReSZU/F(Png(U/Zu)

so that the geometric fiber of Jy decomposes as

Juxp P ] Jp
a€Zy (Fals)

where JZ is the Jacobian of X&. There is a Gal(F#/F) invariant function
Hg : Xy(F™8) — Jy (F™8) @7 Q,

the Hodge embedding, described in detail in [6, §3.5]. Briefly, Zhang [34] §6.2]
constructs the Hodge class L € Pic(Xy) ®z Q having degree 1 on every geometric
component. Each P € X (F#8) determines a geometric point a € Zy(F*#), and
we let Lp denote the restriction of £ to X&. Letting O(P) € Pic(Xy xp F8)
denote the class of P we define

Hg(P) = O(P)® L' € J§(F¥8) @z Q.

For any finite extension L/F the Néron-Tate height on Jy (L) is denoted by
(-, >1§TL The normalized Néron-Tate height on Jyy (F218) is defined by

(z,y)p" =

where L is any finite extension of F' large enough that x and y are defined over
L. Fix two points P,Q € Xy (F*#) and choose a finite Galois extension L/F large
enough that P and @ are both defined over L. To compute the Néron-Tate pairing of
Hg(P) and Hg(Q) we use the arithmetic intersection theory of Gillet-Soulé [9] 29]
as in §5.3 and §6.1 of [34]. Suppose that U is small enough that Xy admits a
canonical regular model X;, proper and flat over O, as in [35] §1.2.5]. Let Z; be
the normalization of Spec(OF) in Zy, so that Z;; = Spec(Op,) (noncanonically)
and the component map Xy — Zy extends to a map of Op-schemes Xy — Zy;.
As Zy(L) # 0 there are [Fy : F) distinct embeddings Fiy — L, and so [Fy : F]
distinct morphisms Spec(Or) — Z;;. Let Zy denote the disjoint union of [Fy : F]
copies of Spec(Or) so that Zy is naturally an Op-scheme which admits an Op-
morphism Zy — Z;. Let Xy be the minimal resolution of singularities of the
Op-scheme X, Xz, Zy. The scheme Xy has generic fiber Xy X o L and is a disjoint
union of [Fy : F] proper and flat curves over Oy, indexed by Zy (F*#), each with
geometrically connected generic fiber. The Hodge class £ on Xy admits a natural
extension to X, [35, §4.1.4] which we pull back to a class £ € Pic(Xy) ®z Q. For
each embedding i : L — C the Riemann surface (X X, C)(C) has a canonical
volume form g which on each connected component has total volume 1 and whose
pull back to the upper half-plane (under any such parametrization) is a multiple of
the hyperbolic volume form y~2dzdy. By [20, Theorem 1.4.2] there is a Hermitian
metric p;, unique up to scaling, on the pull-back of £ to Xy xo, C whose Chern
form is p. Letting p denote the tuple (p;) indexed by embeddings i as above, the

pair £ = (L, p) is then an element of P/’i\c(XU) as in [34], §6.1].

7 (z, )DL




44 BENJAMIN HOWARD

Going back to the point P € Xy (L), let X be the connected component of Xy
containing P. The arithmetic closure (as in [34, §6.1] or [36, §9]) P € ]SE(XU) of
P with respect to Lisa pair P= (P 4+ Dp,gp) where P is the Zariski closure of
P on Xy and gp = (gp;) is a tuple indexed by embeddings ¢ : L — C with gp;
a smooth function on the complement of P in (Xy xp, C)(C) such that 2 - gp;
is a Green’s function for P with respect to p (in the sense of [20, §II.1]) on the
component indexed by «, and is identically 0 on the other components. Lang and
Zhang use different normalizations for Green’s functions, hence the factor of 2; our
gp is Zhang’s g(P,-). Finally Dp is a vertical divisor on X chosen so that P+ Dp
has trivial intersection multiplicity with every vertical divisor, and so that for any
finite place w of L the restriction of £ to the sum of the components of Dp above
w has degree 0. One defines @ = (Q+ Dg, gq) in the same way. The Hodge index
theorem now tells us that
(Hg(P), Ha(@)}" = ——

D_ 7. A _ 7 o\Ar

where £ p is the restriction of L to the component of Xy containing P (and similarly
with P replaced by @) and the pairing on the right is the Gillet-Soule arithmetic
intersection pairing on lgi\c(XU) defined by [36, (9.3)].

For each place w of F fix an extension w*® to F*8. As we assume that P # Q
there is a decomposition of the arithmetic intersection pairing as a sum of local
Green’s functions

(PN =D Y du-g(PQ%)yume
w g€Gal(L/F)
where the sum is over all places of F' and terms on the right are as follows. If
w | oo then dy, = 1 and g(P, Q)y yaie = gp,i(Q) where i : L — C is the embedding
determined by w8, If w is nonarchimedean then d,, = log g, where g, is the size
of the residue field of w, and

g(Pa Q)U,w"ng = e(Lw“‘lg/Fw)iliwalg (P +Dp,Q+ DQ>XU

where e(Le/F,) is the ramification index and %,me(+, )y, is the intersection
pairing on Xy X0, Of s defined in [20, II1.2] for divisors with no common com-
ponents and extended in [20] IT1.3] to divisors with common vertical components.
The Green’s function g(P,Q)y == does not depend on the choice of L and ex-
tends bi-additively to a Hermitian pairing on divisors with complex coefficients on
Xy xp F*8 having disjoint support.

If U is not sufficiently small in the sense of [35] §1.2.5] then choose U’ C U which
is sufficiently small and define

1 * *
9(P,Q)y s = mg(ﬁ P, Q) ys ypoe

where 7 : Xy» — Xy is the degeneracy map with deg(w) = [F*U : F*U’]. This
does not depend on the choice of sufficiently small U’.

5.2. Special cycles and Hecke correspondences. For the remainder of 5] we
let U and V denote the compact open subgroups of G(A[) constructed in §€.1] and
recall that we constructed there CM cycles P, and P, 4 of level U (for a any ideal
of Op prime to ¢) and a CM cycle @, of level V. Let ¢, € B, be the element of
LemmalL.T3lused in the construction of U, and note that U, is a maximal compact
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open subgroup of G(F;,) for v { dvoco. For a prime to dv there are algebraic Hecke

correspondence TF and Tc{“b on Xy characterized by their action on points of
Xu(C)

TV, gl= Y, [r.9h7" T, gl = > [z,9h],
heU\H (a) heH(a)/U

where H(a) was defined in §401 We also have diamond automorphisms of Xy
defined by
()", g] = [, ga™"] (@)*[z, 9] = [z, ga]

where a € A* satisfies aOp = a and a, = 1 for v | co. Restricting 77, TAP and
the diamond automorphisms to divisors on Xy which have degree zero on every
geometric component we obtain endomorphisms, denoted the same way, of Jy.

We view the set of CM points of level U on G as a subset of Xy(C) using the
injection Cy — Xy (C) defined by T'(F)gU + [x0, g]. By Shimura’s reciprocity law
[24, §12] all points of Cyy are defined over the maximal abelian extension of E in C
and satisfy

[20,9]” = [0, 9]
where o = [t, E] is the arithmetic Artin symbol of ¢ as in [28] §5.2]. Any CM-cycle
P of level U can be written as a sum of characteristic functions of CM points,

and so can be viewed as a divisor (with complex coefficients) on Xy x  F#8 in an
obvious way. Setting P = [z, 1] we then have

P, = Z X () - PLEL
teT(F)\T(Ay)/Ur

This divisor is rational over the abelian extension E, /E cut out by x. As divisors
on Xy xp E, we have TYP, = P, , and (a)F°P, = xo(a)Py.

For a prime to ot let P? , denote the restriction of Py 4 to the complement of
the image of T'(Af) — Cy. In particular Pf,u and P, have disjoint support. Fix
a € A with aOp = a and define

ry(a) =[] lal;/*By(a;6).

vtoo

We note that 7, is a derivation of IT, ® |- |'/2 in the sense of [34} Definition 3.5.3].
Exactly as in [34) Lemma 6.2.1], (using our Corollaries B:3.9] and B.4H to evaluate
P, o(1) instead of [34) Lemma 4.2.1]) we have

(5.2) Pya=P) +7y(a)- Py

5.3. Intersections at nonsplit primes away from 9t. Suppose w 1 Ot is a finite
place of F' which is inert in E and fix a place w®® of F*& above w. Note that
the quaternion algebra B,, is split and, as Ry, = Opw + Op weyw is a maximal
order of B, U, = R} is a maximal compact open subgroup G(F,). We wish
to compute g(Py, PY ,)uwos.  Let B be the totally definite quaternion algebra

obtained from B by interchanging invariants at ws, and w. That is, B is defined by
{places v of F | B, % By} = {w,ws}. As E, is a field for every place v at which
Bis nonsplit, we may fix an embedding F — B. Denote by G the algebraic group
over F' defined by G(A) = (B A)*.
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For each finite place v # w fix an isomorphism o, : G(F,) = G(F,) compatible
with the embeddings of T'(F,) into G(F,) and G(F),) and define

€y = 0y(€r) U, = oy (Uy).

Pick &, € By, so that Ey,é, = E; and ordw(N(éw)) =1, where N is the reduced
norm on Bw. Then Rw = Og,w + Op €, is the unique maximal order in Bw,
and we define U,, = RX. Define a function o, : G(F,) = G(F,)/Uy, by ouw(g) =
gU,, for any § € G(F,) satisfying ord,,(N(g)) = ord,(N(g)). Set U = [[, Uy, a
compact open subgroup of G(Af). Taking the product of the o, we obtain a map
of left T(Ay)-sets o : G(As)/U — G(A;)/U and a push-forward map f + o.f
from finitely supported functions on G(Ay)/U to finitely supported functions on
G(Af)/U defined by

G N@ = 3 1)
a(y)=a

As the natural projection G(Ay)/U — Cy has finite fibers, any CM-cycle of level
U may be viewed as a finitely supported function on G(Ay)/U. The push-forward
is then a left T'(F)-invariant function on G(A;)/U, and so there is an induced
push-forward o, from CM-cycles on G of level U to CM-cycles on G of level U.

Fix a uniformizer w of F,, and for each k > 0 let Ay, = Op, + kaE,w- For
each z € Cy define the w-conductor of x = T(F)gU to be the integer k determined
by

A = gwUwgy NT(Fy).

Proposition 5.3.1. Suppose that P and Q are disjoint CM-cycles of level U with

P supported on points of w-conductor k and Q supported on points of w-conductor
0. Then

g(P7 C))U,w“‘lg = Z <0*P7 0*Q>’g] ’ Mk(/Y)
YET(F)\G(F)/T(F)
where
ordy (¢w) if k=0and £ £0
Mr(y)=4¢ 0 ifk=0and £=0
OF w AT i k> 0.
Proof. See Lemmas 5.5.2 and 6.3.5 of [34]. O

Suppose a is an ideal of O prime to dt. For any finite place v we may replace
B, by B, and €, by &, everywhere in §3.3 and §34] giving a function Px,aw on
G(F,)/U,. Taking the product over all finite v gives a CM-cycle P, o of level U
on G. When a = Op we omit it from the notation. Define an ideal ¢ of O by
ord,(e) = ord,(N(€,)) for all finite places v, so that

1 fv=w

(5.3) ord,(e) = ord,(v) + { 0 otherwise.

Proposition 5.3.2. Suppose a is prime to c. There is a constant k, independent
of a, such that

Q(Pg,aapx)U,walg = 5'73((0') + Z <Px,aapx>?] 'ma(’y)

YET(F)\G(F)/T(F)
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ordy (€a) +1 if £ # 0 and ordy(€a) is odd and nonnegative
ma(y) = = ¢ ordy(a) it £ =0 and ord,(a) is even and nonnegative
0 otherwise.

Proof. This is our analogue of [34, Lemma 6.3.5]. Decompose

P)?,uzzmg PXlezmk
k=0 k=0

where B is the restriction of Pga to points of w-conductor k, and similarly for

Pr. By B2)
_ 0 TX(C[)PX if k = O
B =T+ { 0 otherwise
and Proposition £.3.1] gives
g(PQ’a, PX)U’walg - Z Z<U*mk; U*Px>?~lj - My, (’Y)
YET(F)\G(F)/T(F) k=0
—x(a) Z (4P, U*PXWQ - Mo (7).
YET(F)\G(F)/T(F)

The next claim is that ¢, Py, = Ckpx,a where

o [OF . : Ag] if ordy(a) — & is even and nonnegative
10 otherwise.

To prove this define

Hy(a) = {heHy(a)| UL NT(F) = Af'}
H"@) = {heH(a)|hycH;(a)}
ﬁ(a) = ﬁw(a) : H oy (Hy(a))
vFW

where H,(a) = {h € R, | N(h)Or = a,}. The CM-cycles in question are now
given by

Pelg) = xol@) D xOlgr@(t'g)

teT(Ay)/Ur

Pealg) = xol0) Y x(lgeE'e).
teT (A7) /U

As in the proof of [34] Lemma 6.3.5] there is a decomposition
G(Fy) = | | T(Fu)hiUs
k=0

where each hy, € R, satisfies ord,,(N(hy)) = k and hyUy,hy 'NT(F,) = A . Fixing
a uniformizer w € F,¢ we therefore find

HE(a) = o =t OgywhkUw if ord,,(a) — k is even and nonnegative
w 0 otherwise.
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From this it follows that #(HY(a)/Uy) = cx. Write HE (a) = US%, s;U,,. For any
t € T(Ay) we have oy (ts;) = tHy(a), and hence 0.1, gr () = Ck - 1,4 from which

0By = ckpx,a follows immediately.
It follows from the above that

o0

Z<U*mkva*PX>?]'Mk( ) ]5 P ch Mk
k=0
Assume <15X,a,15x>2~] # 0. Suppose first that v is nondegenerate. In particular

Og(Px,a,w) # 0 by 1), and so Proposition B3] implies that ord,(na) and

ord,(§a) — 1 are both even and nonnegative. If ord,(a) is odd then ord,(n) is
odd, and as n + £ = 1 we must have ord,,(§) = 0. Thus

(5.4) > ex - Mi(y) = #{k | 1 < k < ordy(a), k odd} = mq(y).
If ord, (a) is even then

ch - My(v) = % + #{k| 1<k <ordy(a),k even} = mgy(7).

Now suppose 7 is degenerate, so that Py 4(7) # 0 by Lemma 321 If € = 0 then
we may assume v = 1 so that Lemma B.3.6] implies ord,,(a) is even. Thus

> ek Mi(y) = #{k | 1 <k < ordy(a), k even} = mq(7).
If ¢ = 1 then similarly ord,, (ae™!) = ord,,(a)—1 is even and so again (5.4) holds. O

Corollary 5.3.3. Suppose a is prime to 0v. Then
2P+ 1og ], - g(Py, P )y wae = [OF : Ur]HrAG" - N(a)B" (a; ;) + A(a)
where A(a) is a derivation of Tl ® | - |*/? in the sense of [34, Definition 3.5.3].

Proof. Fix a nondegenerate v € G(F) and an a € A* with aOp = a. For any place
v of F, Lemma [B.I.T] and the definition of B give

1 fv=w

wo(=ng) = € (1/2,7) - { | et

Thus Diff¢(n, §) = {w}, and conversely a pair 7,§ € F* with  + £ = 1 arises from
some choice of nondegenerate v € G(F) if and only if Diff(n,§) = {w}. Comparing
Propositions 226.1] and B3] and recalling (53)), we find

Bw(aa'ﬂaf?@i): |alwTw () - OV( x,aw) mu(7)10g|w2|w-

On the other hand for any finite place v # w we have, using (53] and Corollaries
and B.43]

[OE,U : O?,UUT,U]BU(GW,&@J = lafoo(7) - O%(px,a,v)-
Using (29), Lemma B2 and @7 we find
(0%« UrlHpAp" - N(a)B" (a, @) = 27U log ],y Y~ (Py, Pya)l, - ma(7)
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where the sum is over all nondegenerate v € T(F)\G(F)/T(F). If 5 is degenerate
then (Py, Py,a)} - ma(7) is a derivation of Ilx ® | - |'/2 (using Lemma B.2.1] and
Corollaries and B40). Thus the claim follows from Proposition O

5.4. Intersections at nonsplit primes dividing dt. Suppose that w is a place
of F which is nonsplit in E with w | 0t and fix a place w*& of F*1& above w. Again
let B be the quaternion algebra over F' obtained from B by interchanging invariants
at w and we, so that {places v of F | B, % B,} = {w,ws}. Fix an embedding
E — B and for each finite place v # w let o, and €, be as in §5.31 Choose €, so
that f?; = FE, €, and

1 ifwtd

ordy (N(€w)) = ordy(r) + { 0 otherwise.

Let a be prime to dt. As in 5.3 for any finite place v we may repeat the con-
structions of §3:3 and §3.4] with B replaced by B and e, replaced by é,, giving a
compact open subgroup U, C G(A;) and a function Py 4, on G(F,)/U, for each
v. Taking the product over all finite v gives a CM-cycle Iz’xyu of level U.

Define the w-special CM points of level U, denoted C¥, to be the image of

T(F,) x G(AY) = Cy

where AY = {z € Ay | z, = 0}. By a w-special CM cycle we mean a CM
cycle supported on w-special points. Define Cg similarly, and note that there are
bijections
Ch = T (P\G(AY) /U = TO(F)\G(AY)/U" = CY
where U" = [],,,, Uy and similarly for U™, and TO(F) is defined as
T(F)YNUy, =T(F)N (14 Op)* = T(F) N U,.

Thus we may identify w-special cycles of level U with w-special cycles of level U,
and we denote this bijection by P — o.P. As a is prime to dt, ord,(a) = 0
and it follows from the construction that P, , is w-special. It is easy to see that
0.Py.a = Py.q (as one only needs to check equality locally at v # w).

Proposition 5.4.1. Suppose P and Q are w-special CM cycles of level U with
disjoint support. There is a locally constant function (independent of P and Q)
K(z,y) on G(F)\G(Ay) such that

g(Pa C?)U,w"ng = Z <U*P7 U*Q>Z} ! M(’Y)

VET(F)\G(F)/T(F)

t[ o P @K d dy
[T(FON\G(Af)]?

where

odw(® if ¢ £ 0 and ordy(£) >0
M(y) = CE. '
() { 0 otherwise.

Proof. See Lemmas 6.3.7 and 6.3.8 of [34]. O
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Proposition 5.4.2. If a is prime to 0t then

9P Pluges = mom@+ S (Pua PO -m(y)
YET(F)\G(F)/T(F)

+/ i an(:b)K(:v,y)PX(y) dz dy
[T(F\G(Ag)]

where K (x,y) is a locally constant function on [G(F)\G(Af)]? and

ordy, (Et71) + 1 if € #0,0rd,(§) >0, and w |t
m(y) = 5 ord,, (£0) if €#0,0rd,(€) >0, and w | 0
0 otherwise.

Proof. Tt follows from (5.2)) and Proposition 5.4 dlthat the claim holds if one replaces
m(y) with M (vy). Thus if we set m’ = m — M it suffices to show that

> (Pyas POE -m ’(7):/  Pya(a)k(z,y)P(y) dz dy
VET(F\G(F)/T(F) TENG(As)

for k some locally constant function on G(F)\G(A;). Note that m’ is locally
constant for the topology on G(F) induced from G(F,) (i.e. m and M have the
same smgularlty near £ = 0) and let U c U, be small enough that m/' is a constant,
4, on U ' Let U’ be the subgroup obtained by shrinking the w-component of U
from U, to U.,. The crucial point is that on the image of {1} x G(AY) — Cg, we
have

kg (2,y) = K&, (2,y)
where k’f is the kernel B4) constructed with constant multiplicity function p. The
w- spec1al CM-cycles P, o and P, are supported on the image of T(Fy) % G(A") in
Cp/, which equals the image of {1} x G(A™) as T(F,) C T(F)U.,. Therefore the
pairings ([B.5)) satisfy

<Px,avpx>” <an7P >U/7

and it follows that (P, 4, Py > <Pxﬁa7Px>g (replacing U’ by U changes each
pairing by a constant dependmg on the normalizations of measures in §3.2 but not
on the multiplicity function). As the multiplicity function u is constant the kernel
k. is right G(F)-invariant, and we take k = k- O

Corollary 5.4.3. Define a function Px on Sz = G(F)\G(Af)/U by
Pxlo)= > (79)-

YET(F)\G(F)

For any a prime to ot

2[F:Q]+1|d|1/2 log |w|w . g(PX7 P)((),u)U,w“‘lg

(B} UrlHeAp - N(@)BY (a; &) + A(a) + /G i, ToPR@) - g(a) da

where A(a) is a derivation of Ty @ | - |V/2, g(x) is a locally constant function on

G(F)\G(Ay), and T, is the Hecke operator on L*(Sg) defined in §7-3,
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Proof. This is deduced from Proposition 5.4.2] exactly as in the proof of Corollary
(.33 taking

o) = / . R@y)By) dy.
T(F)\G(Ay)
O

5.5. Archimedean intersections. Let w be an archimedean place of F' and choose
a place w*® of F?!2 above w. If w = wy is the archimedean place at which B is
split then set B = B. If w # wso then let B be the quaternion algebra obtained
from B be interchanging invariants at w and weo as in §5.31 As in §5.3] fix an em-
bedding E — B and, for every finite place v of F, choose o, : B, = B, compatible
with the embeddings of F, into B, and B,. Define ¢, = ou(€y), set U, = o, (Uy),
and let o, denote the induced isomorphism from CM cycles of level U on G to CM
cycles of level U on G.

For v € é(F) view ¢ € F as a real number using the embedding FF — R
determined by w and define

ms(v)—{ Qs(1—26) if€<0

0 otherwise,

where Q, is defined by [34, (6.3.3)], and a function on G(A;) x G(Ay)
ki (x,y) = > Ly (z~ yy)ms (7).
VE€G(F)/(Z(F)ND)

We now recall the statement of [34, Lemma 6.3.1]. For any distinct points P, Q €

Cu the sum defining k7 (0. P, 0.Q) is convergent for Re(s) > 0 and extends to a

meromorphic function in a neighborhood of s = 0 with a simple pole at s = 0.

Thus for any CM-cycles P and @ of level U the pairing (0. P, O'*ngs of (BA) has

meromorphic continuation with a pole of order at most 1 at s = 0, and moreover
g(Pu Q)U,walg = consts_0 <0*P7 U*ngs'

In particular, if a is prime to 9t then

(5.5) 9(PY o Py )y = consts_o Z (]5;2)(1, Px% ~ms(7)

VET(F)\G(F)/T(F)
where Pf,u = U*P;gyu is the cycle defjned by replacing U by U and B by B in the
definition of P ,, and similarly for P,.

Corollary 5.5.1. For any a prime to 0t
ol Qg1 2 g (P PO i = [0 Ur]HpAg ' N(a) - consts—0BY(s, a; ;)
up to a derivation of Ty ® | - |*/2.

Proof. Suppose Re(o) > 0 and, for any v € G(F), write M,(y) = M,(£,) where
the M, on the right is the function on R defined in §2.6l Combining 2I0) with
Corollaries B.3.5 and B.4.3] and arguing as in the proof of Corollary 533 we find

(0% : UrOFN(a)B® (s, a; ®,)
= (=20) "D (6)[dV2 Y Ing| X2 Mo(7) [[ 7o (0) - OF (Pya)

vtoo



52 BENJAMIN HOWARD

where the sum is over all nondegenerate v € T(F)\G(F)/T(F). By Lemma
we have

[T 7o) = wae (@) (=) " e 72,

vfoo

and combining this with (1) gives
O+ UrHeA g N(@) B (5, a; &) = 2P d|/2 3 (B, B, - M)

where the sum is again over all nondegenerate v as above. By the argument in the
proof of [34, Lemma 6.4.1] the constant term as s — 0 is unchanged if we replace
M(v) by —2mg4(v). Adding in the terms corresponding to the two degenerate
choices of  add derivations of Ty ® | - |'/2, as in the proof of Corollary [(.3.3, and
replacing P, o by Pg,u also adds a derivation of I ®|-|'/2, by (5.2)) with P replaced
by P. Thus the claim follows from (5.3)). O

5.6. The twisted Gross-Zagier theorem. Let T denote the Z-algebra gener-
ated by the Hecke operators T, and the nebentype operators ({a)¢)(g) = ¢(ga),
where aOf = a and a,, = 1 for v | oo, acting on holomorphic automorphic forms
on GL2(A) of parallel weight 2 and level K;(0dt). Let ¢ denote the normalized
newform in II. The C-algebra T¢ = T ®z C is semi-simple, and we let Ty be the
maximal summand of T¢ in which

Ty = B(Op; Ta¢r) (a) = xg ' (a).

Let err be the idempotent in T¢ satisfying eqTe = Trp. It follows from the Jacquet-
Langlands correspondence and the Eichler-Shimura theory that there is a ring ho-
momorphism T — End(Jy) taking T, — T2 and (a) +— (a)2, and so T¢ acts on
Ju(Ey) ®z C.

Proposition 5.6.1. Abbreviating Py = er - Hg(Py ),
2|S|HF[5§ : UT]
Mol o

Proof. This follows easily from the formulae of the previous subsections, exactly as
in [34] §6.4], ”Conclusion of the Proof of Theorem 1.3.2”. We quickly sketch the
argument.
Suppose a is prime to dtr. Using the argument of [34) Lemma 6.2.2], up to sums
of derivations of principal series and Iy ® | - |/ we have
(T3P Hg(Py) He(P))yT = (Hg(Py), T, “Hg(P))y "
= (Hg(Py), Hg(Px,a»lle

= = Zdw g(Py, P)?ﬂ)vaalg

B(Op, ¢)L'(1/2,11 x L)) = 2P+ q| /2P, 1, P, )T

where the sum is over all places w of F', and where for each w we fix an extension
we to F2le. Exactly as in [34, Lemma 6.3.4] the nonarchimedean places w which
split in E contribute derivations of principal series and Il ® | - |1/ 2. and so we may
omit such places in the above summation. Combining Corollaries 5.3.3] (.43, and
B8 with Proposition we find

2P Q1| g /2 (TAYHg (P ), Hg (P )T = [0} : Ur]Hp Ay  B(Op; Ta®:)
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up to a sum of derivations of principal series, derivations of Tlx®|-|/2

of the form

(5:6) [ @Pw ) do
GING(Ay)

, and functions

for w | ot as in Corollary 543

Let us consider (5.6) in more detail. Fix w | ot and let U, G, and so on be as in
§5.40 Let S5 = G(F)\G(Af)/U as in §430 Tt follows from the Jacquet-Langlands
correspondence that the C-algebra generated by the operators T, acting on L?(Sg)
is a quotient of T¢c. Thus it makes sense to form er - Py € L?(Sy), which is
nothing more than the projection of Py to the automorphic representation I of
G(A) whose Jacquet-Langlands lift is IT. By construction the function ey - Py has
character y,,! under right multiplication by T'(F,). On the other hand, if II’ is
the automorphic representation of G(A) whose Jacquet-Langlands lift is TI then II'
contains a nonzero vector on which T'(F,,) acts through x,* (as IT}, admits a toric
newvector in the sense of §4.2)). Thus if enPy # 0 we would have nonzero vectors
in both IT,, and IT’, on which T(F,) acts through x,'. This contradicts results of
Saito, Tunnell, and Waldspurger (as described in [12, §10] or [I3, Proposition 1.1],
and using [32, Lemme 9(iii)] to relate T'(E,, )-invariants to T'( E,, )-coinvariants), and
SO enpy =0.

We now deduce, using [35, Proposition 4.5.1] for the vanishing of derivations of
principal series and theta series, that

2l U a2 (e Hg(Py ), He(P))Y" = [OF « UrlHrAp' B(Or; en®y).
As enp®, is the projection of ®, to II, the proof now follows from
B(Or;en®s) - |61, o) = 2/ B(Or; )L/ (1/2,T1 x TI)
as in the proof of Proposition O

As above there is a ring homomorphism T — End(Jy/) taking T, — T2 and
(a) = (a)AP and so Tc acts on Jy (E,) ®z C.

Theorem 5.6.2. Abbreviate Q, i1 = enHg(Qy) € Jv(Ey) ®zC.
L'(1/2,10 x 11, 2[F:Ql+1

P (@ Qv
T Ko (n) Hps1/Npg(oc®)

Proof. Recall the constants ary, brr, and cry of 4.6l The argument of [36], §17] gives
the first equality of

(Pyr, Pyt - en = (M Qyan m* Qym)y - = deg(m) - (Qy11, Qyoi)v
where 7 : Jy — Jy is the morphism induced by the natural projection 7 : Xy —
Xy of degree [F*V : F*U] = [V : UJAyA;'. It therefore follows from Proposition
E6T that

ancn2‘SWF[OE - U] L’(l/i,l'[ X1y _ b2 (@11, Qym)v "

[V : U]/\V ||¢H||§{0(n) V NF/Q(O)

and so the theorem follows from the equality of rational functions « [[a,c, = [ by
proved in §4.6 O
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