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An ordinary cyclotomic function field

By D. Shiomi

1 Introduction

Let Fq be the field with q elements of characteristic p. Let k = Fq(T ) be
the rational function field over Fq, and A = Fq[T ] the associated polynomial
ring. Letm ∈ A be a monic polynomial. Let Km, K

+
m be them-th cyclotomic

function field, and its maximal real subfield (see subsection 2.1). The aim of
this paper is to study the structure of the Jacobians of Km, K

+
m.

For a global function field K over Fq, we denote by JK the Jacobian of
KF̄q, where F̄q is an algebraic closure of Fq. For a prime l, it is well-known
that the l-primary subgroup JK(l) of JK is isomorphic to the following group

JK(l) ≃







⊕2gK
i=1 Ql/Zl if l 6= p,

⊕λK

i=1Qp/Zp if l = p,

where gK is the genus of K, and λK is called the Hasse-Witt invariant of K.
In general, λK satisfies with 0 ≤ λK ≤ gK . In particular, we shall call K
supersingular if λK = 0, and ordinary if λK = gK . For more details of the
Jacobian, see [Ro1], [Mi].

Let gm, g
+
m be the genuses of Km, K

+
m, respectively. Kida-Murabayashi

gave explicit formulas for gm, g
+
m for all monic polynomial m (cf. [K-M]).

Hence we obtain the l-ranks (l 6= p) of JKm
, and JK+

m
.

On the other hand, it is more difficult problem to construct an explicit
formula for Hasse-Witt invariants. Let λm, λ

+
m be the Hasse-Witt invariants

of Km, K
+
m, respectively. In the previous paper [Sh2], the author completely

determined m ∈ A satisfying λm = 0 (and λ+m = 0).
In this paper, we shall consider the ordinary case. Assume that m ∈ A is

a monic irreducible polynomial of degree d. We set

si(n) =
∑

a∈A(i)

an,
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where A(i) is the set of monic polynomials of degree i. For 1 ≤ n ≤ qd − 2,
we define Bn(u) as follows

Bn(u) =











∑d−2
i=0

(

∑i

j=0 sj(n)
)

ui if n ≡ 0 mod q − 1,

∑d−1
i=0 si(n)u

i if n 6≡ 0 mod q − 1.

(1)

Let Rm = A/mA, and f̄(u) ∈ Rm[u] be the reduction of f(u) ∈ A[u] modulo
m. Now we state our main result in this paper.

Theorem 1.1. Let m ∈ A be a monic irreducible polynomial of degee d.
Then we have the following results.

1. Km is ordinary if and only if

deg B̄n(u) =















[

l(n)
q−1

]

− 1 if n ≡ 0 mod q − 1,

[

l(n)
q−1

]

if n 6≡ 0 mod q − 1

(2)

for all 1 ≤ n ≤ qd − 2.

2. K+
m is ordinary if and only if

deg B̄n(u) =
[ l(n)

q − 1

]

− 1 (3)

for all 1 ≤ n ≤ qd − 2 (n ≡ 0 mod q − 1).

Here [x] is the maximal integer satisfying [x] ≤ x, and l(n) = a0 + a1 + · · ·+
ad−1 if n = a0 + a1q + · · ·+ ad−1q

d−1 (0 ≤ ai ≤ q − 1).

Assume that q 6= p. By using Theorem 1.1, we will completely determine
a monic irreducible polynomial m such that Km is ordinary (see Corollary
3.1). On the other hand, in the case q = p, it is more difficult problem to
determine such m. In section 4, we shall give some examples of ordinary
cyclotomic function fields.

Remark 1.1. The above polynomial Bn(u) is closely related to characteristic
p zeta function (cf. [Go1]).
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2 Preparations

2.1 Cyclotomic function fields

In this subsection, we shall provide basic facts about cyclotomic function
fields. For details, see [Ha], [Ro1], [Go1].

Let k̄ be an algebraic closure of k. For x ∈ k̄ and m ∈ A, we define the
following action

m ∗ x = m(ϕ+ µ)(x),

where ϕ, µ are Fq-linear isomorphisms of k̄ defined by ϕ : x 7→ xq, and
µ : x 7→ Tx, respectively. By this action, k̄ becomes A-module. This A-
module is called the Carlitz module. For a monic polynomial m ∈ A, we
set

Λm = {x ∈ k̄ : m ∗ x = 0}.

Let Km = k(Λm), which is called the m-th cyclotomic function field. One
shows that Km/k is a Galois extension, and have the group isomorphism

Gal(Km/k) ≃ (A/mA)×, (4)

where Gal(Km/k) is the Galois group of Km/k. We regard F×
q ⊆ (A/mA)×,

and let K+
m be the intermediate field of Km/k corresponding to F×

q . The field
K+

m is called the maximal real subfield of Km. Let P∞ be the prime of k with
the valuation ord∞ satisfying ord∞(1/T ) = 1. Then P∞ splits completely in
K+

m/k, and any prime of K+
m over P∞ is totally ramified in Km/K

+
m. Hence

we have
K+

m = k∞ ∩Km,

where k∞ is the associated completion of k by P∞.

2.2 Zeta functions

In this subsection, we shall study the zeta function of cyclotomic function
fields. For more references, see [G-R], [Ro1].

For a global function field K over Fq, we define the zeta function of K by

ζ(s,K) =
∏

P:prime

(

1−
1

NPs

)−1

,

where P runs through all primes of K, and NP is the number of elements of
the reduce class field of P. Then ζ(s,K) converges absolutely for Re(s) > 1.
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Theorem 2.1. Let gK be the genus of K. Then there is a polynomial
ZK(u) ∈ Z[u] of degree 2gK satisfying

ζ(s,K) =
ZK(q

−s)

(1− q−s)(1− q1−s)
.

Now we focus on the cyclotomic function field case. Let m ∈ A be a
monic polynomial of degree d. Let ζ(s,Km), ζ(s,K

+
m) be zeta functions of

Km, and K+
m, respectively. By Theorem 2.1, there are polynomials Zm(u),

and Z
(+)
m (u) such that

ζ(s,Km) =
Zm(q

−s)

(1− q−s)(1− q1−s)
, (5)

ζ(s,K+
m) =

Z
(+)
m (q−s)

(1− q−s)(1− q1−s)
. (6)

Let Xm be the group of primitive Dirichlet characters modulo m, and X+
m is

the subgroup of Xm defined by

X+
m = {χ ∈ Xm : χ(a) = 1 for all a ∈ F×

q }.

By the same arguments in subsection 2.2 in [Sh1], we have

ζ(s,Km) =
{

∏

χ∈Xm

L(s, χ)
}

(1− q−s)−[K+
m:k], (7)

ζ(s,K+
m) =

{

∏

χ∈X+
m

L(s, χ)
}

(1− q−s)−[K+
m:k]. (8)

Here an L-function L(s, χ) is defined by

L(s, χ) =
∑

a:monic

χ(a)

N(a)s
,

where a runs through all monic polynomials of A, and N(a) = qdeg a. Let χ0

be the trivial character. We can check that

L(s, χ) =







1/(1− q1−s) if χ = χ0,

∑d−1
i=0 si(χ)q

−si otherwise,
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where si(χ) =
∑

a:monic

deg(a)=i
χ(a) for i = 0, 1, ..., d− 1. We set

Φχ(u) =











(

∑d−1
i=0 si(χ)u

i
)

/(1− u) if χ ∈ X+
m \ {χ0},

∑d−1
i=0 si(χ)u

i if χ ∈ X−
m,

where X−
m = Xm \ X+

m. From equations (5) (6) (7) (8), we obtain the
following result.

Proposition 2.1.

(1) Zm(u) =
∏

χ∈Xm
χ6=χ0

Φχ(u), (9)

(2) Z(+)
m (u) =

∏

χ∈X
+
m

χ6=χ0

Φχ(u). . (10)

Remark 2.1. Assume that χ ∈ X+
m \ {χ0}. Noting that

∑d−1
i=0 si(χ) = 0,

we have

Φχ(u) =

d−2
∑

i=0

(

i
∑

j=0

sj(χ)
)

ui. (11)

In particular, Φχ(u) is a polynomial.

2.3 The Hasse-Witt invarinat

Our goal in this subsection is to express λm and λ+m in terms of Bn(u). To

do this, we will study a relation between Bn(u) and Zm(u) (and Z
(+)
m (u)).

For more information, see chapter 8 of [Go1].
Let m ∈ A be a monic irreducible polynomial of degree d. We denote

the p-adic field by Qp. Fix an algebraic closure Q̄ of Q, an algebraic closure
Q̄p of Qp, and an embedding σ : Q̄ → Q̄p. By this embedding, we regard
Q̄ ⊆ Q̄p. Let ordp the p-adic valuation of Q̄p with ordp(p) = 1. We set

M = Qp(W ),
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where W is the group of (pde − 1)-th roots of unity (we assume q = pe). Let
OM be the valuation ring of M . Since M/Qp is unramified, the residue class
field FM = OM/pOM consists of pde elements. We notice that the image of
χ ∈ Xm is contained in OM . Hence we see that

Φχ(u) ∈ OM [u] ( for χ ∈ Xm \ {χ0} ).

Notice that Rm and FM are finite fields with same cardinality. Hence
Rm is isomorphic to FM , and fix an isomorphism φ : Rm → FM . This
map derives the group isomorphism φ0 : (A/mA)× → F×

M , and the ring
isomorphism φ∗ : Rm[u] → FM [u]. Since p is prime to #W (= the cardinality
of W ), we have the following isomorphism

ψ :W −→ F×

M ( ζ → ζ mod pOM ).

Put ω = ψ−1 ◦ φ0. Then ω is a generator of Xm. Hence we have

Xm = {ωn | n = 0, 1, 2, ..., qd − 2}.

We see that ωn ∈ X+
m if n ≡ 0 mod q−1, and ωn ∈ X−

m if n 6≡ 0 mod q−1.
We notice that

φ(an mod mA) ≡ ωn(a mod mA) mod pOp

for a ∈ A (0 ≤ deg(a) < d), and n = 0, 1, ..., qd − 2. Hence, by the definition
of Bn(u), we obtain

φ∗(B̄n(u)) = Φ̄ωn(u),

where Φ̄χ(u) is the reduction of Φχ(u) modulo pOM . From Proposition 2.1,
we obtain the following results.

Proposition 2.2.

(1) φ∗

(

qd−2
∏

n=1

B̄n(u)
)

= Z̄m(u), (12)

(2) φ∗

(

qd−2
∏

n=1
n≡0 mod q−1

B̄n(u)
)

= Z̄(+)
m (u). (13)
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Proposition 2.2 leads the following relation between λm(or λ
+
m) and Bn(u).

Corollary 2.1.

(1) λm =

qd−2
∑

n=1

deg B̄n(u), (14)

(2) λ+m =

qd−2
∑

n=1
t≡0 mod q−1

deg B̄n(u). (15)

Proof. By Proposition 11.20 in [Ro1], we have

λm = deg Z̄m(u), λ+m = deg Z̄(+)
m (u).

Hence we obtain Corollary 2.1 from Proposition 2.2.

2.4 Degrees of Bn(u)

In this subsection, we shall study the degree of Bn(u). To see this, we
review some results of Gekeler [Ge].

Fix an integer d ≥ 0. For n = a0 + a1q+ · · ·+ ad−1q
d−1 (0 ≤ ai ≤ q− 1),

we define ei (1 ≤ i ≤ l(n)) as follows:

n =

l(n)
∑

i=1

qei (0 ≤ ei ≤ ei+1, ei < ei+q−1).

(Recall that l(n) = a0 + a1 + · · ·+ ad). We set

ρ(n) =







−∞ if l(n) < q − 1,

n−
∑q−1

i=1 q
ei Otherwise.

Moreover ρ(−∞) = −∞, ρ(0)(n) = n, and ρ(i) = ρ(i−1) ◦ ρ. We also put
deg 0 = −∞. Then Gekeler showed the following result.

Proposition 2.3. (cf. Proposition 2.11 in [Ge])

deg(si(n)) ≤ ρ(1)(n) + ρ(2)(n) · · ·+ ρ(i)(n).

Moreover, the equality holds if q=p(:prime).
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In particular, we have the following results.

Corollary 2.2. If l(n)/(q − 1) < i, then si(n) = 0. Assume that q = p.
Then l(n)/(p− 1) < i if and only if si(n) = 0.

Next we set

Cn(u) =
∞
∑

i=0

si(n)u
i.

From Corollary 2.2, we see that Cn(u) ∈ A[u]. Moreover, we have the fol-
lowing result.

Lemma 2.1. degCn(u) ≤
[

l(n)
q−1

]

. The equality holds if q = p.

Proof. This follows from Corollary 2.2.

Lemma 2.2. If 1 ≤ n ≤ qd − 2 (n ≡ 0 mod q − 1), then Cn(1) = 0.

Proof. This follows from Lemma 6.1 in [Ge]

From Lemma 2.2, we obtain

Bn(u) =







Cn(u)/(1− u) if n ≡ 0 mod q − 1,

Cn(u) if n 6≡ 0 mod q − 1
(16)

for 1 ≤ n ≤ qd − 2. From equation (16), we see that Bn(u) is only depend
on n ( independent on the choice of d).

Proposition 2.4.

(1) degBn(u) ≤
[

l(n)
q−1

]

− 1 if n ≡ 0 mod q − 1,

(2) degBn(u) ≤
[

l(n)
q−1

]

if n 6≡ 0 mod q − 1.

(17)

In particular, equalities hold if q = p.

Proof. This follows from Lemma 2.1 .
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3 A proof of Theorem 1.1

Our goal in this section is to prove Theorem 1.1. To do this, we first show
the following lemma.

Lemma 3.1. For a positive integer d, we have

(1)

qd−2
∑

n=1
n≡0 mod q−1

[ l(n)

q − 1

]

=
d

2

(qd − 1

q − 1
− 1

)

, (18)

(2)

qd−2
∑

n=1
n6≡0 mod q−1

[ l(n)

q − 1

]

=
(d− 1)(q − 2)(qd − 1)

2(q − 1)
. (19)

Proof. We can check that

l(n) + l(qd − 1− n) = (q − 1)d

for 1 ≤ n ≤ qd−2. Assume that n ≡ 0 mod q−1. Since l(n) ≡ l(qd−1−n) ≡
0 mod q − 1, we have

[ l(n)

q − 1

]

+
[ l(qd − 1− n)

q − 1

]

= d.

Therefore,

qd−2
∑

n=1
n≡0 mod q−1

{[ l(n)

q − 1

]

+
[ l(qd − 1− n)

q − 1

]}

= d
(qd − 1

q − 1
− 1

)

.

This leads equation (18). Next we assume that n 6≡ 0 mod q − 1. Then

[ l(n)

q − 1

]

+
[ l(qd − 1− n)

q − 1

]

= d− 1.

Therefore,

qd−2
∑

n=1
n6≡0 mod q−1

{[ l(n)

q − 1

]

+
[ l(qd − 1− n)

q − 1

]}

=
(d− 1)(q − 2)(qd − 1)

(q − 1)
.

Hence we obtain equation (19).
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Now we give the proof of Theorem 1.1.

Proof. One shows that gm, g
+
m can be calculated as follows

2gm = (dq − d− q)
(qd − 1

q − 1

)

− (d− 2), (20)

2g+m = (d− 2)
(qd − 1

q − 1
− 1

)

(21)

(cf. [K-M]). By comparing with Lemma 3.1, we obtain

gm =

qd−2
∑

n=1
n≡0 mod q−1

([ l(n)

q − 1

]

− 1
)

+

qd−2
∑

n=1
n6≡0 mod q−1

[ l(n)

q − 1

]

, (22)

g+m =

q2−2
∑

n=1
n≡0 mod q−1

([ l(n)

q − 1

]

− 1
)

. (23)

First we assume that λm = gm. Then, by Corollary 2.1 and Proposition
2.4, and equation (22), we see that equation (2) holds. Conversely, we assume
that equation (2) holds. Then, by Corollary 2.1 and equation (22), we obtain
λm = gm. This complete the proof of the part 1 of Theorem 1.1.

By the same arguments, we can prove the part 2 of Theorem 1.1.

Remark 3.1. From the proof of Theorem 1.1, we have the following results.

1. If Km is ordinary, then

deg B̄n(u) = degBn(u) =















[

l(n)
q−1

]

− 1 if n ≡ 0 mod q − 1,

[

l(n)
q−1

]

if n 6≡ 0 mod q − 1

for all 1 ≤ n ≤ qd − 2.

2. If K+
m is ordinary, then

deg B̄n(u) = degBn(u) =
[ l(n)

q − 1

]

− 1

for all 1 ≤ n ≤ qd − 2 (n ≡ 0 mod q − 1).
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By using Theorem 1.1, we determine all ordinary cyclotomic function field
in the case of q 6= p.

Corollary 3.1. We assume that q 6= p. Let m be a monic irreducible poly-
nomial. Then we have the following results.

1. Km is ordinary if and only if degm = 1.

2. K+
m is ordinary if and only if degm ≤ 2.

Proof. First we show the assertion 1. Assume that degm = 1. Then we
obtain gm = 0 by equation (20). Hence Km is ordinary. Next, we put
n = (q − p) + pq. Then l(n) = q 6≡ 0 mod q − 1. By Corollary 3.14 in [Ge],
we have

s1(n) = −

(

p
p− 1

)

(T p − T ) = 0.

Hence Bn(u) = 1. Notice that degBn(u) < [ l(n)
q−1

]. It follows that Km is not
ordinary if degm ≥ 2. This leads the assertion 1 of Corollary 3.1.

Secondly, we will show the assertion 2 of Corollary 3.1. By equation (21),
we see that K+

m is ordinary if degm ≤ 2. Next, we put n = p + (q − p)q +
(q − 2)q2, and n0 = n/p = 1 + (q − q/p − 1)q + (q/p − 1)q2. Then we have
l(n) = 2(q−1), and l(n0) = q−1. By Proposition 2.4, we have 1+s1(n0) = 0.
Noting that

1 + s1(n) = (1 + s1(n0))
p = 0,

we have Bn(u) = 1. Hence degBn(u) < [ l(n)
q−1

]− 1. It follows that K+
m is not

ordinary if degm ≥ 3. This leads the assertion 2 of Corollary 3.1.

The above corollary is not true in the case q = p. We will see this in the
next section.

4 Some examples of ordinary cyclotomic func-

tion field

In this section, we assume q = p. As an application of Theorem 1.1, we
shall construct some examples of ordinary cyclotomic function fields.
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Proposition 4.1. Assume m ∈ A is a monic irreducible polynomial of degree
two. Then K+

m, and Km are ordinary.

Proof. From equation (20), we have g+m = 0. Hence K+
m is ordinary.

Next we will show that Km is ordinary. To see this, we shall see that
equation (2) holds. We first consider the case l(n) ≤ p− 1. By Proposition
2.4, we have Bn(u) = 1. Hence equation (2) holds in this case.

Secondly, we consider the case p ≤ l(n) < 2(p − 1). Noting that n 6≡ 0
mod p− 1, we obtain

Bn(u) = 1 + s1(n)u.

Here we put n = a+ bp (0 ≤ a, b ≤ p− 1). Then Gekeler showed

s1(n) = −

(

b
p− 1− a

)

(T p − T )a+b−(p−1)

(cf. Corollary 3.14 in [Ge]). Hence s1(n) 6≡ 0 mod m. Therfore equation (2)
holds in this case. This complete the proof of Proposition 4.1.

Proposition 4.2. Assume that m ∈ A is a monic irreducible polynomial of
degree three. Then K+

m is ordinary.

Proof. Fix an integer n such that 1 ≤ n ≤ p3 − 2 (n ≡ 0 mod p− 1). Then
we have

Bn(u) = 1 + fn(T )u,

where fn(T ) is defined by

fn(T ) = 1 + s1(n) = 1 +
∑

α∈Fq

(T + α)n.

We notice that l(n) = p− 1 or 2(p− 1). First, we assume that l(n) = p− 1.
Then, by Proposition 2.4, we have Bn(u) = 1. Hence equation (3) holds in
this case.

Secondly, we consider the case l(n) = 2(p− 1). From Proposition 2.4, we
see that fn(T ) 6= 0. Assume that fn(T ) ≡ 0 mod m. Let ω be a root of m.
Then ω is also a root of fn(T ). We put

W1 =
{

a +
b

ω + c
: a, c ∈ Fq, b ∈ F×

q

}

,

W2 =
{

a + bω : a, b ∈ Fq

}

.

12



We can easily check that (i) fn(T + α) = fn(T ) (α ∈ Fq), (ii) fn(αT ) =
fn(T ) (α ∈ F×

q ), (iii) T
nfn(1/T ) = fn(T ). Hence each element of W1 ∪W2

is also a root of fn(T ). Notice that ω is a root of irreducible polynomial of
degree 3. Hence

W1 ∩W2 = φ, #W1 = p3 − p2, #W2 = p2.

Therefore fn(T ) has distinct p
3 roots. However deg fn(T ) ≤ n ≤ p3−2. This

is a contradiction. Therefore fn(T ) 6≡ 0 mod m. Hence equation (3) holds
in this case.

Remark 4.1. The above result is not true for Km. In fact, we consider the
case p = 3 and m = T 3 + 2T + 1. Then gm = 19, and λm = 18.
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