An ordinary cyclotomic function field

By D. Shiomi

1 Introduction

Let \mathbb{F}_{q} be the field with q elements of characteristic p. Let $k=\mathbb{F}_{q}(T)$ be the rational function field over \mathbb{F}_{q}, and $A=\mathbb{F}_{q}[T]$ the associated polynomial ring. Let $m \in A$ be a monic polynomial. Let K_{m}, K_{m}^{+}be the m-th cyclotomic function field, and its maximal real subfield (see subsection 2.1). The aim of this paper is to study the structure of the Jacobians of K_{m}, K_{m}^{+}.

For a global function field K over \mathbb{F}_{q}, we denote by J_{K} the Jacobian of $K \overline{\mathbb{F}}_{q}$, where $\overline{\mathbb{F}}_{q}$ is an algebraic closure of \mathbb{F}_{q}. For a prime l, it is well-known that the l-primary subgroup $J_{K}(l)$ of J_{K} is isomorphic to the following group

$$
J_{K}(l) \simeq \begin{cases}\bigoplus_{i=1}^{2 g_{K}} \mathbb{Q}_{l} / \mathbb{Z}_{l} & \text { if } l \neq p \\ \bigoplus_{i=1}^{\lambda_{K}} \mathbb{Q}_{p} / \mathbb{Z}_{p} & \text { if } l=p\end{cases}
$$

where g_{K} is the genus of K, and λ_{K} is called the Hasse-Witt invariant of K. In general, λ_{K} satisfies with $0 \leq \lambda_{K} \leq g_{K}$. In particular, we shall call K supersingular if $\lambda_{K}=0$, and ordinary if $\lambda_{K}=g_{K}$. For more details of the Jacobian, see [Ro1], Mi].

Let g_{m}, g_{m}^{+}be the genuses of K_{m}, K_{m}^{+}, respectively. Kida-Murabayashi gave explicit formulas for g_{m}, g_{m}^{+}for all monic polynomial m (cf. [K-M]). Hence we obtain the l-ranks $(l \neq p)$ of $J_{K_{m}}$, and $J_{K_{m}^{+}}$.

On the other hand, it is more difficult problem to construct an explicit formula for Hasse-Witt invariants. Let $\lambda_{m}, \lambda_{m}^{+}$be the Hasse-Witt invariants of K_{m}, K_{m}^{+}, respectively. In the previous paper [Sh2], the author completely determined $m \in A$ satisfying $\lambda_{m}=0$ (and $\lambda_{m}^{+}=0$).

In this paper, we shall consider the ordinary case. Assume that $m \in A$ is a monic irreducible polynomial of degree d. We set

$$
s_{i}(n)=\sum_{a \in A(i)} a^{n},
$$

where $A(i)$ is the set of monic polynomials of degree i. For $1 \leq n \leq q^{d}-2$, we define $B_{n}(u)$ as follows

$$
B_{n}(u)= \begin{cases}\sum_{i=0}^{d-2}\left(\sum_{j=0}^{i} s_{j}(n)\right) u^{i} & \text { if } n \equiv 0 \quad \bmod q-1, \tag{1}\\ \sum_{i=0}^{d-1} s_{i}(n) u^{i} & \text { if } n \not \equiv 0 \quad \bmod q-1 .\end{cases}
$$

Let $\mathcal{R}_{m}=A / m A$, and $\bar{f}(u) \in \mathcal{R}_{m}[u]$ be the reduction of $f(u) \in A[u]$ modulo m. Now we state our main result in this paper.

Theorem 1.1. Let $m \in A$ be a monic irreducible polynomial of degee d. Then we have the following results.

1. K_{m} is ordinary if and only if

$$
\operatorname{deg} \bar{B}_{n}(u)=\left\{\begin{array}{lll}
{\left[\frac{l(n)}{q-1}\right]-1} & \text { if } n \equiv 0 & \bmod q-1 \tag{2}\\
{\left[\frac{l(n)}{q-1}\right]} & \text { if } n \not \equiv 0 & \bmod q-1
\end{array}\right.
$$

for all $1 \leq n \leq q^{d}-2$.
2. K_{m}^{+}is ordinary if and only if

$$
\begin{equation*}
\operatorname{deg} \bar{B}_{n}(u)=\left[\frac{l(n)}{q-1}\right]-1 \tag{3}
\end{equation*}
$$

for all $1 \leq n \leq q^{d}-2(n \equiv 0 \bmod q-1)$.
Here $[x]$ is the maximal integer satisfying $[x] \leq x$, and $l(n)=a_{0}+a_{1}+\cdots+$ a_{d-1} if $n=a_{0}+a_{1} q+\cdots+a_{d-1} q^{d-1}\left(0 \leq a_{i} \leq q-1\right)$.

Assume that $q \neq p$. By using Theorem 1.1, we will completely determine a monic irreducible polynomial m such that K_{m} is ordinary (see Corollary 3.1). On the other hand, in the case $q=p$, it is more difficult problem to determine such m. In section 4 , we shall give some examples of ordinary cyclotomic function fields.

Remark 1.1. The above polynomial $B_{n}(u)$ is closely related to characteristic p zeta function (cf. [Go1]).

2 Preparations

2.1 Cyclotomic function fields

In this subsection, we shall provide basic facts about cyclotomic function fields. For details, see [Ha, Ro1, Go1].

Let \bar{k} be an algebraic closure of k. For $x \in \bar{k}$ and $m \in A$, we define the following action

$$
m * x=m(\varphi+\mu)(x)
$$

where φ, μ are \mathbb{F}_{q}-linear isomorphisms of \bar{k} defined by $\varphi: x \mapsto x^{q}$, and $\mu: x \mapsto T x$, respectively. By this action, \bar{k} becomes A-module. This A module is called the Carlitz module. For a monic polynomial $m \in A$, we set

$$
\Lambda_{m}=\{x \in \bar{k}: m * x=0\} .
$$

Let $K_{m}=k\left(\Lambda_{m}\right)$, which is called the m-th cyclotomic function field. One shows that K_{m} / k is a Galois extension, and have the group isomorphism

$$
\begin{equation*}
\operatorname{Gal}\left(K_{m} / k\right) \simeq(A / m A)^{\times}, \tag{4}
\end{equation*}
$$

where $\operatorname{Gal}\left(K_{m} / k\right)$ is the Galois group of K_{m} / k. We regard $\mathbb{F}_{q}^{\times} \subseteq(A / m A)^{\times}$, and let K_{m}^{+}be the intermediate field of K_{m} / k corresponding to \mathbb{F}_{q}^{\times}. The field K_{m}^{+}is called the maximal real subfield of K_{m}. Let P_{∞} be the prime of k with the valuation $\operatorname{ord}_{\infty}$ satisfying $\operatorname{ord}_{\infty}(1 / T)=1$. Then P_{∞} splits completely in K_{m}^{+} / k, and any prime of K_{m}^{+}over P_{∞} is totally ramified in K_{m} / K_{m}^{+}. Hence we have

$$
K_{m}^{+}=k_{\infty} \cap K_{m}
$$

where k_{∞} is the associated completion of k by P_{∞}.

2.2 Zeta functions

In this subsection, we shall study the zeta function of cyclotomic function fields. For more references, see G-R, Ro1.

For a global function field K over \mathbb{F}_{q}, we define the zeta function of K by

$$
\zeta(s, K)=\prod_{\mathcal{P}: \text { prime }}\left(1-\frac{1}{\mathcal{N} \mathcal{P}^{s}}\right)^{-1}
$$

where \mathcal{P} runs through all primes of K, and $\mathcal{N P}$ is the number of elements of the reduce class field of \mathcal{P}. Then $\zeta(s, K)$ converges absolutely for $\operatorname{Re}(s)>1$.

Theorem 2.1. Let g_{K} be the genus of K. Then there is a polynomial $Z_{K}(u) \in \mathbb{Z}[u]$ of degree $2 g_{K}$ satisfying

$$
\zeta(s, K)=\frac{Z_{K}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} .
$$

Now we focus on the cyclotomic function field case. Let $m \in A$ be a monic polynomial of degree d. Let $\zeta\left(s, K_{m}\right), \zeta\left(s, K_{m}^{+}\right)$be zeta functions of K_{m}, and K_{m}^{+}, respectively. By Theorem [2.1, there are polynomials $Z_{m}(u)$, and $Z_{m}^{(+)}(u)$ such that

$$
\begin{align*}
\zeta\left(s, K_{m}\right) & =\frac{Z_{m}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} \tag{5}\\
\zeta\left(s, K_{m}^{+}\right) & =\frac{Z_{m}^{(+)}\left(q^{-s}\right)}{\left(1-q^{-s}\right)\left(1-q^{1-s}\right)} \tag{6}
\end{align*}
$$

Let X_{m} be the group of primitive Dirichlet characters modulo m, and X_{m}^{+}is the subgroup of X_{m} defined by

$$
X_{m}^{+}=\left\{\chi \in X_{m}: \chi(a)=1 \text { for all } a \in \mathbb{F}_{q}^{\times}\right\}
$$

By the same arguments in subsection 2.2 in [Sh1], we have

$$
\begin{align*}
& \zeta\left(s, K_{m}\right)=\left\{\prod_{\chi \in X_{m}} L(s, \chi)\right\}\left(1-q^{-s}\right)^{-\left[K_{m}^{+}: k\right]} \tag{7}\\
& \zeta\left(s, K_{m}^{+}\right)=\left\{\prod_{\chi \in X_{m}^{+}} L(s, \chi)\right\}\left(1-q^{-s}\right)^{-\left[K_{m}^{+}: k\right]} \tag{8}
\end{align*}
$$

Here an L-function $L(s, \chi)$ is defined by

$$
L(s, \chi)=\sum_{a: \text { monic }} \frac{\chi(a)}{N(a)^{s}},
$$

where a runs through all monic polynomials of A, and $N(a)=q^{\operatorname{deg} a}$. Let χ_{0} be the trivial character. We can check that

$$
L(s, \chi)= \begin{cases}1 /\left(1-q^{1-s}\right) & \text { if } \chi=\chi_{0} \\ \sum_{i=0}^{d-1} s_{i}(\chi) q^{-s i} & \text { otherwise }\end{cases}
$$

where $s_{i}(\chi)=\sum_{\substack{a: m o n i c \\ \operatorname{deg}(a)=i}} \chi(a)$ for $i=0,1, \ldots, d-1$. We set

$$
\Phi_{\chi}(u)= \begin{cases}\left(\sum_{i=0}^{d-1} s_{i}(\chi) u^{i}\right) /(1-u) & \text { if } \chi \in X_{m}^{+} \backslash\left\{\chi_{0}\right\} \\ \sum_{i=0}^{d-1} s_{i}(\chi) u^{i} & \text { if } \chi \in X_{m}^{-}\end{cases}
$$

where $X_{m}^{-}=X_{m} \backslash X_{m}^{+}$. From equations (5) (6) (7) (8), we obtain the following result.

Proposition 2.1.

(1) $Z_{m}(u)=\prod_{\substack{\chi \in \notin x_{m} \\ \chi \neq \chi_{0}}} \Phi_{\chi}(u)$,
(2) $Z_{m}^{(+)}(u)=\prod_{\substack{x \in X_{m}^{+} \\ \chi \neq x_{0}}} \Phi_{\chi}(u)$.

Remark 2.1. Assume that $\chi \in X_{m}^{+} \backslash\left\{\chi_{0}\right\}$. Noting that $\sum_{i=0}^{d-1} s_{i}(\chi)=0$, we have

$$
\begin{equation*}
\Phi_{\chi}(u)=\sum_{i=0}^{d-2}\left(\sum_{j=0}^{i} s_{j}(\chi)\right) u^{i} \tag{11}
\end{equation*}
$$

In particular, $\Phi_{\chi}(u)$ is a polynomial.

2.3 The Hasse-Witt invarinat

Our goal in this subsection is to express λ_{m} and λ_{m}^{+}in terms of $B_{n}(u)$. To do this, we will study a relation between $B_{n}(u)$ and $Z_{m}(u)$ (and $Z_{m}^{(+)}(u)$). For more information, see chapter 8 of [Go1].

Let $m \in A$ be a monic irreducible polynomial of degree d. We denote the p-adic field by \mathbb{Q}_{p}. Fix an algebraic closure $\overline{\mathbb{Q}}$ of \mathbb{Q}, an algebraic closure $\overline{\mathbb{Q}}_{p}$ of \mathbb{Q}_{p}, and an embedding $\sigma: \overline{\mathbb{Q}} \rightarrow \overline{\mathbb{Q}}_{p}$. By this embedding, we regard $\overline{\mathbb{Q}} \subseteq \overline{\mathbb{Q}}_{p}$. Let ord_{p} the p-adic valuation of $\overline{\mathbb{Q}}_{p}$ with $\operatorname{ord}_{p}(p)=1$. We set

$$
M=\mathbb{Q}_{p}(W)
$$

where W is the group of $\left(p^{d e}-1\right)$-th roots of unity (we assume $q=p^{e}$). Let \mathcal{O}_{M} be the valuation ring of M. Since M / \mathbb{Q}_{p} is unramified, the residue class field $\mathcal{F}_{M}=\mathcal{O}_{M} / p \mathcal{O}_{M}$ consists of $p^{d e}$ elements. We notice that the image of $\chi \in X_{m}$ is contained in \mathcal{O}_{M}. Hence we see that

$$
\Phi_{\chi}(u) \in \mathcal{O}_{M}[u] \quad\left(\text { for } \quad \chi \in X_{m} \backslash\left\{\chi_{0}\right\}\right) .
$$

Notice that \mathcal{R}_{m} and \mathcal{F}_{M} are finite fields with same cardinality. Hence \mathcal{R}_{m} is isomorphic to \mathcal{F}_{M}, and fix an isomorphism $\phi: \mathcal{R}_{m} \rightarrow \mathcal{F}_{M}$. This map derives the group isomorphism $\phi_{0}:(A / m A)^{\times} \rightarrow \mathcal{F}_{M}^{\times}$, and the ring isomorphism $\phi_{*}: \mathcal{R}_{m}[u] \rightarrow \mathcal{F}_{M}[u]$. Since p is prime to ${ }^{\#} W$ ($=$ the cardinality of W), we have the following isomorphism

$$
\psi: W \longrightarrow \mathcal{F}_{M}^{\times}\left(\zeta \rightarrow \zeta \bmod p \mathcal{O}_{M}\right)
$$

Put $\omega=\psi^{-1} \circ \phi_{0}$. Then ω is a generator of X_{m}. Hence we have

$$
X_{m}=\left\{\omega^{n} \mid n=0,1,2, \ldots, q^{d}-2\right\} .
$$

We see that $\omega^{n} \in X_{m}^{+}$if $n \equiv 0 \bmod q-1$, and $\omega^{n} \in X_{m}^{-}$if $n \not \equiv 0 \bmod q-1$. We notice that

$$
\phi\left(a^{n} \quad \bmod m A\right) \equiv \omega^{n}(a \quad \bmod m A) \quad \bmod p \mathcal{O}_{p}
$$

for $a \in A(0 \leq \operatorname{deg}(a)<d)$, and $n=0,1, \ldots, q^{d}-2$. Hence, by the definition of $B_{n}(u)$, we obtain

$$
\phi_{*}\left(\bar{B}_{n}(u)\right)=\bar{\Phi}_{\omega^{n}}(u),
$$

where $\bar{\Phi}_{\chi}(u)$ is the reduction of $\Phi_{\chi}(u)$ modulo $p \mathcal{O}_{M}$. From Proposition 2.1, we obtain the following results.

Proposition 2.2.

$$
\begin{align*}
& \text { (1) } \phi_{*}\left(\prod_{n=1}^{q^{d}-2} \bar{B}_{n}(u)\right)=\bar{Z}_{m}(u), \tag{12}\\
& \text { (2) } \phi_{*}\left(\prod_{\substack{n=1 \\
n=0 \\
\bmod q-1}}^{q^{d}-2} \bar{B}_{n}(u)\right)=\bar{Z}_{m}^{(+)}(u) . \tag{13}
\end{align*}
$$

Proposition 2.2 leads the following relation between $\lambda_{m}\left(\right.$ or $\left.\lambda_{m}^{+}\right)$and $B_{n}(u)$.

Corollary 2.1.

(1) $\lambda_{m}=\sum_{n=1}^{q^{d}-2} \operatorname{deg} \bar{B}_{n}(u)$,
(2) $\lambda_{m}^{+}=\sum_{\substack{n=1 \\ t \equiv 0 \\ \bmod q-1}}^{q^{d}-2} \operatorname{deg} \bar{B}_{n}(u)$.

Proof. By Proposition 11.20 in [Ro1, we have

$$
\lambda_{m}=\operatorname{deg} \bar{Z}_{m}(u), \quad \lambda_{m}^{+}=\operatorname{deg} \bar{Z}_{m}^{(+)}(u)
$$

Hence we obtain Corollary 2.1 from Proposition 2.2.

2.4 Degrees of $B_{n}(u)$

In this subsection, we shall study the degree of $B_{n}(u)$. To see this, we review some results of Gekeler [Ge].

Fix an integer $d \geq 0$. For $n=a_{0}+a_{1} q+\cdots+a_{d-1} q^{d-1} \quad\left(0 \leq a_{i} \leq q-1\right)$, we define $e_{i}(1 \leq i \leq l(n))$ as follows:

$$
n=\sum_{i=1}^{l(n)} q^{e_{i}} \quad\left(0 \leq e_{i} \leq e_{i+1}, e_{i}<e_{i+q-1}\right) .
$$

(Recall that $\left.l(n)=a_{0}+a_{1}+\cdots+a_{d}\right)$. We set

$$
\rho(n)= \begin{cases}-\infty & \text { if } l(n)<q-1, \\ n-\sum_{i=1}^{q-1} q^{e_{i}} & \text { Otherwise }\end{cases}
$$

Moreover $\rho(-\infty)=-\infty, \rho^{(0)}(n)=n$, and $\rho^{(i)}=\rho^{(i-1)} \circ \rho$. We also put $\operatorname{deg} 0=-\infty$. Then Gekeler showed the following result.

Proposition 2.3. (cf. Proposition 2.11 in [Ge])

$$
\operatorname{deg}\left(s_{i}(n)\right) \leq \rho^{(1)}(n)+\rho^{(2)}(n) \cdots+\rho^{(i)}(n)
$$

Moreover, the equality holds if $q=p$ (:prime).

In particular, we have the following results.
Corollary 2.2. If $l(n) /(q-1)<i$, then $s_{i}(n)=0$. Assume that $q=p$. Then $l(n) /(p-1)<i$ if and only if $s_{i}(n)=0$.

Next we set

$$
C_{n}(u)=\sum_{i=0}^{\infty} s_{i}(n) u^{i}
$$

From Corollary [2.2, we see that $C_{n}(u) \in A[u]$. Moreover, we have the following result.

Lemma 2.1. $\operatorname{deg} C_{n}(u) \leq\left[\frac{l(n)}{q-1}\right]$. The equality holds if $q=p$.
Proof. This follows from Corollary 2.2.
Lemma 2.2. If $1 \leq n \leq q^{d}-2(n \equiv 0 \bmod q-1)$, then $C_{n}(1)=0$.
Proof. This follows from Lemma 6.1 in Ge]
From Lemma 2.2, we obtain

$$
B_{n}(u)=\left\{\begin{array}{ll}
C_{n}(u) /(1-u) & \text { if } n \equiv 0 \tag{16}\\
C_{n}(u) & \text { if } n \neq 0
\end{array} \bmod q-1, ~ 子\right.
$$

for $1 \leq n \leq q^{d}-2$. From equation (16), we see that $B_{n}(u)$ is only depend on n (independent on the choice of d).

Proposition 2.4.

(1) $\operatorname{deg} B_{n}(u) \leq\left[\frac{l(n)}{q-1}\right]-1 \quad$ if $n \equiv 0 \quad \bmod q-1$,
(2) $\operatorname{deg} B_{n}(u) \leq\left[\frac{l(n)}{q-1}\right] \quad$ if $n \not \equiv 0 \quad \bmod q-1$.

In particular, equalities hold if $q=p$.
Proof. This follows from Lemma 2.1 .

3 A proof of Theorem 1.1

Our goal in this section is to prove Theorem 1.1. To do this, we first show the following lemma.

Lemma 3.1. For a positive integer d, we have
(1) $\sum_{\substack{n=1 \\ n \equiv 0 \\ \bmod q-1}}^{q^{d}-2}\left[\frac{l(n)}{q-1}\right]=\frac{d}{2}\left(\frac{q^{d}-1}{q-1}-1\right)$,
(2) $\sum_{\substack{n=1 \\ n \neq 0}}^{q^{d}-2}\left[\frac{l(n)}{q-1}\right]=\frac{(d-1)(q-2)\left(q^{d}-1\right)}{2(q-1)}$.

Proof. We can check that

$$
l(n)+l\left(q^{d}-1-n\right)=(q-1) d
$$

for $1 \leq n \leq q^{d}-2$. Assume that $n \equiv 0 \bmod q-1$. Since $l(n) \equiv l\left(q^{d}-1-n\right) \equiv$ $0 \bmod q-1$, we have

$$
\left[\frac{l(n)}{q-1}\right]+\left[\frac{l\left(q^{d}-1-n\right)}{q-1}\right]=d
$$

Therefore,

$$
\sum_{\substack{n=1 \\ n \equiv 0 \\ \bmod q-1}}^{q^{d}-2}\left\{\left[\frac{l(n)}{q-1}\right]+\left[\frac{l\left(q^{d}-1-n\right)}{q-1}\right]\right\}=d\left(\frac{q^{d}-1}{q-1}-1\right) .
$$

This leads equation (18). Next we assume that $n \not \equiv 0 \bmod q-1$. Then

$$
\left[\frac{l(n)}{q-1}\right]+\left[\frac{l\left(q^{d}-1-n\right)}{q-1}\right]=d-1 .
$$

Therefore,

$$
\sum_{\substack{n=1 \\ n \neq 0}}^{q^{d}-2}\left\{\left[\frac{l(n)}{q-1}\right]+\left[\frac{l\left(q^{d}-1-n\right)}{q-1}\right]\right\}=\frac{(d-1)(q-2)\left(q^{d}-1\right)}{(q-1)}
$$

Hence we obtain equation (19).

Now we give the proof of Theorem 1.1.
Proof. One shows that g_{m}, g_{m}^{+}can be calculated as follows

$$
\begin{align*}
2 g_{m} & =(d q-d-q)\left(\frac{q^{d}-1}{q-1}\right)-(d-2) \tag{20}\\
2 g_{m}^{+} & =(d-2)\left(\frac{q^{d}-1}{q-1}-1\right) \tag{21}
\end{align*}
$$

(cf. [K-M]). By comparing with Lemma 3.1, we obtain

$$
\begin{align*}
g_{m} & =\sum_{\substack{n=1 \\
n \equiv 0}}^{q^{d}-2}\left(\left[\frac{l(n)}{q-1}\right]-1\right)+\sum_{\substack{n=1 \\
n \neq 0}}^{q^{d}-2}\left[\frac{l(n)}{q-1}\right] \tag{22}\\
g_{m}^{+} & =\sum_{\substack{n=1 \\
\bmod q-1}}^{q^{d}=0} \mathbf{q ^ { 2 } - 2}\left(\left[\frac{l(n)}{q-1}\right]-1\right) . \tag{23}
\end{align*}
$$

First we assume that $\lambda_{m}=g_{m}$. Then, by Corollary 2.1 and Proposition 2.4. and equation (22), we see that equation (2) holds. Conversely, we assume that equation (2) holds. Then, by Corollary 2.1 and equation (22), we obtain $\lambda_{m}=g_{m}$. This complete the proof of the part 1 of Theorem 1.1.

By the same arguments, we can prove the part 2 of Theorem 1.1.
Remark 3.1. From the proof of Theorem [1.1, we have the following results.

1. If K_{m} is ordinary, then

$$
\operatorname{deg} \bar{B}_{n}(u)=\operatorname{deg} B_{n}(u)=\left\{\begin{array}{lll}
{\left[\frac{l(n)}{q-1}\right]-1} & \text { if } n \equiv 0 & \bmod q-1 \\
{\left[\frac{l(n)}{q-1}\right]} & \text { if } n \not \equiv 0 & \bmod q-1
\end{array}\right.
$$

for all $1 \leq n \leq q^{d}-2$.
2. If K_{m}^{+}is ordinary, then

$$
\operatorname{deg} \bar{B}_{n}(u)=\operatorname{deg} B_{n}(u)=\left[\frac{l(n)}{q-1}\right]-1
$$

for all $1 \leq n \leq q^{d}-2(n \equiv 0 \bmod q-1)$.

By using Theorem 1.1, we determine all ordinary cyclotomic function field in the case of $q \neq p$.

Corollary 3.1. We assume that $q \neq p$. Let m be a monic irreducible polynomial. Then we have the following results.

1. K_{m} is ordinary if and only if $\operatorname{deg} m=1$.
2. K_{m}^{+}is ordinary if and only if $\operatorname{deg} m \leq 2$.

Proof. First we show the assertion 1. Assume that $\operatorname{deg} m=1$. Then we obtain $g_{m}=0$ by equation (20). Hence K_{m} is ordinary. Next, we put $n=(q-p)+p q$. Then $l(n)=q \not \equiv 0 \bmod q-1$. By Corollary 3.14 in Ge], we have

$$
s_{1}(n)=-\binom{p}{p-1}\left(T^{p}-T\right)=0 .
$$

Hence $B_{n}(u)=1$. Notice that $\operatorname{deg} B_{n}(u)<\left[\frac{l(n)}{q-1}\right]$. It follows that K_{m} is not ordinary if $\operatorname{deg} m \geq 2$. This leads the assertion 1 of Corollary 3.1.

Secondly, we will show the assertion 2 of Corollary 3.1. By equation (21), we see that K_{m}^{+}is ordinary if $\operatorname{deg} m \leq 2$. Next, we put $n=p+(q-p) q+$ $(q-2) q^{2}$, and $n_{0}=n / p=1+(q-q / p-1) q+(q / p-1) q^{2}$. Then we have $l(n)=2(q-1)$, and $l\left(n_{0}\right)=q-1$. By Proposition 2.4, we have $1+s_{1}\left(n_{0}\right)=0$. Noting that

$$
1+s_{1}(n)=\left(1+s_{1}\left(n_{0}\right)\right)^{p}=0
$$

we have $B_{n}(u)=1$. Hence $\operatorname{deg} B_{n}(u)<\left[\frac{l(n)}{q-1}\right]-1$. It follows that K_{m}^{+}is not ordinary if $\operatorname{deg} m \geq 3$. This leads the assertion 2 of Corollary 3.1.

The above corollary is not true in the case $q=p$. We will see this in the next section.

4 Some examples of ordinary cyclotomic function field

In this section, we assume $q=p$. As an application of Theorem 1.1, we shall construct some examples of ordinary cyclotomic function fields.

Proposition 4.1. Assume $m \in A$ is a monic irreducible polynomial of degree two. Then K_{m}^{+}, and K_{m} are ordinary.
Proof. From equation (20), we have $g_{m}^{+}=0$. Hence K_{m}^{+}is ordinary.
Next we will show that K_{m} is ordinary. To see this, we shall see that equation (2) holds. We first consider the case $l(n) \leq p-1$. By Proposition 2.4, we have $B_{n}(u)=1$. Hence equation (2) holds in this case.

Secondly, we consider the case $p \leq l(n)<2(p-1)$. Noting that $n \not \equiv 0$ $\bmod p-1$, we obtain

$$
B_{n}(u)=1+s_{1}(n) u
$$

Here we put $n=a+b p(0 \leq a, b \leq p-1)$. Then Gekeler showed

$$
s_{1}(n)=-\binom{b}{p-1-a}\left(T^{p}-T\right)^{a+b-(p-1)}
$$

(cf. Corollary 3.14 in [Ge]). Hence $s_{1}(n) \not \equiv 0 \bmod m$. Therfore equation (2) holds in this case. This complete the proof of Proposition 4.1.
Proposition 4.2. Assume that $m \in A$ is a monic irreducible polynomial of degree three. Then K_{m}^{+}is ordinary.
Proof. Fix an integer n such that $1 \leq n \leq p^{3}-2(n \equiv 0 \bmod p-1)$. Then we have

$$
B_{n}(u)=1+f_{n}(T) u,
$$

where $f_{n}(T)$ is defined by

$$
f_{n}(T)=1+s_{1}(n)=1+\sum_{\alpha \in \mathbb{F}_{q}}(T+\alpha)^{n}
$$

We notice that $l(n)=p-1$ or $2(p-1)$. First, we assume that $l(n)=p-1$. Then, by Proposition 2.4, we have $B_{n}(u)=1$. Hence equation (3) holds in this case.

Secondly, we consider the case $l(n)=2(p-1)$. From Proposition [2.4, we see that $f_{n}(T) \neq 0$. Assume that $f_{n}(T) \equiv 0 \bmod m$. Let ω be a root of m. Then ω is also a root of $f_{n}(T)$. We put

$$
\begin{aligned}
W_{1} & =\left\{a+\frac{b}{\omega+c}: a, c \in \mathbb{F}_{q}, b \in \mathbb{F}_{q}^{\times}\right\} \\
W_{2} & =\left\{a+b \omega: a, b \in \mathbb{F}_{q}\right\}
\end{aligned}
$$

We can easily check that (i) $f_{n}(T+\alpha)=f_{n}(T) \quad\left(\alpha \in \mathbb{F}_{q}\right)$, (ii) $f_{n}(\alpha T)=$ $f_{n}(T) \quad\left(\alpha \in \mathbb{F}_{q}^{\times}\right)$, (iii) $T^{n} f_{n}(1 / T)=f_{n}(T)$. Hence each element of $W_{1} \cup W_{2}$ is also a root of $f_{n}(T)$. Notice that ω is a root of irreducible polynomial of degree 3. Hence

$$
W_{1} \cap W_{2}=\phi, \quad{ }^{\#} W_{1}=p^{3}-p^{2}, \quad{ }^{\#} W_{2}=p^{2} .
$$

Therefore $f_{n}(T)$ has distinct p^{3} roots. However $\operatorname{deg} f_{n}(T) \leq n \leq p^{3}-2$. This is a contradiction. Therefore $f_{n}(T) \not \equiv 0 \bmod m$. Hence equation (3) holds in this case.

Remark 4.1. The above result is not true for K_{m}. In fact, we consider the case $p=3$ and $m=T^{3}+2 T+1$. Then $g_{m}=19$, and $\lambda_{m}=18$.

References

[Ge] E.-U. Gekeler: On power sums of polynomials over finite fields, J. Number Theory 30 (1988), no. 1, 11-26.
[G-R] S. Galovich and M. Rosen: The class number of cyclotomic function fields, J. Number Theory 13 (1981), no. 3, 363-375.
[Go1] D. Goss: Basic Structures of Function field Arithmetic, SpringerVerlag, Berlin, 1998.
[Ha] D.R. Hayes: Explicit class field theory for rational function fields, Trans. Amer. Math. Soc. 189 (1974), 77-91.
[K-M] M. Kida and N. Murabayashi: Cyclotomic function fields with divisor class number one, Tokyo J. Math. 14 (1991), no. 1, 45-56.
[Mi] J.S. Milne: Jacobian varieties, in Arithmetic Geometry, SpringlerVerlag, New York, 1986
[Ro1] M. Rosen: Number Theory in Function Fields, Springer-Verlag, Berlin, 2002.
[Sh1] Daisuke Shiomi: A determinant formula for relative congruence zeta functions for cyclotomic function fields, J. Aust. Math. Soc. 89 (2010), 133-144.
[Sh2] Daisuke Shiomi: The Hasse-Witt invariant of cyclotomic function fields, Acta Arith. 150 (2011), 227-240.

Daisuke Shiomi
Graduate School of Mathematics, Nagoya University
Furou-cho, Chikusa-ku, Nagoya 464-8602, Japan
Mail: m05019e@math.nagoya-u.ac.jp

