Cornell University

Mathematics > Number Theory

Mersenne Primes in Real Quadratic Fields

Sushma Palimar, Shankar B. R

(Submitted on 2 May 2012)

The concept of Mersenne primes is studied in real quadratic fields of class number 1. Computational results are given. The field $\$ \mathbf{Q}(\backslash$ sqrt $\{2\}) \$$ is studied in detail with a focus on representing Mersenne primes in the form $\$ x^{\wedge}\{2\}+7 y^{\wedge}\{2\} \$$. It is also proved that $\$ x \$$ is divisible by 8 and $\$ y l e q u i v ~ \ p m 3 \backslash p m o d$ $\{8\} \$$ generalizing the result of F Lemmermeyer, first proved in \cite\{LS\} using Artin's Reciprocity law.

Comments: 12 pages
Subjects: Number Theory (math.NT)
MSC classes: 11R11, 11 Y11
Cite as: arXiv:1205.0371 [math.NT]
(or arXiv:1205.0371v1 [math.NT] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse cont math.NT < prev|next > new | recent | 1205

Change to browse b math

References \& Citatic

- NASA ADS

Bookmark(what is this?)


```
#
```


Submission history

From: Sushma Palimar [view email]
[v1] Wed, 2 May 2012 10:37:29 GMT (11kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

