Mathematics > Number Theory

The normality of digits in almost constant additive functions

Joseph Vandehey

(Submitted on 6 Jun 2012)

We consider numbers formed by concatenating some of the base b digits from additive functions $f(n)$ that closely resemble the prime counting function \Omega(n). If we concatenate the last \backslash lceil $y \backslash f r a c\{\backslash \log \backslash \log \backslash \log n\}\{\backslash \log b\} \backslash r c e i l$ digits of each $f(n)$ in succession, then the number so created will be normal if and only if $0<y \backslash / \mathrm{le} 1 / 2$. This provides insight into the randomness of digit patterns of additive function after the Erdos-Kac theorem becomes ineffective.

Subjects: Number Theory (math.NT)
MSC classes: 11K16
Cite as: arXiv:1206.1095 [math.NT]
(or arXiv:1206.1095v1 [math.NT] for this version)

Submission history

From: Joseph Vandehey [view email]
[v1] Wed, 6 Jun 2012 00:08:50 GMT (12kb)

Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.NT
< prev | next > new | recent | 1206

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)


```
#(umf
```

Link back to: arXiv, form interface, contact.

