Mathematics > Representation Theory

Loewy filtration and quantum de Rham cohomology over quantum divided power algebra

Haixia Gu, Naihong Hu

(Submitted on 3 Apr 2012 (v1), last revised 8 Apr 2012 (this version, v2))

Abstract

As a continuation of \backslash cite\{ HU$\}$, we explore the submodule structures of the quantum divided power algebra \$\mathcal\{A\}_q(n)\$ introduced in \cite\{HU\} and its truncated objects \$1mathcal\{A\}_q(n, lbold m)\$. We develop an "intertwinedly-lifting" method to prove the indecomposability of a module when its socle is semisimple. We describe the Loewy filtrations for all the homogeneous subspaces \$1mathcal\{A\}^\{(s)\}_q(n)\$ or \$1mathcal\{A\}_q^(s)\}, (s) (n , lbold m)\$, determine their Loewy layers and dimensions, and prove their rigidity. From our realization model for a class of indecomposable modules for \$\mathfrak\{u\}_q(\mathfrak\{sl\}_n)\$, we derive an interesting combinatorial identity. Furthermore, we construct the quantum Grassmann algebra \$\Omega_q(n)\$ over \$\mathcal\{A\}_q(n)\$ and the quantum de Rham complex \$(\Omega_q(n), d^\bullet)\$ via defining the appropriate \$q\$-differentials, as well as its subcomplex $\$$ (Omega_q(n, lbold m), $d^{\wedge} \backslash$ bullet $) \$$. For the latter, we decompose the corresponding quantum de Rham cohomology modules as the direct sum of some sign-trivial \$\mathfrak\{u\}_q(\mathfrak\{sl\}_n)\$modules.

Comments: 26 pages
Subjects: Representation Theory (math.RT); Quantum Algebra (math.QA)
MSC classes: 17B10, 17B37, 20G05, 20G42, 81R50 (Primary) 14F40, 81T70 (Secondary)
Cite as: arXiv:1204.0664v2 [math.RT]

Submission history

From: Naihong Hu [view email]
[v1] Tue, 3 Apr 2012 11:48:26 GMT (169kb)
[v2] Sun, 8 Apr 2012 11:15:45 GMT (172kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context:
math.RT
< prev | next >
new | recent | 1204
Change to browse by: math
math.QA
References \& Citations

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

