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Abstract

In this paper, the concept of sparse difference resultant for a transformally essential
system of difference polynomials is introduced and its properties are proved. In partic-
ular, order and degree bounds for sparse difference resultant are given. Based on these
bounds, an algorithm to compute the sparse difference resultant is proposed, which is
single exponential in terms of the number of variables, the Jacobi number, and the size
of the transformally essential system. Also, the precise order, degree, a determinant
representation, and a Poisson-type product formula for difference resultants are given.

Keywords. Sparse difference resultant, difference resultant, Laurent transformally es-
sential system, Jacobi number, single exponential algorithm.

1 Introduction

The resultant, which gives conditions for an over-determined system of polynomial equations
to have common solutions, is a basic concept in algebraic geometry and a powerful tool in
elimination theory [3] 7, @, 17, (I8, 26]. The concept of sparse resultant is originated from the
work of Gelfand, Kapranov, and Zelevinsky on generalized hypergeometric functions, where
the central concept of A-discriminant is studied [16]. Kapranov, Sturmfels, and Zelevinsky
introduced the concept of A-resultant [19]. Sturmfels further introduced the general mixed
sparse resultant and gave a single exponential algorithm to compute the sparse resultant
[26, 27]. Canny and Emiris showed that the sparse resultant is a factor of the determinant of
a Macaulay style matrix and gave an efficient algorithm to compute the sparse resultant based
on this matrix representation [I1]. A determinant representation for the sparse resultant was
given by D’Andrea [8]. Recently, in [14], a rigorous definition for the differential resultant of
n + 1 generic differential polynomials in n variables was presented [14] and also the theory
of sparse differential resultants for Laurent differentially essential systems was developed
[22, 23]. Tt is meaningful to generalize the theory of sparse resultant to difference polynomial
Systems.

In this paper, the concept of sparse difference resultant for a Laurent transformally
essential system consisting of n 4+ 1 Laurent difference polynomials in n difference variables
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is introduced and its basic properties are proved. In particular, we give order and degree
bounds for the sparse difference resultant. Based on these bounds, we give an algorithm
to compute the sparse difference resultant. The complexity of the algorithm in the worst
case is single exponential of the form O(mo("l‘] 2)(nJ )O(U )), where n,m,J, and [ are the
number of variables, the degree, the Jacobi number, and the size of the Laurent transformally
essential system respectively. Besides these, the difference resultant is introduced and its
basic properties are given, such as its precise order, degree, determinant representation, and
Poisson-type product formula.

Although most properties for sparse difference resultants and difference resultants are
similar to its differential counterpart given in [22] 23] [14], some of them are quite different
in terms of descriptions and proofs. Firstly, the definition for difference resultant is more
subtle than the differential case as illustrated by Problem in this paper. Secondly, the
criterion for transformally essential systems given in Section 3.3 is quite different and much
simpler than its differential counterpart given in [23]. Also, a determinant representation for
the difference resultant is given in Section [6], but such a representation is still not known for
differential resultants [30, 25]. Finally, some properties are more difficult in the difference
case. For instance, we can only show that the vanishing of the difference resultant is a
necessary condition for the corresponding difference polynomial system to have a common
nonzero solution. While, the sufficient condition part is still open. Also, there does not exist
a definition for homogeneous difference polynomials, and the definition we give in this paper
is different from its differential counterpart.

The rest of the paper is organized as follows. In Section 2 we prove some preliminary
results. In Section [ we first introduce the concepts of Laurent difference polynomials and
Laurent transformally essential systems, and then define the sparse difference resultant for
Laurent transformally essential systems. Then basic properties of sparse difference resultant
are proved in Section @ And in Section [, we present an algorithm to compute the sparse
difference resultant. Then we introduce the notion of difference resultant and give its basic
properties in section [6l In Section [1 we conclude the paper by proposing several problems
for future research.

2 Preliminaries

In this section, some basic notations and preliminary results in difference algebra will be
given. For more details about difference algebra, please refer to [, 21].

2.1 Difference polynomial ring

An ordinary difference field F is a field with a third unitary operation o satisfying that
for any a,b € F, o(a +b) = o(a) + o(b), o(ab) = o(a)o(b) and o(a) = 0 if and only if
a = 0. We call o the transforming operator of F. If a € F, o(a) is called the transform of
a and is denoted by a(Y). And for n € Z*, 0™(a) = 0" (o(a)) is called the n-th transform
of a and denoted by (™, with the usual assumption a(?) = a. By a/™ we mean the set
{a,aM, ... a™}. A typical example of difference field is Q(x) with o(f(z)) = f(z + 1).
Let S be a subset of a difference field G which contains F. We will denote respectively
by FI[S], F(S), F{S}, and F(S) the smallest subring, the smallest subfield, the smallest



difference subring, and the smallest difference subfield of G containing F and S. If we
denote O(S) = {c*alk > 0,a € S}, then we have F{S} = F[O(S)] and F(S) = F(O(9)).

A subset S of a difference extension field G of F is said to be transformally dependent
over F if the set {aka‘a € S,k > 0} is algebraically dependent over F, and is said to be
transformally independent over F, or to be a family of difference indeterminates over F in
the contrary case. In the case S consists of one element «, we say that « is transformally
algebraic or transformally transcendental over F respectively. The maximal subset 2 of G
which are transformally independent over F is said to be a transformal transcendence basis
of G over F. We use Atr.degG/F to denote the difference transcendence degree of G over
F, which is the cardinal number of 2. Considering F and G as ordinary algebraic fields, we
denote the algebraic transcendence degree of G over F by tr.degG/F.

Now suppose Y = {y1,y2,...,yn} is a set of difference indeterminates over F. The

elements of F{Y} = f[y](-k) :j=1,...,n;k € Ny| are called difference polynomials over
F inY, and F{Y} itself is called the difference polynomial ring over F in Y. A difference
polynomial ideal Z in F{Y} is an ordinary algebraic ideal which is closed under transforming,
ie. o(Z) C Z. If T also has the property that o)) € Z implies that a € Z, it is called a
reflexive difference ideal. And a prime (resp. radical) difference ideal is a difference ideal
which is prime (resp. radical) as an ordinary algebraic polynomial ideal. For convenience, a
prime difference ideal is assumed not to be the unit ideal in this paper. If S is a finite set of
difference polynomials, we use (S) and [S] to denote the algebraic ideal and the difference
ideal in F{Y} generated by S.

An n-tuple over F is an n-tuple of the form a = (ay,...,a,) where the a; are selected
from some difference overfield of F. For a difference polynomial f € F{yi,...,yn}, a is
called a difference zero of f if when substituting ygj ) by al(-j ) in f, the result is 0. An n-tuple
n is called a generic zero of a difference ideal Z C F{Y} if for any polynomial P € F{Y} we
have P(n) =0« P € Z. It is well known that

Lemma 2.1 [J, p.77] A difference ideal possesses a generic zero if and only if it is a reflexive
prime difference ideal other than the unit ideal.

Let Z be a reflexive prime difference ideal and 7 a generic point of Z. The dimension of
7 is defined to be Atr.degF(n)/F.

Given two n-tuples a = (ay,...,a,) and a = (ay,...,a,) over F. a is called a specializa-
tion of a over F, or a specializes to a, if for any difference polynomial P € F{Y}, P(a) =0
implies that P(a) = 0. The following property about difference specialization will be needed
in this paper.

Lemma 2.2 Let P;(U,Y) € F(Y){U} (: = 1,...,m) where U = (ug,...,u,) and Y =
(Y1, ---,Yn) are sets of difference indeterminates. If P;(U,Y) (i = 1,...,m) are transformally
dependent over F(U), then for any difference specialization U to U which are elements in F,
Py(U,Y) (i =1,...,m) are transformally dependent over F.

Proof: Tt suffices to show the case r = 1. Denote u = w;. Since P;(w,Y) (1 = 1,...,m)
are transformally dependent over F(u), there exist natural numbers s and [ such that

]P’(k)(u,Y) (k < s) are algebraically dependent over F(u® |k < s+ 1). When u special-

)

izes to @ € F, ulb) (k > 0) are correspondingly algebraically specialized to a*) € F. By [29,



p.161], ]P’(k)(ﬂ,Y) (k < s) are algebraically dependent over F. Thus, P;(a,Y) (i =1,...,m)

(2
are transformally dependent over F. O

2.2 Characteristic sets for a difference polynomial system

Let f be a difference polynomial in F{Y}. The order of f w.r.t. y; is defined to be the

greatest number k such that yi(k) appears effectively in f, denoted by ord(f,y;). And if
y; does not appear in f, then we set ord(f,y;) = —oo. The order of f is defined to be
max; ord(f,y;), that is, ord(f) = max; ord(f, ;).

A ranking Z is a total order over O(Y) = {o*y;|1 < i < n,k > 0}, which satisfies the
following properties:

1) o(0) > 0 for all derivatives 6 € O(Y).

2) 01 >0, — 0'(91) > 0'(92) for 91,92 S @(Y)

Let f be a difference polynomial in F{Y} and & a ranking endowed on it. The greatest
y§k) w.r.t. % which appears effectively in f is called the leader of p, denoted by 1d(f) and
correspondingly y; is called the leading variable of f, denoted by lvar(f) = y;. Let the degree
of f in 1d(f) be d. The leading coefficient of f as a univariate polynomial in 1d(f) is called
the 4nitial of f and is denoted by Iy.

Let p and ¢ be two difference polynomials in F{Y}. ¢ is said to be of higher rank than
p if

1) 1d(q) > 1d(p)

2) 1d(g) = 1d(p) = y\" and deg(q,y") > deg(p,y")).
(
Y;

) (k+0)

. q is said to be reduced w.r.t. p if deg(q, Y, ) < deg(p,y(k)) for

Suppose 1d(p) = i

all [ € Np.

A finite chain of nonzero difference polynomials A = Ay, ..., A, is said to be an ascending
chain if

1) m=1and A; #0or

2) m>1, Aj > A; and A; is reduced w.r.t. A; for 1 <i<j < m.

Let A = Aq, As,..., A; be an ascending chain with I; as the initial of A;, and f any
difference polynomial. Then there exists an algorithm, which reduces f w.r.t. A to a
polynomial r that is reduced w.r.t. A, satisfying the relation

t d;
H (o*1;)%* - f = r,mod [A],

i=1 k:O

where the e;; are nonnegative integers. The difference polynomial r is called the difference
remainder of f w.r.t. A [15].

Let A be an ascending chain. Denote I 4 to be the minimal multiplicative set containing
the initials of elements of A and their transforms. The saturation ideal of A is defined to be

sat(A) = [A] : T4 = {p: Th € 4, s.t. hp € [A]}.

And the algebraic saturation ideal of A is asat(A) = (A) : T4, where I4 is the minimal
multiplicative set containing the initials of elements of A.



An ascending chain C contained in a difference polynomial set S is said to be a character-
istic set of S, if S does not contain any nonzero element reduced w.r.t. C. A characteristic
set C of a difference ideal J reduces to zero all elements of 7.

Let A be a characteristic set of a reflexive prime difference ideal Z. We rewrite A as the
following form

A117 . 7A1k1
A=1 ...
Apty ooy Apr,

where lvar(A4;;) =y, for j =1,...,k; and ord(A;;,y.,) < ord(Ai;, ye,) for j <. In terms of
the characteristic set of the above form, p is equal to the codimension of Z, that is n—dim(Z).
Unlike the differential case, here even though Z is of codimension one, there may be more
than one difference polynomials in a characteristic set of Z as shown by the following example.

Example 2.3 Let A = (ygl))2 +yi+1, Ajp = y§2) —y1. ThenZ = [A11, A12] is a reflexive
prime difference ideal whose characteristic set is A = Aj1, A1a and T = sat(A) [15]. Note

that [A11] is not a prime difference ideal, because o(A11) — A1 = (ygz) —yl)(ygz) +y1) € [A11]

and both y&z) — Y1 and y§2) + y1 are not in [A11].

Now we proceed to show that a property of uniqueness still exists in characteristic sets
of a reflexive prime difference ideal in some sense. Firstly, we need several algebraic results.

Let B = By,..., By, be an algebraic triangular set in Flxq,...,z,] with lvar(B;) = y;
and U = {xl,...,xn}\{yl,...,ym}. A polynomial f is said to be invertible w.r.t. A if
(f,A1,...,As) N K[U] # {0} where lvar(f) = lvar(As). We call B a regular chain if for each
1 > 1, the initial of B; is invertible w.r.t. By,..., B;_1. For a regular chain B, we say that f
is invertible w.r.t. asat(B) if (f,asat(B)) N F[U] # {0}.

Lemma 2.4 Let B be a regular chain in Flz1,...,z,]. If \/asat(B) = ()L, P; is an irre-
dundant prime decomposition of \/asat(B), then a polynomial f is invertible w.r.t. asat(B)
if and only if f ¢ P; for alli=1,...,m.

Proof: Since \/asat(B) = (i~ P; is an irredundant prime decomposition of y/asat(B), U
is a parametric set of P; for each ¢ by [I3]. And for prime ideals P;, f ¢ P; if and only
it (f,P;) N FIU] # {0}. If f is invertible w.r.t. asat(B), {0} # (f,asat(B)) N F[U] C
(f,P;) N F[U]. Thus, f ¢ P; for each i. For the other side, suppose f ¢ P; for all i, then
there exist nonzero polynomials h;(U) such that h;(U) € (f,P;). Thus, there exists t € N
such that ([T, h;(U))" € (f,asat(B)). So f is invertible w.r.t. asat(B). O

Lemma 2.5 [Z] Let B be a regular chain in F[U,Y|. Let f be a polynomial in F[U,Y]| and
L in FIU\{0} such that Lf € (B). Then f € asat(B).

Lemma 2.6 Let A be an irreducible difference polynomial in F{Y} with deg(A,y;,) > 0 for
some ig. If f is invertible w.r.t. A% = A, AD . A®) under some ranking %, then o(f) is
invertible w.r.t. ARt = A .. A®TY " In particular, A¥ is a regular chain for any k > 0.



Proof: Since as a difference ascending chain, A is coherent and proper irreducible, by Theo-
rem 4.1 in [15], A is difference regular. As a consequence, AlF! is regular for any k> 0. O

The following fact is needed to define sparse difference resultant.

Lemma 2.7 Let Z be a reflexive prime difference ideal of codimension one in F{Y}. The
first element in any characteristic set of T w.r.t. any ranking, when taken irreducible, is
unique up to a factor in F.

Proof: Let A = Aq,..., A, be a characteristic set of Z w.r.t. some ranking # with A;
irreducible. Suppose lvar(A) = y;. Given another characteristic set B = By,...,B; of Z
w.r.t. some other ranking #’ (Bj is irreducible), we need to show that there exists ¢ € F
such that By = c¢- Ay. It suffices to consider the case lvar(B) # y;. Suppose lvar(B1) = ys.
Clearly, yo appears effectively in A; for B reduces A; to 0. And since Z is reflexive, there
exists some iy such that deg(A1,yi,) > 0.

Suppose ord(Aj,ys) = o02. Take another ranking under which yéoz) is the leader of A;

and we use A; to distinguish it from the A; under Z. By Lemma [26] for each £k, A[lk} and
fl[lk] are regular chains.

Now we claim that asat(A[lk}) = asat(fi[lk}). On the one hand, for any polynomial
fe asat(A[lk}), we have (H?:o ol(Ia,))f € (A[lk]). Since 14, is invertible w.r.t. Aj, by
Lemma 2.8, o0*(14,) is invertible w.r.t. /Nl[ll] Thus, (Hf:o ot(L4,))? is invertible w.r.t. fl[lk]
Denote the parameters of fl[lk} by U. So there exists a nonzero polynomial h(U) such
that h(U) € ((Hfzo ai(IAl))a,A[lk}). Thus, h(U)f € (fl[lk}) Since fl[lk} is a regular chain,
by Lemma 25, f € asat(fl[lk}). So asat(A[lk}) - asat(ﬁ[lk]). Similarly, we can show that
asat(fl[lk}) - asat(A[lk}). Thus, asat(A[lk}) = asat(fl[lk}).

Suppose ord(By,y2) = 0). It is clear that oy > 0),. We now proceed to show that it
is impossible for o2 > of,. Suppose the contrary, i.e. o9 > o,. Then Bj is invertible w.r.t.

asat(fl[lk}). Suppose asat(fl[lk]) = !_, P; is an irredundant prime decomposition. By

Lemma 2.4] By ¢ P; for each i. Since asat(A[lk]) = asat(A[lM), using Lemma [2.4] again, B
is invertible w.r.t. asat(A[lk}). Thus, there exists a nonzero difference polynomial H with

ord(H,y;) < ord(Ay,y1) such that H € (By, asat(A[lk})) C Z, which is a contradiction. Thus,
09 = 0h. Since B reduces A; to zero and A; is irreducible, there exists ¢ € F such that
Bl =C- Al. U

3 Sparse difference resultant

In this section, the concepts of Laurent difference polynomials and transformally essential
systems are first introduced, and then the sparse difference resultant for transformally es-
sential systems is defined. And we also give a criterion for Laurent transformally essential
systems in terms of the support of the given system.



3.1 Laurent difference polynomial

Let F be an ordinary difference field with a transforming operator o and F{Y} the ring
of difference polynomials in the difference indeterminates Y = {y1,...,y,}. Similar to [23],
before defining sparse difference resultant, we first introduce the concept of Laurent difference
polynomials.

Definition 3.1 A Laurent difference monomial of order s is a Laurent monomial in vari-
ables Yl = (yi(k))lgz‘gn;ogkgs- More precisely, it has the form [];_, szo(ygk))dik where d;,
are integers which can be negative. A Laurent difference polynomial over F is a finite linear

combination of Laurent difference monomials with coefficients in F.

Clearly, the collections of all Laurent difference polynomials form a commutative differ-
ence ring under the obvious sum, product operations and the usual transforming operator
o, where all Laurent difference monomials are invertible. We denote the difference ring of
Laurent difference polynomials with coefficients in F by F{y1,y; Lo Yn, Y 1}, or simply
by F{Y,Y~1}.

Definition 3.2 For every Laurent difference polynomial F € F{Y,Y ™'}, there exists a
unique laurent difference monomial M such that 1) M - F € F{Y} and 2) for any Laurent
difference monomial T with T - F € E{Y}, T - F is divisible by M - F' as polynomials. This
M - F is defined to be the norm form of F', denoted by N(F'). The order and degree of N(F')
is defined to be the order and degree of F', denoted by ord(F') and deg(F).

In the following, we consider zeros for Laurent difference polynomials.

Definition 3.3 Let F' be a Laurent difference polynomial in F{Y,Y~'}. An n-tuple (a1,
., ap) over F is called a nonzero difference zero of F if for all i, a; # 0 and F(ay,...,an) =
0.

For an ideal Z € F{Y,Y !}, the difference zero set of T is the set of common nonzero
difference zeros of all Laurent difference polynomials in Z. We will see later in Example [£.2],
how nonzero difference solutions are naturally related with the sparse difference resultant.

3.2 Definition of sparse difference resultant

In this section, the definition of the sparse difference resultant will be given. Similar to
the study of sparse differential resultants, we first define sparse difference resultants for
Laurent difference polynomials whose coefficients are difference indeterminates. Then the
sparse difference resultant for a given Laurent difference polynomial system with concrete
coefficients is the value which the resultant in the generic case assumes for the given case.
Suppose A; = { Mo, Mj1,..., My, } (¢ = 0,1,...,n) are finite sets of Laurent differ-
ence monomials in Y. Consider n 4+ 1 generic Laurent difference polynomials defined over
.A(], e ,.Anl l
PZ:ZquMZk (i:O,...,n), (1)

k=0



where all the w;; are transformally independent over the rational number field Q. Denote
w; = (Wig, Uity -+, Uin) (1 =0,...,n) and u = Uj_gu;\{u}. (2)

The number I; 4+ 1 is called the size of P;. To avoid the triviality, [; > 1(i = 0,...,n) are
always assumed in this paper.

Definition 3.4 A set of Laurent difference polynomials of form (1) is called Laurent trans-

formally essential if there exist k; (1 = 0,...,n) with 1 < k; < l; such that Atr.deg@(Mgko

Moo
Mlk: M k .
e L )/Q = n. In this case, we also say that Ay,..., A, form a Laurent transfor-

mally essential system.

Although M;y are used as denominators to define transformally essential system, the
following lemma shows that the definition does not depend on the choices of M;g.

Lemma 3.5 The following two conditions are equivalent.

1. There exist k; (1 = 0,...,n) with 1 < k; <; such that Atr.deg@(]\]\/[;&o, cee ]\]/\[/}L:(;L )/Q =

n.

MOkO

2. There exist pairs (ki, j;) (i = 0,...,n) with k; # j; € {0,...,1l;} such that Atr.deg Q( Moy
0

MTL n J—
) My — i,
Proof: Similar to the proof of [23, Lemma 3.7], it can be easily shown. O

Let m be the set of all difference monomials in Y and [N(Py),...,N(P,)] the difference
ideal generated by N(P;) in Q{Y,ug,...,u,}. Let

Iyua = ([N(Pp),...,N(P,)]: m). (3)
The following result is a foundation for defining sparse difference resultants.

Theorem 3.6 Let Py,...,P, be Laurent difference polynomials defined in (dl). Then the
following assertions hold.

1. Iy y is a reflexive prime difference ideal in Q{Y,up, ..., u,}.

2. Iy u N Qfuy, ..., u,} is of codimension one if and only if Py, ..., P, form a Laurent
transformally essential system.

Proof: Let n = (n1,...,n,) be a sequence of transformally independent elements over Q(u),
where u is defined in ([2]). Let

l;

Z M (n) .

= — Us; 22071,...,774- 4
CZ e ik Mzo(n) ( ) ( )
We claim that 6 = (1; (o, uo1, - - - ; Uoly; - - - ; Cns Unl, - - - » Ui, ) 1S & generic point of Zy ,, which

follows that Zy , is a reflexive prime difference ideal.




Denote N(P;) = M;P; (i =0,...,n) where M; are Laurent difference monomials. Clearly,
N(PP;) = M;P; vanishes at 6 (i = 0,...,n). For any f € Zy,,, there exists an M € m such
that M f € [N(Py),...,N(P,)]. It follows that f(6) = 0. Conversely, let f be any difference
polynomial in Q{Y,uy,...,u,} satisfying f(¢) = 0. Clearly, N(Py),N(PP;),...,N(P,) con-
stitute an ascending chain with u;g as leaders. Let f; be the difference remainder of f w.r.t.
this ascending chain. Then f; is free from w;p (¢ = 0,...,n) and there exist a,s € N such
that ([T7o [T7_o(c'(M;M)))® - f = f1,mod [N(Pp),...,N(B,)]. Clearly, f1(f) = 0. Since
f1 € Q{u,Y}, fi =0. Thus, f € Zyy. So Ly, is a reflexive prime difference ideal with a
generic point 6.

Consequently, Zy , N Q{up, ..., u,} is a reflexive prime difference ideal with a generic
point ¢ = (Co, Uo1, - - - 5 Uoly; - - - 3 Cns Unds - - - 5 Upy, ). From (@), it is clear that Atr.deg Q(¢)/Q <
Yoo li +n. If there exist pairs (ig,jx) (k=1,...,n) with 1 < j, <1I;, and ig, # i, (k1 #
k2) such that ]E\/[/;iljol e J‘Z/\[Z‘:g are transformally independent over Q, then by Lemma 2.2]
Ciyse -G, are trlansformally independent over Q(u). It follows that Atr.degQ(¢)/Q =
Soioli +n. Thus, Zy w N Q{u, ..., u,} is of codimension 1.

Conversely, let us assume that Zy, N Q{uo,...,u,} is of codimension 1. That is,
Atr.degQ(¢)/Q = Y, li+n. We want to show that there exist pairs (ig, jr) (k=1,...,n)
with 1 < ji <;, and ig, # ik, (k1 # k2) such that 1\1‘4/;;1]»01 e AJ\%Z:: are transformally inde-
pendent over Q. Suppose the contrary, i.e., Afjilljg(%) ey ]J\{/Z:g(%) are transformally dependent
for any n different i, and j € {1,...,1;, }. Since each (;, is a linear combination of %
(e =1,...,1;,), it follows that ¢;,,...,(;, are transformally dependent over Q(u). Thus, we
have Atr.degQ(¢)/Q < >_7" , li + n, a contradiction to the hypothesis. O

Let [P, ...,P,] be the difference ideal in Q{Y,Y % ug,...,u,} generated by P;. Then
we have

Corollary 3.7 [Py, Py,...,P,] N Q{uy,...,u,} is a reflexive prime difference ideal of codi-
mension one if and only if {P; :i=0,...,n} is a Laurent transformally essential system.

Proof: Tt is easy to show that [Py, Py,...,P,] N Q{ug,...,u,} =Zyw N Q{uy,...,u,}. And

the result is a direct consequence of Theorem O
Now suppose {Py,...,P,} is a Laurent transformally essential system. Denote the dif-
ference ideal [Py, ...,P,|NQ{ug,...,u,} by Zy. Since Z, is a reflexive prime difference ideal

of codimension one, by Lemma 27 there exists a unique irreducible difference polynomial
R(u; ugo, - .., uno) = R(ug,...,u,) € Q{uo,...,u,} such that R can serve as the first poly-
nomial in each characteristic set of Z,, w.r.t. any ranking endowed on uy, ..., u,. That is, if
u;o appears in R, then among all the difference polynomials in Z;, R is of minimal order in
;o and of minimal degree with the same order.

Now the definition of sparse difference resultant is given as follows:

Definition 3.8 The above R(uy,...,u,) € Q{ug,...,u,} is defined to be the sparse differ-
ence resultant of the Laurent transformally essential system Py, ..., P, denoted by Res 4,.... 4,
or Resp,.... p,. And when all the A; are equal to the same A, we simply denote it by Res4.



The following lemma gives another description of sparse difference resultant from the
perspective of generic point,

Lemma 3.9 Let (; = —Zij:lu- M (n) (i =0,1,...,n) defined as in equation ({]), where

ik Mo ()
n = (M,...,nn) is a generic point of [0] over Q(u). Then among all the polynomials in
Q{uy, . ..,u,} vanishing at (u; o, ...,¢), R(ug,...,u,) = R(u;upo, ..., uno) is of minimal
order and degree in each u;g (i = 0,...,n).
Proof: It is a direct consequence of Theorem and Definition 3.8 O

Remark 3.10 From its definition, the sparse difference resultant can be computed as follows.
With the characteristic set method given in [15)], we can compute a proper irreducible ascend-
ing chain A which is a characteristic set for the difference polynomial system {Pgy,Py,... ,P,}
under a ranking such that u;; < yi. Then the first difference polynomial in A is the sparse
difference resultant. This algorithm does not have a complezity analysis. In Section 5, we
will give a single exponential algorithm to compute the sparse difference resultant.

We give several examples to show sparse difference resultant.

Example 3.11 Let n =2 and P; has the form

2 3 3) /.

Pi = wioyt” + unyl” + winys” (i = 0,1,2).

It is easy to show that y§3)/y§2) and yég)/y?) are transformally independent over Q. Thus,
Py, Py, Py form a Laurent transformally essential system. The sparse difference resultant is

Upo Upl  UO2
R = Resp, p, p, = | 10 w11 U12
Up U2l U2

The following example shows that for a Laurent transformally essential system, its sparse
difference resultant may not involve the coefficients of some P;.

Example 3.12 Let n =2 and P; has the form

1) @
Py = ugo + uo1y1y2, P1 = u1o + u11y§ )yé ) Py = ugo + U21Y2-

Clearly, Py, P1,Py form a Laurent transformally essential system. And the sparse difference

resultant of Pgy, Py, Py is

(1) (1)
R= Upy ULl — Ugp U10,

which is free from the coefficients of Ps.

The above example can be used to illustrate the difference between the differential
and difference cases. If Pg,P;,Py in Example are differential polynomials, then the
sparse differential resultant is ud;uioudqu3; — wo1Upyu11U20US Uhy + UooUf; U1 U20US, Uy +
Uo1uoou11U%o(u/m)2 + uOou01u11u%1(uéo)2 - 2“01UOOU11U20U21U/2()U/21 + U01U60U11U%0U/21U21 -
UpoUf; U11U21 Uy U3, Which contains coefficients of Py, Py, Po.
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Remark 3.13 When all the A; (i = 0,...,n) are sets of difference monomials, unless ex-
plicitly mentioned, we always consider P; as Laurent difference polynomials. But when we
regard P; as difference polynomials, Res 4, ... 4, s also called the sparse difference resultant
of the difference polynomials P; and we call P; a transformally essential system. In this
paper, sometimes we regard P; as difference polynomials where we will highlight it.

We now define the sparse difference resultant for any set of specific Laurent difference
polynomials over a Laurent transformally essential system. For any finite set A of Laurent
difference monomials, we use £(.A) to denote the set of all Laurent difference polynomials of
the form ), 4 apr M where the ajps are in some difference extension field of Q. Then L(A)
can be considered as the set of all [-tuples over Q where | = | AJ.

Definition 3.14 Let A; = {M;o, Mp,..., My, } (i = 0,1,...,n) be a Laurent transfor-

mally essential system. Consider n + 1 Laurent difference polynomials (Fy, F1,...,F,) €
[Ty £(A;). The sparse difference resultant of Fo, Fh, ..., F,, denoted as Resg,,... F,, is ob-
tained by replacing u; by the corresponding coefficient vector of F; in Res4,,... 4, (o, ..., y).

A major unsolved problem about difference resultant is whether R defined above contains
all the information about the elimination ideal Zy y, defined in (3]). More precisely, we propose
the following problem.

Problem 3.15 As shown by Example (2.3, the characteristic set for a reflexive prime differ-
ence ideal could contain more than one elements. Let Ly y, be the ideal defined in (3). Then
Ly u 15 a reflexive prime difference ideal of codimension one and

IY,u = sat(R, Ry, ... ,Rm),

where R is the sparse difference resultant of Pg, ..., P, and R, Ry, ..., Ry, is a characteristic
set of Iy w. We conjecture that m = 0, or equivalently Ly ,, = sat(R), which is similar the
differential case. If this is valid, then better properties can be shown for sparse difference
resultant as we will explain later.

3.3 Ceriterion for Laurent transformally essential systems in terms of the
supports

Let A; (i = 0,...,n) be finite sets of Laurent difference monomials. According to Defini-
tion B4], in order to check whether they form a Laurent transformally essential system, we
need to check whether there exist My, , M;;, € Ai(i =0, ...,n) such that Atr.deg Q(Mox, /Moj,

oy My, /[Mpj,)/Q = n. This can be done with the difference characteristic set method via
symbolic computation [15]. In this section, a criterion will be given to check whether a
Laurent difference system is essential in terms of their supports, which is conceptually and
computationally simpler than the naive approach based on the characteristic set method.

Let B; = [[;_, szo(y](.k))dijk (¢ = 1,...,m) be m Laurent difference monomials. We

now introduce a new algebraic indeterminate x and let

s
dij:Zdijkxk(i:1,...,m,j:1,...,n)
k=0

11



be univariate polynomials in Z[z]. If ord(B;,y;) = —o0o, then set d;; = 0. The vector (d;1, ds2,
.., dip) is called the symbolic support vector of B;. The matrix M = (d;ij)mxn is called the
symbolic support matriz of By, ..., Bpy,.

Note that there is a one-to-one correspondence between Laurent difference monomials
and their symbolic support vectors, so we will not distinguish these two concepts in case
there is no confusion. The same is true for a set of Laurent difference monomials and its
symbolic support matrix.

Definition 3.16 A matric M = (dij)mxn over Q(x) is called normal upper-triangular of
rank r if for each i <7, dij #0 and d;;—, = 0(1 < k <1i—1), and the last m —r rows are
zero vectors.

A normal upper-triangular matrix is of the following form:

ajp ok
0 ax
0 0 e G *
0 0 - 0 0
0 0 <o 0 0
Definition 3.17 A set of Laurent difference monomials Bi, Bs, ..., B, is said to be in r-

upper-triangular form if its symbolic support matric M is a normal upper triangular matriz
of rank r.

The following lemma shows that it is easy to compute the difference transcendence degree
of a set of Laurent difference monomials in upper-triangular form.

Lemma 3.18 Let By, ..., B,, be a set of Laurent difference monomials in r-upper-triangular
form. Then Atr.degQ(Bi,...,Bn)/Q=r.

Proof: From the structure of the symbolic support matrix, fori = 1,...,r, B; = H?:Z I k>0(y§k))diik

with ord(B;,y;) > 0 and By41 =+ = By, = 1. Let B; = [[}_; szo(yﬁ('k))dijk' Then
Atr.degQ(By,. .., Bnm)/Q
= Atr.degQ(By,...,B,)/Q
> Atr.degQ(Yri1y -, Yn)(Biy- -y Br) /QWrs1, -+, Yn)
(

= Atr.degQ(Bj,...,B.)/Q.

So it suffices to prove Atr.degQ(By,...,B.)/Q =r.
If r = 1, B} is a nonconstant Laurent difference monomial in y;, so Atr.deg Q(B])/Q = 1.

Suppose we have proved for the case r — 1. Let B! = H;;Zl szo(y](-k))dijk, then by the

12



hypothesis, Atr.deg Q(BY,...,B" ,)/Q = — 1. Thus,

r > AtrdegQ(By,...,B;)/Q
= AtrdegQ(BL)/Q + AtrdegQ(B), .., BL)/Q(B!)
> 1+ Atr.degQ(ye)(Br,- -, Br_1)/Qyr)
= 1+ Atr.degQ(BY,...,B_)/Q=r.
So Atr.degQ(B1,...,Bn)/Q=r. O

In the following, we will show that each set of Laurent difference monomials can be
transformed to an upper-triangular set with the same difference transcendence degree. Here
we use three types of elementary matrix transformations. For a matrix M over Q[z], Type
1 operations consist of interchanging two rows of M, say the i-th and j-th rows, denoted by
r[i, j]; Type 2 operations consist of adding an f(z)-multiple of the j-th row to the i-th row,
where f(z) € Q[z], denoted by [i + j(f(x))]; and Type 3 operations consist of interchanging
two columns, say the i-th and j-th columns, denoted by c[i, j|. In this section, by elementary
transformations, we mean the above three types of transformations.

Let By,..., B, be Laurent differential monomials and M their symbolic support matrix.
Then the above three types of elementary transformations of M correspond to certain trans-
formations of the difference monomials. Indeed, interchanging the i-th and the j-th rows of
M means interchanging B; and B;, and interchanging the i-th and the j-th columns of M
means interchanging y; and y; in By,. .., By, (or in the variable order). Multiplying the i-th
row of M by a polynomial f(z) = agz? + ag_12% 1 +--- + ap € Q[r] and adding the result
to the j-th row means changing B; to Hizo(akBi)“kBj.

Lemma 3.19 Let By,...,B,, be Laurent difference monomials and Cy,...,C,, obtained
by successive elementary transformations defined above. Then Atr.degQ(By,...,Bn)/Q

= Atr.degQ(CYy, ...,Cp)/Q.

Proof: 1t suffices to show that Type 2 operations keep the difference transcendence degree.
That is, for Y%, a;z? € Q[z], Atr.degQ(By, B2)/Q = Atr.deg Q(By, [[{_o (0" B1)* By)/Q.
Suppose a; = p;/q where p;,q € Z*. Then, clearly, Atr.degQ(B;)/Q = Atr.deg@(ngzo
(0% By)P%) /Q. Thus, Atr.deg Q(By, [14_y (0" B1)™ Bs)/Q = Atr.deg Q( [[{_o(c* B1)Px, [T4_,
(0% B1)P* BY) /Q = Atr.deg Q([T4_o (0% B1)P*, BY)/Q = Atr.deg Q(By, Bz)/Q. O

Theorem 3.20 Let By,...,B,, be a set of Laurent difference monomials with symbolic sup-
port matrix M. Then Atr.degQ(By, ..., By)/Q =1k(M).

Proof: By Lemma [BI8 and Lemma [B.19] it suffices to show that M can be reduced to a
normal upper-triangular matrix by performing a series of elementary transformations.
Suppose M = (d;;j) # Omxn and we denote the new matrix obtained after performing
elementary transformations also by M. Firstly, perform Type 1 and Type 3 operations when
necessary to make dj; # 0. Secondly, try to use dj;(z) to reduce other elements in the first
column to 0 by performing Type 2 operations. If there exists an element in the first column
such that it can not be divisible by dy1, say dg1, suppose dg1(x) = di1(z)q(x) + r(x) where
r(x) # 0 and deg(r(z)) < deg(dy1(x)). After performing the transformations [k + 1(—g(x))]
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and r[1, k] successively, we obtain a new matrix in which the degree of dy; strictly decreases.
Repeat this process when necessary, then after a finite number of steps, we obtain a new
matrix M such that di;(z) divides each nonzero element in the first column, and by using
dy1(z) to perform Type 2 operations we obtain

d11 *
M = .
(6" 3 )
Now we repeat the above process for M7 and whenever Type 3 operations are performed for
M, we assume the same transformations are performed for the whole matrix M. In this
way, after a finite number of steps, we obtain a normal upper-triangular matrix M. O
Example 3.21 Let By = y1y2 and By = yga)yéb). Then the symbolic support matriz of By

11 1 ifa=b

and By is M = < a b ) Then rk(M) = { 5 ifa+b Thus, by Theorem [F20, if

x
a # b, By and By are transformally independent over Q. Otherwise, they are transformally
dependent over Q.

Consider the set of generic Laurent difference polynomials defined in ():

l;
Py = wio Mo + Zuszzk (i=1,...,m).
k=1

Let B;; be the symbolic support vector of M;,/M;y. Then the vector w; = 22:0 Wik Bk 18

called the symbolic support vector of P; and the matrix Mp whose rows are wy, ..., w, is
called the symbolic support matrixz of Pgy,...,P,. In terms of Mp, we have the following
result.

Theorem 3.22 Follow the above notations. Then the following three conditions are equiv-
alent.

1. Py,...,P, form a Laurent transformally essential system.

2. There exist My, (i = 0,...,n) with 1 < k; <1; such that the symbolic support matriz
of Mok, /Moo, - .., Mpg,, /Mo is of rank n.

3. The rank of Mp is equal to n.

Proof: The equivalence of 1) and 2) is a direct consequence of Theorem and Def-
inition 3.4l And the equivalence of 2) and 3) follows from the fact that det(Mp;) =

zko,...,k}...,kn H;L:o,#i wjk,; det((Bokg - - - ,B;ki, ey Bar,)T), where M ; is the matrix obtained
by deleting the (i 4 1)-th row from M. O

We will end this section by introducing a new concept, namely supper-essential systems,
through which one can identify certain IP; such that their coefficients will not occur in the
sparse difference resultant. This will lead to the simplification in the computation of the
resultant. Let T C {0,1,...,n}. We denote by Py the Laurent difference polynomial set
consisting of P; (i € T), and Mp, its symbolic support matrix. For a subset T C {0,1,...,n},
if card(T) = rk(Mp,), then P, or {A4; : ¢ € T}, is called a transformally independent set.

14



Definition 3.23 Let T C {0,1,...,n}. Then we call T or Py supper-essential if the follow-
ing conditions hold: (1) card(T) — rk(Mp;) = 1 and (2) card(J) = rk(Mp,) for each proper
subset J of T.

Note that supper-essential systems are the difference analogue of essential systems intro-
duced in [27] and also that of rank essential systems introduced in [23] . Using this definition,
we have the following property, which is similar to Corollary 1.1 in [27].

Theorem 3.24 If {Py,...,P,} is a Laurent transformally essential system, then for any
T c {0,1,...,n}, card(T) — rk(Mp,) < 1 and there exists a unique T which is supper-
essential. In this case, the sparse difference resultant of Po,...,P, involves only the coeffi-

cients of P; (1 € T).

Proof: Since n = rk(Mp) < rk(Mp,)+card(P)—card(Pr) = n+1+1rk(Mp, ) —card(T), we have
card(T) —rk(Mp,) < 1. Since card(T)—rk(Mp,) > 0, for any T, either card(T) —rk(Mp,) = 0
or card(T)—rk(Mp,) = 1. From this fact, it is easy to show the existence of a supper-essential
set T. For the uniqueness, we assume that there exist two subsets T1, Ty C {1,...,m} which
are supper-essential. Then, we have

rk(MPTluTz) < rk(Mqul) + rk(MPTQ) - rk(MPTlmrz)
= card(Ty) — 1 + card(Ts) — 1 — card(Ty N Ty)
= card(T; UTy) — 2,

which means that Mp is not of full rank, a contradiction.

Let T be a supper-essential set. Similar to the proof of Theorem [3.6] it is easy to show
that [P;);eTNQ{u; }ier is of codimension one, which means that the sparse difference resultant
of Py, ...,P, involves only of coefficients of P; (i € T). O

Using this property, one can determine which polynomial is needed for computing the
sparse difference resultant, which will eventually reduce the computation complexity.

Example 3.25 Continue from Ezample [312. It is easy to show that P = {Py, Py, Py} is
a Laurent transformally essential system and Py, Py constitute a supper-essential system.
Recall that the sparse difference resultant of P is free from the coefficients of Ps.

4 Basic properties of sparse difference resultant

In this section, we will prove some basic properties for the sparse difference resultant R(ug,
coyUy).

4.1 Necessary condition for existence of nonzero solutions

In this section, we will first give a condition for a system of Laurent difference polynomials to
have nonzero solutions in terms of sparse difference resultant, and then study the structures
of nonzero solutions.

To be more precise, we first introduce some notations. Let Ay, ..., .4, be a Laurent trans-
formally essential system of Laurent monomial sets. Each element (Fp,...,F,) € L(Ay) X
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.-+ x L(A,) can be represented by one and only one point (vg,...,v,) € ELTL x ... x ghtl

where v; = (vip, vi1,...,v;;) is the coefficient vector of F; and & is some difference field
extension of Q (€ is not fixed but depends on the set F;). Let Zy(Ao,...,A,) be a set con-
sisting of points (v, ..., Vvy,) such that the corresponding F; = 0(i = 0,...,n) have nonzero

solutions. That is,

Z()(.AQ,...,.An):{(Vo,...,Vn)ZFQZ"': n:Ohave

a common nonzero solution}. (5)

The following result shows that the vanishing of sparse differential resultant gives a necessary
condition for the existence of nonzero solutions.

Lemma 4.1 Zy(Ag,...,A,) C V(RGSAO,...,An)-

Proof: Let Py,...,P, be a generic Laurent transformally essential system corresponding to
Ay, . .., An with coefficient vectors uy, . .., u,. By DefinitionB.8] Res4,,...4, € [Po,P1,...,Py]
NQ{wo, ..., u,}. For any point (vo,...,vn) € Zo(Ao,...,An), let (Po,...,Pp) € L(Ag) X
-+ x L(A;,) be the difference polynomial system represented by (vg,...,vy). Since Py, ..., P,
have a nonzero common solution, Res 4, .. 4, vanishes at (vo,...,Vvy). O

Example 4.2 Continue from Example [311. Suppose F = Q(z) and of(x) = f(z + 1).
In this example, we have Resp,p, p, # 0. But y1 = 0,y = 0 consist of a zero solution of
Py =Py =Py = 0. This shows that Lemma [{.1] is not correct if we do not consider nonzero
solutions. This example also shows why we meed to consider monzero difference solutions,
or equivalently why we consider Laurent difference polynomials instead of usual difference
polynomials.

Remark 4.3 If Problem can be solved positively, then R = 0 also gives a sufficient
condition for Py =--- =P, =0 to have a nonzero solution in certain sense.

The following lemma reflects the structures of the nonzero solutions.

Lemma 4.4 Let Ay,..., A, be a Laurent transformally essential system and R = Res 4,,... A,, -
Then there exists some T such that deg(R, urq) > 0. Suppose P; = 0 is a system represented
by (vo,...,vn) € Zo(Ao,...,An) and aiffo(vo,...,vn) # 0. If & is a common nonzero
difference solution of P; = 0(i = 0,...,n), then for each k, we have
M(§) _ OR IR
= e, e V). 6
MTO(&) aurk (VO Vn) aUTO (VO Vn) ( )

Proof: Since Z = [N(Pp),...,N(P,)] : m is a reflexive prime difference ideal and R € Z,
there exists some 7 and k such that deg(R,u,t) > 0. By Lemma L8] deg(R,u-9) > 0.
Denote N(P;) = M;P; (i = 0,...,n). For each j = 1,...,lp, by equation (@) with k& = 0,
the polynomial (f)au—lj”oMTMTj — R N M,y € Z. Thus, if £ is a common nonzero difference

8u.,j
solution of P; = 0, then 8‘11}0 (Vos .-y Vi) - Mo (€) — gu—l}j(vo,...,vn)MTo(g) — 0. Since
aﬁulj.o (V07 s 7Vn) 7é 0, (H) follows. 0
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4.2 Sparse difference resultant is transformally homogeneous

We now introduce the concept of transformally homogeneous polynomials.

Definition 4.5 A difference polynomial f € F{yo,...,yn} is called transformally homoge-
neous if for a new difference indeterminate A, there exists a difference monomial M (X) in A
such that f(Ayo, ..., Ayn) = M(N)p(yo, - .-, yn). If deg(M (X)) =m, f is called transformally
homogeneous of degree m.

The difference analogue of Euler’s theorem related to homogeneous polynomials is valid.

Lemma 4.6 f € F{yo,y1,...,Yn} s transformally homogeneous if and only if for each
r € Ny, there exists m, € Ny such that

~ ) 0f (Yo, Un

ny )2/ (o 6] ) =mrf.

i=0 dy;

Proof: “=" Denote Y = (yo,...,yn) temporarily. Suppose f is transformally homoge-
neous. That is, there exists a difference monomial M(\) = [[/2,(A"))™ such that f(\Y) =

n r n i (r)
MO)F(Y). Then STyl 25 () = SiLg 25 0W) 250 = G = S =

15 f(AY). Substitute A = 1 into the above equahty, we have Y " yzm a(fr) =m,f.

J
“e=" Suppose ord(f, Y) = . Then for each r < 79, A(") 8g>(j\})() =3 yl(r) 5y (\Y) =

Z?:o(/\yi)(r) Pag (AY) = m, f(AY). So f(\Y) is homogeneous of degree m, in A" ). Thus,

FOY) = FO0r -+ Ay A SO A Ay lro) NGy frody — Tre (AM)yme £ ().
Thus, f is transformally homogeneous. O

Sparse difference resultants have the following property.

Theorem 4.7 The sparse difference resultant is transformally homogeneous in each u; which
is the coefficient set of P;.

Proof: Suppose ord(R,u;) = h; > 0. Follow the notations used in Theorem By

Lemma 3.9 R(u;{p,...,¢,) = 0. Differentiating this identity w.r.t. ugf) (j =1,....L)

respectively, we have

OR  OR  Mi(n)\ k)
OREFNOI. )

ou,; ; Ouy Mio(n)

v

=0. (7)

In the above equations, S (k) (k=0,...,h;;5 =0,...,1;) are obtained by replacing u;y by

iy

G (i=0,1,...,n) in each 681();) respectively.
ij
Multiplying (7)) by u( ) and for j from 1 to l;, adding them together, we get zj 1 Zf) 88%) +
S (k) C *) — 0. Thus, the difference polynomial fj, = Z;":O ugf) ai%) vanishes at ({p,...,(n)-
ij
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Since ord(fx,uin) < ord(R,u;) and deg(fx) = deg(R), by Lemma [B.9, there exists an
my € Z such that fr = miR. Thus, by Lemma [£.6] R is transformally homogeneous in u;.
O

4.3 Order bound in terms of Jacobi number

In this section, we will give an order bound for the sparse difference resultant in terms of
the Jacobi number of the given system similar to the differential case.

Consider a generic Laurent transformally essential system {Py,...,P,} defined in (1)
with w; = (w0, w1, . . ., u,) being the coefficient vector of P; (i = 0,...,n). Suppose R is the
sparse difference resultant of Py, ...,[P,. Denote ord(R,u;) to be the maximal order of R

in u, (k=0,...,1;), that is, ord(R, u;) = maxiord(R, u;). If u; does not occur in R, then
set ord(R,u;) = —oco. Firstly, we have the following result.

Lemma 4.8 For fized i and s, if there exists ko such that deg(R, ’U,EZ())) > 0, then for all

ke {0,1,...,1;}, deg(R, uf,‘?) > 0. In particular, if ord(R,u;) = h; > 0, then ord(R, u;) =
hi(k=0,....1;).

Proof: Firstly, for each k € {1,...,[;}, by differentiating R(u;{p,...,(,) = 0 w.r.t. ul(.z),

My, (s) _ _ R
we have 8 ) ( €0y -5 Cn) + o ES)( ,Co,...,Cn)(— ﬁg";) = 0. If kp = 0, then ﬁ is a
NoNZero dlfference polynomial not vanishing at (u, (p,...,(,) by lemma 39 So (s) # 0.

Thus, deg(R,uZ(.Z)) > 0 for each k. If ky # 0, then W( u,Co,-..,Cn) # 0 and 82) #0

zk

follows. So by the case kg = 0, for all k, deg(R, UEZ)) > 0.0
In particular, if ord(R,u;) = h; > 0, then there exists some kg such that deg(R, UZ(ZS)) >
0. Thus, for each k =0,...,[;, deg(R, ’U,EZZ)) > 0 and ord(R, u;;) = h; follows. O
Let A = (a;;) be an n x n matrix where a;; is an integer or —oco. A diagonal sum of A
IS any sum ai4(1) + ags(2) +*** + Apo(n) With o a permutation of 1,...,n. If Aisan m xn

matrix with M = min{m,n}, then a diagonal sum of A is a diagonal sum of any M x M
submatrix of A. The Jacobi number of a matrix A is the maximal diagonal sum of A, denoted

by Jac(A).
Let ord(N(P;),y;) = si5 (1 = 0,...,n;5 = 1,...,n) and ord(N(IP;)) = s;. We call the
(n+1)xn matrix A = (s;;) the order matrizof Py, ... ,IP,. By A;, we mean the submatrix of A

obtained by deleting the (i+1)-th row from A. We use P to denote the set {N(Py),...,N(P,)}
and by P;, we mean the set P\{N(P;)}. We call J; = Jac(A;) the Jacobi number of the system
IP;, also denoted by Jac(P;). Before giving an order bound for sparse difference resultant in
terms of the Jacobi numbers, we first list several lemmas.

Given a vector Rz = (ko,k1,...,kn) € Z’;O'l, we can obtain a prolongation of P:
n
Rl = | Ny, ®)
i=0
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Let t; = max{so; +ko, s1; +k1,...,5nj+kn}. Then ]P’[?} is contained in Q[u[?},Y[?}], where
u[?} = U?:Oul[-ki] and YIA] = U?Zlyj[»tj].
Denote I/(]P’[?}) to be the number of Y and their transforms appearing effectively in

P, In order to derive a difference relation among u; (¢ =0,...,n) from ]P’[[_ﬂ, a sufficient
condition is

PE) > (@) 4 1. (9)

Note that I/(P[I_ﬂ) < |Y[fa| = > j_1(t; +1). Thus, if |IP>[I_{>]| > yIK] + 1, or equivalently,

ko+ki+-+k,> Zmax(soj + k‘o,Slj —I—k’l,...,Snj —I—k’n) (10)
=1

is satisfied, then so is the inequality ().

Lemma 4.9 Let P be a Laurent transformally essential system and [_(> = (ko,k1,...,kn) €
Z;H(;l a vector satisfying (10). Then ord(R,w;) < k; for each i =0,...,n.

Proof: Denote m[?] to be the set of all monomials in variables Y[?}. Let 7T = (]P’[?}) : m[?}
be an ideal in the polynomial ring Q[Y[I_ﬁ,u[fa]. Denote U = u[?]\ Ui, uyéﬂ. Let ¢ =
— (b i My /Mig)® for i = 0,1,...,n;0 = 0,1,..., k. Denote ¢ = (U, Cokgs-- - 00 - - »
Cnkns - - -5 Cno). It is easy to show that (Y[fa, () is a generic point of Z. Let Zy =ZN Q[u[?]].
Then Z; is a prime ideal with a generic point ¢. Since Q(¢) C @(Y[?], U), Codim(Z;) =
U]+ Sl (i + 1) = tr.deg Q(C)/Q 2 [7]+ [PFT| — tr.deg Q¥R 1) /@ = PR - jw(R]| > 1.
Thus, Z; # {0}. Suppose f is a nonzero polynomial in Z;. Clearly, ord(f,u;) < k; and
f € P :mnNQ{uy,...,u,}. By Lemma B9 and Lemma g ord(R,w;) < ord(f,u;) < k;.

O

Lemma 4.10 [23, Lemma 5.6] Let P be a system with J; > 0 for each i = 0,...,n. Then
ki =Ji(i=0,...,n) satisfy (I0) in the equality case.

Corollary 4.11 Let P be a Laurent transformally essential system and J; > 0 for each
i=0,...,n. Then ord(R,w;) < J; (i =0,...,n).
Proof: 1t is a direct consequence of Lemma and Lemma .10l O

The above corollary shows that when all the Jacobi numbers are not less that 0, then
Jacobi numbers are order bounds for the sparse difference resultant. In the following, we deal
with the remaining case when some J; = —oo. To this end, two more lemmas are needed.

Lemma 4.12 [6,[20] Let A be an m X n matriz whose entries are 0’s and 1’s. Let Jac(A) =
J <min{m,n}. Then A contains an a X b zero sub-matriz with a +b=m +n — J.
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Lemma 4.13 Let P be a Laurent transformally essential system with the following (n+1)xn

order matrix
e ( A (—00)rxt )

A Ago
where 1+t > n+ 1. Then r+t = n+ 1 and Jac(Az2) > 0. Moreover, when regarded
as difference polynomials in yi,...,yr—1, {Po,...,Pr_1} is a Laurent transformally essential
system.
Proof: The proof is similar to [23, Lemma 5.9]. O

Theorem 4.14 Let P be a Laurent transformally essential system and R the sparse differ-
ence resultant of P. Then

| -0 if J;=—o0,
ord(R, u;) = { hi <Ji if Ji>0.

Proof: Corollary [A11] proves the case when J; > 0 for each 7. Now suppose there exists at
least one ¢ such that J; = —oco. Without loss of generality, we assume J,, = —oco and let
Ap = (sij)o<i<n—1;1<j<n be the order matrix of P;. By Lemma[I2] we can assume that A,

is of the following form
A (—00)rxt >
An = A A 9
< Aa1 Ao

where r +t > n + 1. Then the order matrix of IP is equal to

Anr (—00)rxt )
A= .
< Ao Ao

Since P is Laurent transformally essential, by LemmalL13] v+t = n+1 and Jac(Azz) > 0.
Moreover, considered as difference polynomials in y1,...,y,—1, P = {po,...,pr_1} is Laurent
transformally essential and Ay is its order matrix. Let J; = Jac((A11);). By applying the
above procedure when necessary, we can suppose that J; > 0 for each i = 0,...,r — 1.
Since [P] N Q{uy,...,u,} = [P]NQ{up,...,u,—1}, R is also the sparse difference resultant
of the system P and u,,...,u, will not occur in R. By Corollary BI1l ord(R,u;) < J;.
Since J; = Jac(Ag) + J; > J; for 0 < ¢ < r —1, ord(R,u;) < J; for 0 < i <r —1 and
ord(R,u;) = —o0 for i = r,... n. O

Example 4.15 Let n =2 and P; has the form

1 1
Py = ugo + uO1y1y§ ), P1 = w10 + u11y1, P2 = uio + Ullyé ),

1 -
In this example, the order matriz of P is A = 0 —-oo |. Thus Jy=1,J1 =2,J5 =
—oo 1

—00. And ord(R,ug) =0 < Jy,ord(R,u;) =1 < Jj,ord(R, uz) = —00.

Corollary 4.16 Let P be supper-essential. Then J; > 0 fori=0,...,n and ord(R,u;) < J;.
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Proof: From the proof of Theorem H.I4l if J; = —oo for some i, then P contains a proper
transformally essential subsystem, which contradicts to Theorem .24l Therefore, J; > 0 for
1=0,...,n. O

We conclude this section by giving two improved order bounds based on the Jacobi bound
given in Theorem A.141
For each j € {1,...,n}, let o; = min{k € No| Fis.t. deg(N(P;), y(k)) > 0}. In other words,

0; is the smallest number such that y](-gj) occurs in {N(Pp),...,N(P,)}. Let B = (s;5 — 0;)

=Zj k&
be an (n + 1) x n matrix. We call J; = Jac(B;) the modified Jacobi number of the system

;. Denote v = Z?:l o0;. Clearly, J; = J; — 7. Then we have the following result.

Theorem 4.17 Let P be a Laurent transformally essential system and R the sparse differ-
ence resultant of P. Then

I e’e if  J; = —o0,
ord(R, u;) = { hi <Ji—~ if Ji =2 0.
Proof: The proof is similar to [23, Theorem 5.13]. O

Now, we assume that P is a Laurent transformally essential system which is not supper-
essential. Let R be the sparse difference resultant of P. We will give a better order bound
for R. By Theorem [3.24] P contains a unique supper-essential sub-system Pr. Without loss
of generality, suppose T = {0,...,r} with » < n. Let At be the order matrix of Py and for
i=0,...,7, let (Ar); be the matrix obtained from Ar by deleting the (i 4+ 1)-th row. Note
that (Ar); is an r X n matrix. Then we have the following result.

Theorem 4.18 With the above notations, we have

hi S JaC((A’]I‘)%) 1= 0, ceey Ty

ord(R,ui)Z{_oo i=r+1,... n.

Proof: Similarly to the proof of [23] Theorem 5.16], it can be proved. O

Example 4.19 Continue from Ezample [{.15 In this example, T = {0,1}. Then Ap =

(1) > Thus Jac((Ar)y) = 0,Jac((Ar);) = 1. Andord(R,ug) = 0 = Jac((At)g), ord(R, uy)

1 = Jac((Ar)j), ord(R,ug) = —o0.

5 A single exponential algorithm to compute the sparse dif-
ference resultant

In this section, we give an algorithm to compute the sparse difference resultant for a Laurent
transformally essential system with single exponential complexity. The idea is to estimate
the degree bounds for the resultant and then to use linear algebra to find the coefficients of
the resultant.
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5.1 Degree bound for sparse difference resultant

In this section, we give an upper bound for the degree of the sparse difference resultant,
which will be crucial to our algorithm to compute the sparse resultant. Before proposing the
main theorem, we first give some algebraic results which will be needed in the proof.

Lemma 5.1 [23, Theorem 6.2] Let T be a prime ideal in K[zy,...,x,] and Iy = I N
Klxy,...,zk) for any 1 < k <n. Then deg(Zy) < deg(Z).

Lemma 5.2 [28, Corollary 2.28] Let Vi,...,V, C P"(r > 2) be pure dimensional projective

varieties in P™. Then .
[T des(vi) > > deg(C)
=1 C

where C' runs through all irreducible components of ViN---NV,.

Now we are ready to give the main theorem of this section.

Theorem 5.3 Let Py,...,P, be a Laurent transformally essential system of form (1) with
ord(N(PP;)) = s; and deg(N(P;),Y) = m;. Suppose N(P;) = Zk uik Nix and J; is the Jacobi
number of {N(Py),...,N(P,)\{N(P;)}. Denote m = maxz{m,} Let R(uy,...,uy) be the
sparse difference resultant of P; (i =0,...,n). Suppose ord(R,u;) = h; for each i. Then the
following assertions hold:

1) deg(R) < [T1o(mi + 1) < (m + 1)2=0i4D) where m = max;{m;}.

2) R has a representation

H H(N(k))dog(R R = (11)
i=0 k=0 i=0 k=0
where G, € Q[u thol . ,ugl"],Y[h]] and h = max{h;+e;} such that deg(G;N(P;)¥)) <

[m+1+ Zz:O(h + 1)deg(N;o)]deg(R).

Proof: In R, let u;y be replaced by (N(IP’Z-) ZL 1 uszzk)/NZO foreach¢=0,...,nandlet R
be expanded as a difference polynomial in N(IP;) and their transforms. Then there exist a;;, €
N and polynomials Gy, such that [T/, [Tr, (No )a““R S Sk GNP ) T with
T € Q{u, Y} free from u;g. Since T' € T = [N(Pyp),...,N(P,)] : m, T vanishes identically, for
ZNQ{u, Y} = {0} by Theorem 3.6l Thus,

n  h; n  h;
ITIT (v r =33 GaN(e:)®
i=0 k=0 i=0 k=0

1) Let 7 = (N (Pg)lrol ... N(P )[h"}) : m" be an algebraic ideal in R = QY uglo],

. uL "}] where h = max;{h; + s;} and ml"l is the set of all monomials in Y[/l. Then

R € J by the above equality. Let n = (n1,...,7m,) be a generic point of [0] over Q(u)
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and denote (; = — Zk 1 u,kNO ; (1 =0,...,n). It is easy to show that J is a prime ideal
in R with a generlc point (n*; 1, ([)hO},..., ,[Lh”]) and J N Q[u, (o] e, [r?”}] = (R), where
u = Uzu \{u } Let H;; be the homogeneous polynomial corresponding to N(P;)®*)
with zo the variable of homogeneity. Then J° = ((Hik)1<i<nio<k<h;) : I is a prime ideal
in Q[zo, Y, ugm}, e ,ugL”]] where m is the whole set of monomials in Y™ and zy. And
deg(J°) = deg(J).

Since V((Hik)1<i<n:0<k<n;) = V(J°) U V(Hyy,xo) UUNV(HZk,y](l)) V(J°) is an irre-
ducible component of V((Hix)1<i<n:0<k<n;). By Lemmal5.2] deg(J°) < [T, HZ;O(mi—l—l) =
[T o(m; + 1Rt Thus, deg(J) < [Tio(mi + 1) T Since J N Q[u([)ho], Cul = my,
by Lemma 5.1 deg(R) < deg(J) < [[/q(mi + 1)+ < (m + 1)Zi=0/i+D follows. The last

inequality holds because h; < J; by Theorem [£.17]
2) To obtain the degree bounds for the above representation of R, that is, to estimate

deg(GN(P;)®) and a;;,, we take each monomial M in R and substitute wu; by (N(]P’Z-) —
2%21 uikNik) /Nip into M and then expand it. To be more precise, we take one monomial

Ry E)\d s R

M (W0, - ung) = W T TTpg(ug )% with |y| + Y20 Sop dy = deg(R) for an
example, where u” represents a difference monomial in u and their transforms with exponent
vector . Then

M(u;uoo,...,uno)_u"yﬁﬁ(( ZUZkle k)> /HH 10 "

=0 k=0 i=0 k=0

When expanded, every term of [7 Tl (NZ((;C))d““M is of degree bounded by |y| +

Yoo ZZ;O(mZ +1)dir, < (m+1)deg(R) in u[ho] .. ,u%‘"} and Y. Suppose R =3 ,, apy M
and a;; > maxpr{d;r}. Then

HH (NI ang, = ZZGkN

1=0 k= 1=0 k=0

with deg(GiN(P;)®) < (m + 1)deg(R) + 31 Ozk odeg(Nio)a,. Clearly, we can take
a;r, = deg(R) and then deg(GxN(P;)®)) < (m + 1+ 37 (ki + 1)deg(Njp))deg(R). Thus,
(1) follows. O

For a transformally essential difference polynomial system with degree 0 terms, the second
part of Theorem [5.3] can be improved as follows.

Corollary 5.4 Let P; = u;o+ 2%21 wikNik (1 = 0,...,n) be a transformally essential differ-

ence polynomial system with m = max;{deg(P;,Y)} and J; the Jacobi number of {Py, ..., P, }\{P;}.
Let R(uy, . .., uy,) be the sparse difference resultant of P; (i = 0,...,n). Suppose ord(R,u;) =

h; for each i and h = max{h; + s;}. Then R has a representation

n h;
R(UO, ce ,un) = Z Z GZJ]PZ(])

i=0 j=0

where Gi; € Q|u ol .l Y] such that deg(GijIP)Z(j)) < (m41)deg(R) < (m+1)Zi=olit D+,
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Proof: It is direct consequence of Theorem [(5.3] by setting N;o = 1. O

The following result gives an effective difference Nullstellensatz under certain conditions.

Corollary 5.5 Let fo,..., fn € F{y1,...,yn} have no common solutions with deg(f;) < m.
Let Jac({fo,. .-, fn}\{fi}) = Ji. If the sparse difference resultant of fo,..., fn is nonzero,
then there exist Hij € F{y1,...,yn} s.t. >y Z}Iizo Hijfi(]) =1 and deg(Hijfi(])) < (m+
1)Zizo(Jit1)+1

Proof: The hypothesis implies that P(f;) form a transformally essential system. Clearly,
R(ug,...,u,) has the property stated in Corollary B4, where u; are coefficients of P(f;).
The result follows directly from Corollary [5.4] by specializing u; to the coefficients of f;. O

5.2 A single exponential algorithm to compute sparse difference resultant

If a polynomial R is the linear combination of some known polynomials F;(i = 1,...,s), that
is R = >.7 | H;F;, and we know the upper bounds of the degrees of R and H;F;, then a
general idea to estimate the computational complexity of R is to use linear algebra to find
the coefficients of R.

For sparse difference resultant, we already have given its degree bound and the degrees
of the expressions in the linear combination in Theorem [(.3]

Now, we give the algorithm SDResultant to compute sparse difference resultants based
on the linear algebra techniques. The algorithm works adaptively by searching for R with
an order vector (hg,...,h,) € NBLH with h; < J; by Theorem 5.3 Denote o = ) " h;.
We start with o = 0. And for this o, choose one vector (hg,...,h,) at a time. For this
(ho, ..., hy), we search for R from degree d = 1. If we cannot find an R with such a degree,
then we repeat the procedure with degree d+1 until d > [[_,(m; +1)"* 1. In that case, we
choose another (ho,...,hy,) with 3"  h; = o. But if for all (hy,...,h,) with h; < J; and
Yoo hi = o, R cannot be found, then we repeat the procedure with o+ 1. In this way, we
will find an R with the smallest order satisfying equation (L], which is the sparse resultant.

Theorem 5.6 Let Py, ..., [P, be a Laurent transformally essential system of form (1l). De-
note P = {N(PPy),...,N(P,)}, J; = Jac(P;), J = max;J; and m = max_,deg(P;,Y). Algo-
rithm SDResultant computes sparse difference resultant R of Py, ..., P, with the following
complexities:

1) In terms of the degree bound D of R, the algorithm needs at most O(DCU)) (n J)OU))
Q-arithmetic operations, where | =" ((l; + 1) is the size of all P;.

2) The algorithm needs at most O(mP™7*) (n.J)OW)) Q-arithmetic operations.

Proof: The algorithm finds a difference polynomial P in Q{uy,...,u,} satisfying equation
(IID), which has the smallest order and the smallest degree in those with the same order.
Existence for such a difference polynomial is guaranteed by Theorem (5.3l By the definition
of sparse difference resultant, P must be R.

We will estimate the complexity of the algorithm below. Denote D to be the degree
bound of R. By Theorem[5.3] D < (m+ 1)22;0(‘]#1). In each loop of Step 3, the complexity
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Algorithm 1 — SDResultant(Py,...,P,)

Input: A generic Laurent transformally essential system Py, ..., P,.
Output: The sparse difference resultant R(ug, ..., u,) of Py,... ,P,.

1. Fori =0,...,n, set N(P;) = 22:0 w;, Ny with deg(Njo) < deg(Nyg).
Set m; = deg(N(P;)), mio = deg(Nyo), u; = coeff(P;) and |u;| = I; + 1.
Set s4; = ord(N(IP;),;), A = (si;) and compute J; = Jac(4;).

2. Set R =0, 0 =0, m = max;{m,}.

3. While R =0 do
3.1. For each (hg,...,h,) € Ng™! with S°F  hy= o0 and h; < J; do

3.1.1. U = U?:(]ul[-hi}, h = max;{h; +¢;}, d = 1.
3.1.2. While R =0 and d < [} (m; + 1)"*! do
3.1.2.1. Set Ry to be a homogeneous GPol of degree d in U.
3.1.2.2. Set ¢y = coeff(Ryo,U).
3.1.2.3. Set Hi;(i=0,...,n;5 =0,...,h;) to be GPols of degree
[m+ 1437 o (hi + D)migld —m; — 1 in YL U,
3.1.2.4. Set c;; = coeff(H;;, YM U UT).
3.1.2.5. Set P to be the set of coefficients of [, HZ;O(NZ%C))CJRO—
Yoo Z?i:() H;;(N(P;))) as a polynomial in Y U.
3.1.2.6. Solve the linear equation P = 0 in variables ¢y and c;;.
3.1.2.7. If ¢y has a nonzero solution, then substitute it into Ry to
get R and go to Step 4, else R = 0.
3.1.2.8. d:=d+1.
3.2. o:=o+1.
4. Return R.

/*/ GPol stands for generic algebraic polynomial.

/*/ coeftf(P, V') returns the set of coefficients of P as an ordinary polynomial in variables V.

of the algorithm is clearly dominated by Step 3.1.2, where we need to solve a system of linear

equations P = 0 over Q in ¢y and c;;. It is easy to show that |co| = (dzle) and |c;;| =

(dl—mz;;t,fjl’;(h“)), where L= Y7 (hi + )(li + 1) and dy = [m + 1+ 32" (hi + 1)mao]d.

Then P = 0 is a linear equation system with N = (“TL71) 4+ 570" (h;+1) (dl_m;rlnzf:{;(hﬂ))

variables and M = (dlzrf:(’;ﬁfil)) equations. To solve it, we need at most (max{M, N})*
arithmetic operations over Q, where w is the matrix multiplication exponent and the cur-
rently best known w is 2.376.

The iteration in Step 3.1.2 may go through 1 to [[}q(m; + 1)MF1 < (m + 1)Zi=o(Jit1)]
and the iteration in Step 3.1 at most will repeat [ (J; +1) < (n+1)(J + 1) times, where
J = max;J;. And by Theorem [5.3] Step 3 may loop from o =0 to Y ((J; +1). The whole
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algorithm needs at most

?:O(Ji-i-l) H?:o(mi‘f‘l)hi+1
DY S (max{M, N}
0=0 h;<J; d=1
> hij=o

< O(DO(IJ)(nJ)O(lJ)) < O(mO(nlJz)(nJ)O(lJ))

arithmetic operations over Q. In the above inequalities, we assume that (m_|_1)ZEL:o(J it1)+1
I(n+1)J and | > (n+ 1)?, where | = Y. ,(l; + 1). Our complexity assumes an O(1
complexity cost for all field operations over Q. Thus, the complexity follows.

v

~—

O

Remark 5.7 As we indicated at the end of Section 3.3, if we first compute the suuper-
essential set T, then the algorithm can be improved by only considering the Laurent difference
polynomials P; (i € T) in the linear combination of the sparse resultant.

Remark 5.8 Algorithm SDResultant can be improved by using a better search strategy. If
d is not big enough, instead of checking d+ 1, we can check 2d. Repeating this procedure, we
may find a k such that 28 < deg(R) < 2F+1. We then bisecting the interval [2F, 281 again
to find the proper degree for R. This will lead to a better complexity, which is still single
exponential.

For difference polynomials with non-vanishing degree terms, a better degree bound is
given in Corollary 5.4l Based on this bound, we can simplify the Algorithm SDResultant
to compute the sparse difference resultant by removing the computation for N(P;) and N
in the first step where Njg is exactly equal to 1.

Theorem 5.9 Algorithm SDResultant computes sparse difference resultants for a trans-
formally essential system of the form P; = ui0+2§§:1 w;r N;p with at most O(n3-37ﬁjo(n)m0(nlﬂ))
Q-arithmetic operations.

Proof: Follow the proof process of Theorem [5.6] it can be shown that the complexity is
O(n3.376JO(n)mO(nlJ2))_ 0

6 Difference resultant

In this section, we introduce the notion of difference resultant and prove its basic properties.

Definition 6.1 Let my, be the set of all difference monomials in'Y of order < s and degree
<r. Let u = {uyp}rmem,, be a set of difference indeterminates over Q. Then,

P= Z upy M

Mems,r

is called a generic difference polynomial of order s and degree r.
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Throughout this section, a generic difference polynomial is assumed to be of degree
greater than zero. Let

P; = uio + > Ui (YD (i =0,1,...,n) (12)

n(s;+1)
a € Ly

1< |a] < m;

be generic Laurent difference polynomials of order s;, degree m;, and coefficients u; respec-
tively. Since {1,y1,...,yn} is contained in the support of each P;, clearly, they form a
supper-essential system and the sparse difference resultant Resp, . p, (uo,...,u,) exists. We
define Resp, . p,(uo,...,u,) to be the difference resultant of Py, ..., P,. That is,

Definition 6.2 LetP; (i =0,1,...,n) be a generic difference polynomial system of the form
(I2). Then the difference resultant R(uy,...,u,) of Po,...,P, is defined as the irreducible
difference polynomial contained in [Py, ..., P, NQ{uy,...,u,} of minimal order in each wu;,
which is unique up to a factor in Q.

Difference resultants hold all the properties we have proved for sparse difference resultants
in previous sections. Apart from these, in the following, we will show difference resultants
possess other better properties. Firstly, we will give the precise degree for the difference
resultant, which is of BKK-type [I},[7]. Before doing so, we need some results about algebraic
sparse resultants.

Let K[X] = K[z1,...,z,] be the polynomial ring defined over a field K. For any vector
a = (ai,...,a,) € Z", denote the Laurent monomial ' z5? - - - x%" by X*. Let By, ..., B, C
Z"™ be subsets which jointly span the affine lattice Z™. Suppose 0 = (0,...,0) € B; for each
iand |B;] =1; +1 > 2. Let

Fi(x1,....an) =co+ Y, €aX*(i=0,1,...,n) (13)
aeB;\{0}

be generic sparse Laurent polynomials defined w.r.t B; (i =0,1,...,n). B; or {X*: «a € B;}
are called the support of F;. Denote ¢; = (¢in)aen, and ¢ = U;(c;\{cio}). Let Q; be the
convex hull of B; in R™, which is the smallest convex set containing B;. Q; is also called the
Newton polytope of F;, denoted by NP(F;). In [27], Sturmfels gave the definition of algebraic
essential set and proved that a necessary and sufficient condition for the existence of sparse
resultant is that there exists a unique subset {B;};c 1 which is essential. Now, we restate the
definition of essential sets in our words for the sake of later use.

Definition 6.3 Follow the notations introduced above.

o A collection of {B;}ic 7, or {F;}icy of the form (13), is said to be algebraically inde-
pendent if tr.degQ(c)(F; —cio : i € J)/Q(c) = |J|. Otherwise, they are said to be
algebraically dependent.

o A collection of {B;}ic 1 is said to be essential if {B;}icy is algebraically dependent and
for each proper subset J of I, {B;}ic j are algebraically independent.
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In the case that {By,...,B,} is essential, the degree of the sparse resultant can be
described by mixed volumes.

Theorem 6.4 ([27]) Suppose that {By,...,B,} is essential. For each i € {0,1,...,n}, the
degree of the sparse resultant in c; is a positive integer, equal to the mixed volume

M(Qo, -+, Qi1, Qig1s- -, Q) = > ()" Mol(> Q)

Jc{0,...i—1i+1,...n} jed

where vol(Q) means the n-dimensional volume of @ C R™ and Q1+ Qo means the Minkowski
sum of Q1 and Qo.

Now, we give the first main result of this section.

Theorem 6.5 Let P; (i = 0,...,n) be generic difference polynomials in Y = {y1,...,yn}
with order s;, degree m;, and coefficients u; respectively. Let R(uy,...,u,) be the difference
resultant of Py, ... ,P,. Denote s =Y " s;. Then R(uy,...,u,) is also the algebraic sparse
resultant of ]Pgs_so],...,]P’Lf_s”] as polynomials in Y, and for each i € {0,1,...,n} and
k=0,...,8—s,

ord(R,u;) =s—s; (14)
deg(R, u™) = M((Qj1)ji0ci<s—s;s Qios -+ Qik—1y Qigitre s Qiss;)  (15)

where Qj; is the Newton polytope of IPg-l) as a polynomial in Y and ugk) = {ugi), Uin € U;}.
Proof: Regard ]P’Z(k) (1=0,...,nk=0,...,s —s;) as polynomials in the n(s + 1) variables
Yl = {y, ... ,yn,yil), e ,yg), e ,y%s), ...,ygf)}, and we denote its support by B;;. Since

)

the coefficients of ng) can be treated as algebraic indeterminates, ng
polynomials with supports B;, respectively. Now we claim that:

Cl) B={Bix:0<i<n;0<k<s—s;} is an essential set.

C2) B={B;j;,:0<i<n;0<k<s—s;} jointly spans the affine lattice Zn(s+1)

Note that [B] = n(s + 1) + 1. To prove C1), it suffices to show that any n(s + 1) of

distinct ]P’Z(k) are algebraically independent. Without loss of generality, we prove that for a
fixed [ € {0,...,s — so},

are generic sparse

S) = {(ng))lgign;ogkgs—si, Po, ... 7P((]l_1), P(()IH), e ,P(()s_so)}

is an algebraically independent set. Clearly, {y](-k), . ,y](.SiJrk) | j=1,...,n} is a subset of the

(k)

support of P;”". Now we choose a monomial from each ]P’Z(k) and denote it by m(]P’Z(k)). Let

(k) <k<l— R o<k <
m(]P’ék)): y%s +k) Oshksi-l and m(]P’gk)): y%s +k) = ks so
T l+1<k<s—sg Yo ' so+1<k<s—s;
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For each i € {2,...,n}, let

e [ nsksvis
’ yz(j-ll—i_k) Z] 08j+1<k<S—SZ

So m(S;) is equal to {yj[.s] : 1 < j < n}, which are algebraically independent over Q.
Thus, the n(s + 1) members of S; are algebraically independent over Q. For if not, all the
]P’Z(k) —uglg) (IP’Z(-k) € 5)) are algebraically dependent over Q(v) where v = U?"_ju, [ssi) \{u o S’]}

Now specialize the coefficient of m(PEk)) in ng) to 1, and all the other coefficients of IP)Z( )— Eg )

to 0, by the algebraic version of Lemma(2.2] {m(]P’Ek)) : ]P’Z(-k) € S;} are algebraically dependent
over Q, which is a contradiction. Thus, claim C1) is proved. Claim C2) follows from the fact

that 1 and Y[ are contained in the support of ]P’[Os_so].
By C1) and C2), the sparse resultant of (]P’Z(k))0<l<n 0<k<s—s; €xists and we denote it
by G. Then (G) = ((P{)ociznozrzs—s;) N Quui ™, uf ™), and by Theorem 62

deg(G, uE’“)) = M((Qj1)ji0<i<s—s5;5 Qi0s - - - » Lisk—1, Diskt1, - - - i s—s; ), Where uﬁ’“) = (U§§)7
.. ,ul(-];), ...). The theorem will be proved if we can show that G = ¢ - R for some ¢ € Q.
Since G € [Py, ...,P,] and ord(G, u;) = s—s;, by LemmaB.9 ord(R, u;) < s—s; for each
i=0,...,n. Iffor somei, ord(R,u;) = h; < s—s;, then R € ((ng))jyéi;OSkSS—Sjy]P)iy - ,]P’Z(hi)),
a contradiction to C1). Thus, ord(R,u;) = s —s; and R € (G). Since R is irreducible, there
exists some ¢ € Q such that G = ¢- R. So R is equal to the algebraic sparse resultant of

pEol Pl 0

As a direct consequence of the above theorem and the determinant representation for
algebraic sparse resultant given by D’Andrea [8], we have the following result.

Corollary 6.6 The difference resultant for generic difference polynomials P;,i = 0,...,n
can be written as the form det(M)/ det(My) where My and My are matrizes whose elements
are coefficients of P; and their transforms up to the order s — s; and My is a minor of M.

Based on the matrix representation given in the above corollary, the single exponential
algorithms given by Canny, Emiris, and Pan [11} [12] an be used to compute the difference
resultant.

Remark 6.7 From the proof of Theorem[6.3, we can see that for each i and 0 < k < s—s;,
deg(R, ugk)) > 0. Furthermore, by Lemma [{.8, deg(R, ugg)) > 0 and deg(R, uz(a)) > 0 for
each . In particular, deg(R, u0) > 0 and deg(R, uiq) > 0.

Now, we proceed to give a Poisson-type product formula for difference resultant. Let
a = U qu; \ {ugo} and Q(ur) be the transformally transcendental extension of Q in the usual
sense. Let Qg = Q(u) (ugo, - - u((]% s~ 1)) Here, Qg is not necessarily a difference overfield of
Q, for the transforms of ugg are not defined. In the following, we will follow Cohn [4] to obtain
algebraic extensions G; of @y and define transforming Operators to make gl difference fields.

Consider R as an irreducible algebraic polynomial r(u((]% s0) ) in Qg [u((]% s0) |. In a suitable
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algebraic extension field of Q, r(u(()so_so)) = 0 has ty = deg(r, u(()s_so)) = deg(R, ués_so)) roots
Yis.os Vo Thus

to
R(ugp,uy,...,u,) =4 H(u(()%_so) — ) (16)
T=1

where A € Qg. Let Z, = [Po,...,P,] N Q{uy,...,u,}. Then by Definition 62, Z, is an
essential reflexive prime difference ideal in the decomposition of {R} which is not held by
any difference polynomial of order less than s — sy in ugg. Suppose R, R, Ro, ... is a basic
Sequenc of R corresponding to Z,. That is, Zy, = [J,>oasat(R,R1,...,Ry). Regard all
the R, as algebraic polynomials over the coefficient field Q(1). Denote 7,9 = ~,. Clearly,

u(()%_so) = 770 is a generic point of asat(R). Suppose 7v,; (i < k) are found in some al-

gebraic extension field of Qg such that u((]%_sﬁi) = 7 (0 < i < k) is a generic point of

asat(R,Rq,...,Ry). Then let v, 41 be an element such that u((]%_s()“) =7 (0<i<k+1)
is a generic point of asat(R,R1,..., Ry, Ry41). Clearly, v, 541 is also algebraic over Qq. Let
G, = Q(u)(uqo, - - - ,u(()%_so_l), YrsYris---). Clearly, G, is an algebraic extension of Qp and G,
is algebraically isomorphic to the quotient field of Q{uy, ..., u,}/Zy,. Since the quotient field
of Q{uy,...,u,}/Zy is also a difference field, we can introduce a transforming operator o
into G, to make it a difference field such that the above isomorphism becomes a difference

one. That is, o,|g, = o|g, and

(k) — g —
0-71?(“00) _ ) uy 0<k<s—sy—1
Vr,k—s—s0 k>s—so
In this way, (Gr,o0,) is a difference field.
Let F be a difference polynomial in Q{ug,uy,...,u,} = Q{u,ug}. For convenience,
by the symbol F‘uéff“’o):%’ we mean substituting ué%_so-i-k) by 0¥y, = v, (k > 0) into F.

(s

Similarly, by saying F' vanishes at uoo_so)

= 7,, We mean F‘uf)f)’SO):»yT = 0. The following

lemma. is a direct consequence of the above discussion.

Lemma 6.8 F € Z,, if and only if F' vanishes at u((]%_so) =Yr.
Proof: Since Zy = U;>pasat(R,Rq, ..., Ry) and ué%_SOH) = 7. (0 < i < k) is a generic
point of asat(R,Ryq,...,Ry), the lemma follows. O

Remark 6.9 In order to make G, a difference field, we need to introduce a transform-
ing operator o, which is closely related to ;. Since even for a fized T, generic points of
asat(R, Ry, ..., Ry) beginning from u(()%—so) = ~, may not be unique, the definition of o, also
may not be unique, which is different from the differential case. In fact, it is a common
phenomena in difference algebra. Here, we just choose one, for they do not influence the

following discussions.

'For the rigorous definition of basic sequence, please refer to [4]. Here, we list its basic properties: i) For
each k > 0, ord(Rg, uo0) = s — so + k and R,R4,..., Ry is an irreducible algebraic ascending chain, and ii)
Urso asat(R,R1,...,Ry) is a reflexive prime difference ideal.
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Now we give the following Poisson type formula for the difference resultant.

Theorem 6.10 Let R(uy,...,u,) be the difference resultant of Py, ... ,P,. Let deg(R, u(()%_so))
=tg. Then there exist &g (T =1,...,t0;k = 1,...,n) in overfields (G,,o,) of (Q(u), o) such
that

to
R= AHPO(Sle--- 76771)(8_80)7 (17)

=1
where A € Q(uy, ... ,un>[ugs sol ((]f)_so)]. Note that ([17) is formal and should be understood
in the following precise meaning: Po(€r1, . .., Em) %) 2 o5 50ugp+0E7%0(Y " uoa(ér [s— SO}) ),

where & = (§1,- -+, )
Proof: By Theorem H.7] there exists m € N such that

8’&0,1
Setting ué%_so) = v, in both sides of the above equation, we have
OR OR
— + Uga=—— =0.
00 Ougo ‘u(()%so):% Za: O Oupq uégfs‘)):%
Let &ra = (8uoa/8uoo ‘ (S s0) _ =y Then ugy = _Z UpaSra With u(s ) 7. That is,

Yr = _Jf—_SO(Za angTa) = _(Za angTa) 57 80)- ThllS,

R=A4 H ugo + ZUOafm )(ss0)

T=1

Suppose Py = ugo + > 7 uojoy; + To. Let & = (5u030/3UO0 ., (s=s0) _ U =1...,n) and
& = (&1, - &m). It remains to show that & = ( 7[_5()]) )
Let G =—->", (YN (i = 0,...,n). Clearly, ¢ = (u,(p,...,(,) is a generic point of

Zu = [Po, ..., Py )NQ{uy, ... ,un} where u = U, u;\{ujo}. For each (Ylsol) = H;‘Zl(y§k))dfk,

: _ OR R/ oR \ (k) OR__ 0OR
by equatlon (m)7 (Y[SO])OC - aan aUOO H H <(8u0j0 8u00) > ) Where 8u0a - 8u0a U'O:C‘
n  So dip n 80 d;
oR oR (k) "k oR R (k)% _
So Buoe _Hl kHO <(—6uoo) > ~ Duoo Hl kHO ((—3qu0) ) € Zu. By Lemma 6.8 & =
J= = 1= =

H I1 (f(k ) = (S[SO]) Thus, ([I7) follows. 0

Theorem 6.11 The points & = (&1, ,&m) (T = 1,...,t0) in (I7) are generic points of
the difference ideal [Py, ...,P,] C Q(uy,...,u,){Y}.
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Proof: Clearly, 57 are n-tuples over Q(uy,.. un> For each 1 =1,...,n, rewrite P, =

wo+ Swia [T T ). Since & = =S ua [T 10 and 4, = /7 ¢+

« Jj=1k=1 7j=1k=1

Si e . no S .
S Uig, H H ((8250 8%130)( ))%k = 0. Let aj; = maxaoj;. Then uy ]_[1 kl_[ ((aau—%))(k))a”‘ +
« ]= =1

Zuza H

3

Il :]5'“ ||

((8%]0) ))ajk(( OR )(k))agk %k ¢ T, Thus, by Lemma B8, P; (€)= wio +

Augo

TL S;

Zuzan H(& )aﬂk: (i=1,...,n).

On the other hand, suppose F' € Q(uy,...,u,){Y} vanishes at & . Without loss of gen-
erality, suppose F' € Q{uy,...,u,,Y}. Clearly, Py,...,P, constitute an ascending chain
in Q{uy,...,u,, Y} with u;y as leaders. Let G be the difference remainder of F' with re-
spect to this ascending chain. Then G is free from w;p and F = Gmod [Py,...,P,]. Then

G(&) = G(@; &, ..., &) = 0, where 1 = U u;\{uio}. So there exist a; € N such that
G =11, ((8u00)(k))akG(ﬁ; Y) € Zy. Thus, G; vanishes at u;o = (; (¢ = 1,...,n) while aif(){o

does not. It follows that G(@;Y) = 0 and F € [Py,...,P,]. So & are generic points of
[Pl,...,Pn] CQ(ul,...,un>{Y}. O

By Theorem [6.10] and [6.1T] we can see that difference resultants have Poisson-type prod-
uct formula which is similar to their algebraic and differential analogues.

7 Conclusion and problem

In this paper, we first introduce the concepts of Laurent difference polynomials and Lau-
rent transformally essential systems and give a criterion for Laurent transformally essential
systems in terms of their supports. Then the sparse difference resultant for a Laurent trans-
formally essential system is defined and its basic properties are proved. Furthermore, order
and degree bounds for the sparse difference resultant are given. Based on these bounds, an
algorithm to compute the sparse difference resultant is proposed, which is single exponential
in terms of the order, the number of variables, and the size of the Laurent transformally es-
sential system. Besides these, the difference resultant is introduced and its basic properties
are given, such as its precise order, degree, determinant representation and the Poisson-type
product formula.

In the rest of this section, we propose several questions for further study apart form
Problem

It is useful to represent the sparse difference resultant as the quotient of two determinants,
as done in [8 [I1] in the algebraic case. In the difference case, Theorem shows that
difference resultant has such a matrix formula, but for sparse difference resultant, we do not
have such a formula yet. From (II), a natural idea to find a matrix representation is trying
to define the sparse difference resultant as the algebraic sparse resultant of P = {IP’Z(-k) (i =
0,...,n,k=0,...,h;)} considered as Laurent polynomials in yl(J).

The degree of the algebraic sparse resultant is equal to the mixed volume of certain
polytopes generated by the supports of the polynomials [24] or [16l p.255]. A similar degree
bound is given [23 Theorem 1.3] for the differential resultant. And Theorem [6.5] shows that
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the degree of difference resultants is exactly of such BKK-type. We conjecture that sparse
difference resultant has such degree bounds.

There exist very efficient algorithms to compute algebraic sparse resultants [10, 111 12, §],

which are based on matrix representations for the resultant. How to apply the principles
behind these algorithms to compute sparse difference resultants is an important problem.
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