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Abstract

In this paper, the concept of sparse difference resultant for a transformally essential
system of difference polynomials is introduced and its properties are proved. In partic-
ular, order and degree bounds for sparse difference resultant are given. Based on these
bounds, an algorithm to compute the sparse difference resultant is proposed, which is
single exponential in terms of the number of variables, the Jacobi number, and the size
of the transformally essential system. Also, the precise order, degree, a determinant
representation, and a Poisson-type product formula for difference resultants are given.

Keywords. Sparse difference resultant, difference resultant, Laurent transformally es-
sential system, Jacobi number, single exponential algorithm.

1 Introduction

The resultant, which gives conditions for an over-determined system of polynomial equations
to have common solutions, is a basic concept in algebraic geometry and a powerful tool in
elimination theory [3, 7, 9, 17, 18, 26]. The concept of sparse resultant is originated from the
work of Gelfand, Kapranov, and Zelevinsky on generalized hypergeometric functions, where
the central concept of A-discriminant is studied [16]. Kapranov, Sturmfels, and Zelevinsky
introduced the concept of A-resultant [19]. Sturmfels further introduced the general mixed
sparse resultant and gave a single exponential algorithm to compute the sparse resultant
[26, 27]. Canny and Emiris showed that the sparse resultant is a factor of the determinant of
a Macaulay style matrix and gave an efficient algorithm to compute the sparse resultant based
on this matrix representation [11]. A determinant representation for the sparse resultant was
given by D’Andrea [8]. Recently, in [14], a rigorous definition for the differential resultant of
n + 1 generic differential polynomials in n variables was presented [14] and also the theory
of sparse differential resultants for Laurent differentially essential systems was developed
[22, 23]. It is meaningful to generalize the theory of sparse resultant to difference polynomial
systems.

In this paper, the concept of sparse difference resultant for a Laurent transformally
essential system consisting of n + 1 Laurent difference polynomials in n difference variables
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is introduced and its basic properties are proved. In particular, we give order and degree
bounds for the sparse difference resultant. Based on these bounds, we give an algorithm
to compute the sparse difference resultant. The complexity of the algorithm in the worst
case is single exponential of the form O(mO(nlJ2)(nJ)O(lJ)), where n,m, J, and l are the
number of variables, the degree, the Jacobi number, and the size of the Laurent transformally
essential system respectively. Besides these, the difference resultant is introduced and its
basic properties are given, such as its precise order, degree, determinant representation, and
Poisson-type product formula.

Although most properties for sparse difference resultants and difference resultants are
similar to its differential counterpart given in [22, 23, 14], some of them are quite different
in terms of descriptions and proofs. Firstly, the definition for difference resultant is more
subtle than the differential case as illustrated by Problem 3.15 in this paper. Secondly, the
criterion for transformally essential systems given in Section 3.3 is quite different and much
simpler than its differential counterpart given in [23]. Also, a determinant representation for
the difference resultant is given in Section 6, but such a representation is still not known for
differential resultants [30, 25]. Finally, some properties are more difficult in the difference
case. For instance, we can only show that the vanishing of the difference resultant is a
necessary condition for the corresponding difference polynomial system to have a common
nonzero solution. While, the sufficient condition part is still open. Also, there does not exist
a definition for homogeneous difference polynomials, and the definition we give in this paper
is different from its differential counterpart.

The rest of the paper is organized as follows. In Section 2, we prove some preliminary
results. In Section 3, we first introduce the concepts of Laurent difference polynomials and
Laurent transformally essential systems, and then define the sparse difference resultant for
Laurent transformally essential systems. Then basic properties of sparse difference resultant
are proved in Section 4. And in Section 5, we present an algorithm to compute the sparse
difference resultant. Then we introduce the notion of difference resultant and give its basic
properties in section 6. In Section 7, we conclude the paper by proposing several problems
for future research.

2 Preliminaries

In this section, some basic notations and preliminary results in difference algebra will be
given. For more details about difference algebra, please refer to [5, 21].

2.1 Difference polynomial ring

An ordinary difference field F is a field with a third unitary operation σ satisfying that
for any a, b ∈ F , σ(a + b) = σ(a) + σ(b), σ(ab) = σ(a)σ(b) and σ(a) = 0 if and only if
a = 0. We call σ the transforming operator of F . If a ∈ F , σ(a) is called the transform of
a and is denoted by a(1). And for n ∈ Z+, σn(a) = σn−1(σ(a)) is called the n-th transform
of a and denoted by a(n), with the usual assumption a(0) = a. By a[n] we mean the set
{a, a(1), . . . , a(n)}. A typical example of difference field is Q(x) with σ(f(x)) = f(x+ 1).

Let S be a subset of a difference field G which contains F . We will denote respectively
by F [S], F(S), F{S}, and F〈S〉 the smallest subring, the smallest subfield, the smallest
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difference subring, and the smallest difference subfield of G containing F and S. If we
denote Θ(S) = {σka|k ≥ 0, a ∈ S}, then we have F{S} = F [Θ(S)] and F〈S〉 = F(Θ(S)).

A subset S of a difference extension field G of F is said to be transformally dependent
over F if the set {σka

∣∣a ∈ S, k ≥ 0} is algebraically dependent over F , and is said to be
transformally independent over F , or to be a family of difference indeterminates over F in
the contrary case. In the case S consists of one element α, we say that α is transformally
algebraic or transformally transcendental over F respectively. The maximal subset Ω of G
which are transformally independent over F is said to be a transformal transcendence basis
of G over F . We use △tr.degG/F to denote the difference transcendence degree of G over
F , which is the cardinal number of Ω. Considering F and G as ordinary algebraic fields, we
denote the algebraic transcendence degree of G over F by tr.degG/F .

Now suppose Y = {y1, y2, . . . , yn} is a set of difference indeterminates over F . The

elements of F{Y} = F [y
(k)
j : j = 1, . . . , n; k ∈ N0] are called difference polynomials over

F in Y, and F{Y} itself is called the difference polynomial ring over F in Y. A difference
polynomial ideal I in F{Y} is an ordinary algebraic ideal which is closed under transforming,
i.e. σ(I) ⊂ I. If I also has the property that a(1) ∈ I implies that a ∈ I, it is called a
reflexive difference ideal. And a prime (resp. radical) difference ideal is a difference ideal
which is prime (resp. radical) as an ordinary algebraic polynomial ideal. For convenience, a
prime difference ideal is assumed not to be the unit ideal in this paper. If S is a finite set of
difference polynomials, we use (S) and [S] to denote the algebraic ideal and the difference
ideal in F{Y} generated by S.

An n-tuple over F is an n-tuple of the form a = (a1, . . . , an) where the ai are selected
from some difference overfield of F . For a difference polynomial f ∈ F{y1, . . . , yn}, a is

called a difference zero of f if when substituting y
(j)
i by a

(j)
i in f , the result is 0. An n-tuple

η is called a generic zero of a difference ideal I ⊂ F{Y} if for any polynomial P ∈ F{Y} we
have P (η) = 0 ⇔ P ∈ I. It is well known that

Lemma 2.1 [5, p.77] A difference ideal possesses a generic zero if and only if it is a reflexive
prime difference ideal other than the unit ideal.

Let I be a reflexive prime difference ideal and η a generic point of I. The dimension of
I is defined to be △tr.degF〈η〉/F .

Given two n-tuples a = (a1, . . . , an) and ā = (ā1, . . . , ān) over F . ā is called a specializa-
tion of a over F , or a specializes to ā, if for any difference polynomial P ∈ F{Y}, P (a) = 0
implies that P (ā) = 0. The following property about difference specialization will be needed
in this paper.

Lemma 2.2 Let Pi(U,Y) ∈ F〈Y〉{U} (i = 1, . . . ,m) where U = (u1, . . . , ur) and Y =
(y1, . . . , yn) are sets of difference indeterminates. If Pi(U,Y) (i = 1, . . . ,m) are transformally
dependent over F〈U〉, then for any difference specialization U to U which are elements in F ,
Pi(U,Y) (i = 1, . . . ,m) are transformally dependent over F .

Proof: It suffices to show the case r = 1. Denote u = u1. Since Pi(u,Y) (i = 1, . . . ,m)
are transformally dependent over F〈u〉, there exist natural numbers s and l such that

P
(k)
i (u,Y) (k ≤ s) are algebraically dependent over F(u(k)|k ≤ s + l). When u special-

izes to ū ∈ F , u(k) (k ≥ 0) are correspondingly algebraically specialized to ū(k) ∈ F . By [29,
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p.161], P
(k)
i (ū,Y) (k ≤ s) are algebraically dependent over F . Thus, Pi(ū,Y) (i = 1, . . . ,m)

are transformally dependent over F . �

2.2 Characteristic sets for a difference polynomial system

Let f be a difference polynomial in F{Y}. The order of f w.r.t. yi is defined to be the

greatest number k such that y
(k)
i appears effectively in f , denoted by ord(f, yi). And if

yi does not appear in f , then we set ord(f, yi) = −∞. The order of f is defined to be
maxi ord(f, yi), that is, ord(f) = maxi ord(f, yi).

A ranking R is a total order over Θ(Y) = {σkyi|1 ≤ i ≤ n, k ≥ 0}, which satisfies the
following properties:

1) σ(θ) > θ for all derivatives θ ∈ Θ(Y).
2) θ1 > θ2 =⇒ σ(θ1) > σ(θ2) for θ1, θ2 ∈ Θ(Y).
Let f be a difference polynomial in F{Y} and R a ranking endowed on it. The greatest

y
(k)
j w.r.t. R which appears effectively in f is called the leader of p, denoted by ld(f) and
correspondingly yj is called the leading variable of f , denoted by lvar(f) = yj. Let the degree
of f in ld(f) be d. The leading coefficient of f as a univariate polynomial in ld(f) is called
the initial of f and is denoted by If .

Let p and q be two difference polynomials in F{Y}. q is said to be of higher rank than
p if

1) ld(q) > ld(p), or

2) ld(q) = ld(p) = y
(k)
j and deg(q, y

(k)
j ) > deg(p, y

(k)
j ).

Suppose ld(p) = y
(k)
j . q is said to be reduced w.r.t. p if deg(q, y

(k+l)
j ) < deg(p, y

(k)
j ) for

all l ∈ N0.
A finite chain of nonzero difference polynomials A = A1, . . . , Am is said to be an ascending

chain if
1) m = 1 and A1 6= 0 or
2) m > 1, Aj > Ai and Aj is reduced w.r.t. Ai for 1 ≤ i < j ≤ m.
Let A = A1, A2, . . . , At be an ascending chain with Ii as the initial of Ai, and f any

difference polynomial. Then there exists an algorithm, which reduces f w.r.t. A to a
polynomial r that is reduced w.r.t. A, satisfying the relation

t∏

i=1

di∏

k=0

(σkIi)
eik · f ≡ r,mod [A],

where the eik are nonnegative integers. The difference polynomial r is called the difference
remainder of f w.r.t. A [15].

Let A be an ascending chain. Denote IA to be the minimal multiplicative set containing
the initials of elements of A and their transforms. The saturation ideal of A is defined to be

sat(A) = [A] : IA = {p : ∃h ∈ IA, s.t. hp ∈ [A]}.

And the algebraic saturation ideal of A is asat(A) = (A) : IA, where IA is the minimal
multiplicative set containing the initials of elements of A.

4



An ascending chain C contained in a difference polynomial set S is said to be a character-
istic set of S, if S does not contain any nonzero element reduced w.r.t. C. A characteristic
set C of a difference ideal J reduces to zero all elements of J .

Let A be a characteristic set of a reflexive prime difference ideal I. We rewrite A as the
following form

A =





A11, . . . , A1k1

· · ·
Ap1, . . . , Apkp

where lvar(Aij) = yci for j = 1, . . . , ki and ord(Aij , yci) < ord(Ail, yci) for j < l. In terms of
the characteristic set of the above form, p is equal to the codimension of I, that is n−dim(I).
Unlike the differential case, here even though I is of codimension one, there may be more
than one difference polynomials in a characteristic set of I as shown by the following example.

Example 2.3 Let A11 = (y
(1)
1 )2+ y21 +1, A12 = y

(2)
1 − y1. Then I = [A11,A12] is a reflexive

prime difference ideal whose characteristic set is A = A11, A12 and I = sat(A) [15]. Note

that [A11] is not a prime difference ideal, because σ(A11)−A11 = (y
(2)
1 −y1)(y

(2)
1 +y1) ∈ [A11]

and both y
(2)
1 − y1 and y

(2)
1 + y1 are not in [A11].

Now we proceed to show that a property of uniqueness still exists in characteristic sets
of a reflexive prime difference ideal in some sense. Firstly, we need several algebraic results.

Let B = B1, . . . , Bm be an algebraic triangular set in F [x1, . . . , xn] with lvar(Bi) = yi
and U = {x1, . . . , xn}

∖
{y1, . . . , ym}. A polynomial f is said to be invertible w.r.t. A if

(f,A1, . . . , As) ∩K[U ] 6= {0} where lvar(f) = lvar(As). We call B a regular chain if for each
i > 1, the initial of Bi is invertible w.r.t. B1, . . . , Bi−1. For a regular chain B, we say that f
is invertible w.r.t. asat(B) if (f, asat(B)) ∩ F [U ] 6= {0}.

Lemma 2.4 Let B be a regular chain in F [x1, . . . , xn]. If
√

asat(B) =
⋂m

i=1Pi is an irre-
dundant prime decomposition of

√
asat(B), then a polynomial f is invertible w.r.t. asat(B)

if and only if f /∈ Pi for all i = 1, . . . ,m.

Proof: Since
√

asat(B) =
⋂m

i=1 Pi is an irredundant prime decomposition of
√

asat(B), U
is a parametric set of Pi for each i by [13]. And for prime ideals Pi, f /∈ Pi if and only
if (f,Pi) ∩ F [U ] 6= {0}. If f is invertible w.r.t. asat(B), {0} 6= (f, asat(B)) ∩ F [U ] ⊂
(f,Pi) ∩ F [U ]. Thus, f /∈ Pi for each i. For the other side, suppose f /∈ Pi for all i, then
there exist nonzero polynomials hi(U) such that hi(U) ∈ (f,Pi). Thus, there exists t ∈ N

such that (
∏m

i=1 hi(U))t ∈ (f, asat(B)). So f is invertible w.r.t. asat(B). �

Lemma 2.5 [2] Let B be a regular chain in F [U, Y ]. Let f be a polynomial in F [U, Y ] and
L in F [U ]\{0} such that Lf ∈ (B). Then f ∈ asat(B).

Lemma 2.6 Let A be an irreducible difference polynomial in F{Y} with deg(A, yi0) > 0 for
some i0. If f is invertible w.r.t. A[k] = A,A(1), . . . , A(k) under some ranking R, then σ(f) is
invertible w.r.t. A[k+1] = A, . . . , A(k+1). In particular, A[k] is a regular chain for any k ≥ 0.
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Proof: Since as a difference ascending chain, A is coherent and proper irreducible, by Theo-
rem 4.1 in [15], A is difference regular. As a consequence, A[k] is regular for any k ≥ 0. �

The following fact is needed to define sparse difference resultant.

Lemma 2.7 Let I be a reflexive prime difference ideal of codimension one in F{Y}. The
first element in any characteristic set of I w.r.t. any ranking, when taken irreducible, is
unique up to a factor in F .

Proof: Let A = A1, . . . , Am be a characteristic set of I w.r.t. some ranking R with A1

irreducible. Suppose lvar(A) = y1. Given another characteristic set B = B1, . . . , Bl of I
w.r.t. some other ranking R′ (B1 is irreducible), we need to show that there exists c ∈ F
such that B1 = c · A1. It suffices to consider the case lvar(B) 6= y1. Suppose lvar(B1) = y2.
Clearly, y2 appears effectively in A1 for B reduces A1 to 0. And since I is reflexive, there
exists some i0 such that deg(A1, yi0) > 0.

Suppose ord(A1, y2) = o2. Take another ranking under which y
(o2)
2 is the leader of A1

and we use Ã1 to distinguish it from the A1 under R. By Lemma 2.6, for each k, A
[k]
1 and

Ã
[k]
1 are regular chains.

Now we claim that asat(A
[k]
1 ) = asat(Ã

[k]
1 ). On the one hand, for any polynomial

f ∈ asat(A
[k]
1 ), we have (

∏k
i=0 σ

i(IA1))
af ∈ (A

[k]
1 ). Since IA1 is invertible w.r.t. Ã1, by

Lemma 2.6, σi(IA1) is invertible w.r.t. Ã
[i]
1 . Thus, (

∏k
i=0 σ

i(IA1))
a is invertible w.r.t. Ã

[k]
1 .

Denote the parameters of Ã
[k]
1 by Ũ . So there exists a nonzero polynomial h(Ũ ) such

that h(Ũ ) ∈ ((
∏k

i=0 σ
i(IA1))

a, Ã
[k]
1 ). Thus, h(Ũ)f ∈ (Ã

[k]
1 ). Since Ã

[k]
1 is a regular chain,

by Lemma 2.5, f ∈ asat(Ã
[k]
1 ). So asat(A

[k]
1 ) ⊆ asat(Ã

[k]
1 ). Similarly, we can show that

asat(Ã
[k]
1 ) ⊆ asat(A

[k]
1 ). Thus, asat(A

[k]
1 ) = asat(Ã

[k]
1 ).

Suppose ord(B1, y2) = o′2. It is clear that o2 ≥ o′2. We now proceed to show that it
is impossible for o2 > o′2. Suppose the contrary, i.e. o2 > o′2. Then B1 is invertible w.r.t.

asat(Ã
[k]
1 ). Suppose

√
asat(Ã

[k]
1 ) =

⋂t
i=1Pi is an irredundant prime decomposition. By

Lemma 2.4, B1 /∈ Pi for each i. Since asat(A
[k]
1 ) = asat(Ã

[k]
1 ), using Lemma 2.4 again, B1

is invertible w.r.t. asat(A
[k]
1 ). Thus, there exists a nonzero difference polynomial H with

ord(H, y1) < ord(A1, y1) such that H ∈ (B1, asat(A
[k]
1 )) ⊂ I, which is a contradiction. Thus,

o2 = o′2. Since B reduces A1 to zero and A1 is irreducible, there exists c ∈ F such that
B1 = c ·A1. �

3 Sparse difference resultant

In this section, the concepts of Laurent difference polynomials and transformally essential
systems are first introduced, and then the sparse difference resultant for transformally es-
sential systems is defined. And we also give a criterion for Laurent transformally essential
systems in terms of the support of the given system.
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3.1 Laurent difference polynomial

Let F be an ordinary difference field with a transforming operator σ and F{Y} the ring
of difference polynomials in the difference indeterminates Y = {y1, . . . , yn}. Similar to [23],
before defining sparse difference resultant, we first introduce the concept of Laurent difference
polynomials.

Definition 3.1 A Laurent difference monomial of order s is a Laurent monomial in vari-

ables Y[s] = (y
(k)
i )1≤i≤n;0≤k≤s. More precisely, it has the form

∏n
i=1

∏s
k=0(y

(k)
i )dik where dik

are integers which can be negative. A Laurent difference polynomial over F is a finite linear
combination of Laurent difference monomials with coefficients in F .

Clearly, the collections of all Laurent difference polynomials form a commutative differ-
ence ring under the obvious sum, product operations and the usual transforming operator
σ, where all Laurent difference monomials are invertible. We denote the difference ring of
Laurent difference polynomials with coefficients in F by F{y1, y

−1
1 , . . . , yn, y

−1
n }, or simply

by F{Y,Y−1}.

Definition 3.2 For every Laurent difference polynomial F ∈ F{Y,Y−1}, there exists a
unique laurent difference monomial M such that 1) M · F ∈ F{Y} and 2) for any Laurent
difference monomial T with T · F ∈ E{Y}, T · F is divisible by M · F as polynomials. This
M · F is defined to be the norm form of F , denoted by N(F ). The order and degree of N(F )
is defined to be the order and degree of F , denoted by ord(F ) and deg(F ).

In the following, we consider zeros for Laurent difference polynomials.

Definition 3.3 Let F be a Laurent difference polynomial in F{Y,Y−1}. An n-tuple (a1,
. . . , an) over F is called a nonzero difference zero of F if for all i, ai 6= 0 and F (a1, . . . , an) =
0.

For an ideal I ∈ F{Y,Y−1}, the difference zero set of I is the set of common nonzero
difference zeros of all Laurent difference polynomials in I. We will see later in Example 4.2,
how nonzero difference solutions are naturally related with the sparse difference resultant.

3.2 Definition of sparse difference resultant

In this section, the definition of the sparse difference resultant will be given. Similar to
the study of sparse differential resultants, we first define sparse difference resultants for
Laurent difference polynomials whose coefficients are difference indeterminates. Then the
sparse difference resultant for a given Laurent difference polynomial system with concrete
coefficients is the value which the resultant in the generic case assumes for the given case.

Suppose Ai = {Mi0,Mi1, . . . ,Mili} (i = 0, 1, . . . , n) are finite sets of Laurent differ-
ence monomials in Y. Consider n + 1 generic Laurent difference polynomials defined over
A0, . . . ,An:

Pi =

li∑

k=0

uikMik (i = 0, . . . , n), (1)

7



where all the uik are transformally independent over the rational number field Q. Denote

ui = (ui0, ui1, . . . , uin) (i = 0, . . . , n) and u = ∪n
i=0ui\{ui0}. (2)

The number li + 1 is called the size of Pi. To avoid the triviality, li ≥ 1 (i = 0, . . . , n) are
always assumed in this paper.

Definition 3.4 A set of Laurent difference polynomials of form (1) is called Laurent trans-

formally essential if there exist ki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that △tr.degQ〈
M0k0
M00

,
M1k1
M10

, . . . ,
Mnkn

Mn0
〉/Q = n. In this case, we also say that A0, . . . ,An form a Laurent transfor-

mally essential system.

Although Mi0 are used as denominators to define transformally essential system, the
following lemma shows that the definition does not depend on the choices of Mi0.

Lemma 3.5 The following two conditions are equivalent.

1. There exist ki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that △tr.degQ〈
M0k0
M00

, . . . ,
Mnkn

Mn0
〉/Q =

n.

2. There exist pairs (ki, ji) (i = 0, . . . , n) with ki 6= ji ∈ {0, . . . , li} such that △tr.degQ〈
M0k0
M0j0

,

. . . ,
Mnkn

Mnjn
〉/Q = n.

Proof: Similar to the proof of [23, Lemma 3.7], it can be easily shown. �

Let m be the set of all difference monomials in Y and [N(P0), . . . ,N(Pn)] the difference
ideal generated by N(Pi) in Q{Y,u0, . . . ,un}. Let

IY,u = ([N(P0), . . . ,N(Pn)] :m). (3)

The following result is a foundation for defining sparse difference resultants.

Theorem 3.6 Let P0, . . . ,Pn be Laurent difference polynomials defined in (1). Then the
following assertions hold.

1. IY,u is a reflexive prime difference ideal in Q{Y,u0, . . . ,un}.

2. IY,u ∩ Q{u0, . . . ,un} is of codimension one if and only if P0, . . . ,Pn form a Laurent
transformally essential system.

Proof: Let η = (η1, . . . , ηn) be a sequence of transformally independent elements over Q〈u〉,
where u is defined in (2). Let

ζi = −

li∑

k=1

uik
Mik(η)

Mi0(η)
(i = 0, 1, . . . , n). (4)

We claim that θ = (η; ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln) is a generic point of IY,u, which
follows that IY,u is a reflexive prime difference ideal.
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Denote N(Pi) = MiPi (i = 0, . . . , n) where Mi are Laurent difference monomials. Clearly,
N(Pi) = MiPi vanishes at θ (i = 0, . . . , n). For any f ∈ IY,u, there exists an M ∈ m such
that Mf ∈ [N(P0), . . . ,N(Pn)]. It follows that f(θ) = 0. Conversely, let f be any difference
polynomial in Q{Y,u0, . . . ,un} satisfying f(θ) = 0. Clearly, N(P0),N(P1), . . . ,N(Pn) con-
stitute an ascending chain with ui0 as leaders. Let f1 be the difference remainder of f w.r.t.
this ascending chain. Then f1 is free from ui0 (i = 0, . . . , n) and there exist a, s ∈ N such
that (

∏n
i=0

∏s
l=0(σ

l(MiMi0)))
a · f ≡ f1,mod [N(P0), . . . ,N(Pn)]. Clearly, f1(θ) = 0. Since

f1 ∈ Q{u,Y}, f1 = 0. Thus, f ∈ IY,u. So IY,u is a reflexive prime difference ideal with a
generic point θ.

Consequently, IY,u ∩ Q{u0, . . . ,un} is a reflexive prime difference ideal with a generic
point ζ = (ζ0, u01, . . . , u0l0 ; . . . ; ζn, un1, . . . , unln). From (4), it is clear that△tr.degQ〈ζ〉/Q ≤∑n

i=0 li + n. If there exist pairs (ik, jk) (k = 1, . . . , n) with 1 ≤ jk ≤ lik and ik1 6= ik2 (k1 6=

k2) such that
Mi1j1
Mi10

, . . . ,
Minjn

Min0
are transformally independent over Q, then by Lemma 2.2,

ζi1 , . . . , ζin are transformally independent over Q〈u〉. It follows that △tr.degQ〈ζ〉/Q =∑n
i=0 li + n. Thus, IY,u ∩Q{u0, . . . ,un} is of codimension 1.
Conversely, let us assume that IY,u ∩ Q{u0, . . . ,un} is of codimension 1. That is,

△tr.degQ〈ζ〉/Q =
∑n

i=0 li+n. We want to show that there exist pairs (ik, jk) (k = 1, . . . , n)

with 1 ≤ jk ≤ lik and ik1 6= ik2 (k1 6= k2) such that
Mi1j1
Mi10

, . . . ,
Minjn

Min0
are transformally inde-

pendent over Q. Suppose the contrary, i.e.,
Mi1j1

(η)

Mi10
(η) , . . . ,

Minjn (η)
Min0(η)

are transformally dependent

for any n different ik and jk ∈ {1, . . . , lik}. Since each ζik is a linear combination of
Mikjk

(η)

Mik0(η)

(jk = 1, . . . , lik), it follows that ζi1 , . . . , ζin are transformally dependent over Q〈u〉. Thus, we
have △tr.degQ〈ζ〉/Q <

∑n
i=0 li + n, a contradiction to the hypothesis. �

Let [P0, . . . ,Pn] be the difference ideal in Q{Y,Y−1;u0, . . . ,un} generated by Pi. Then
we have

Corollary 3.7 [P0,P1, . . . ,Pn] ∩Q{u0, . . . ,un} is a reflexive prime difference ideal of codi-
mension one if and only if {Pi : i = 0, . . . , n} is a Laurent transformally essential system.

Proof: It is easy to show that [P0,P1, . . . ,Pn] ∩Q{u0, . . . ,un} = IY,u ∩Q{u0, . . . ,un}. And
the result is a direct consequence of Theorem 3.6. �

Now suppose {P0, . . . ,Pn} is a Laurent transformally essential system. Denote the dif-
ference ideal [P0, . . . ,Pn]∩Q{u0, . . . ,un} by Iu. Since Iu is a reflexive prime difference ideal
of codimension one, by Lemma 2.7, there exists a unique irreducible difference polynomial
R(u;u00, . . . , un0) = R(u0, . . . ,un) ∈ Q{u0, . . . ,un} such that R can serve as the first poly-
nomial in each characteristic set of Iu w.r.t. any ranking endowed on u0, . . . ,un. That is, if
ui0 appears in R, then among all the difference polynomials in Iu, R is of minimal order in
ui0 and of minimal degree with the same order.

Now the definition of sparse difference resultant is given as follows:

Definition 3.8 The above R(u0, . . . ,un) ∈ Q{u0, . . . ,un} is defined to be the sparse differ-
ence resultant of the Laurent transformally essential system P0, . . . ,Pn, denoted by ResA0,...,An

or ResP0,...,Pn. And when all the Ai are equal to the same A, we simply denote it by ResA.
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The following lemma gives another description of sparse difference resultant from the
perspective of generic point,

Lemma 3.9 Let ζi = −
∑li

k=1 uik
Mik(η)
Mi0(η)

(i = 0, 1, . . . , n) defined as in equation (4), where

η = (η1, . . . , ηn) is a generic point of [0] over Q〈u〉. Then among all the polynomials in
Q{u0, . . . ,un} vanishing at (u; ζ0, . . . , ζn), R(u0, . . . ,un) = R(u;u00, . . . , un0) is of minimal
order and degree in each ui0 (i = 0, . . . , n).

Proof: It is a direct consequence of Theorem 3.6 and Definition 3.8. �

Remark 3.10 From its definition, the sparse difference resultant can be computed as follows.
With the characteristic set method given in [15], we can compute a proper irreducible ascend-
ing chain A which is a characteristic set for the difference polynomial system {P0,P1, . . . ,Pn}
under a ranking such that uij < yk. Then the first difference polynomial in A is the sparse
difference resultant. This algorithm does not have a complexity analysis. In Section 5, we
will give a single exponential algorithm to compute the sparse difference resultant.

We give several examples to show sparse difference resultant.

Example 3.11 Let n = 2 and Pi has the form

Pi = ui0y
(2)
1 + ui1y

(3)
1 + ui2y

(3)
2 (i = 0, 1, 2).

It is easy to show that y
(3)
1 /y

(2)
1 and y

(3)
2 /y

(2)
1 are transformally independent over Q. Thus,

P0,P1,P2 form a Laurent transformally essential system. The sparse difference resultant is

R = ResP0,P1,P2 =

∣∣∣∣∣∣

u00 u01 u02
u10 u11 u12
u20 u21 u22

∣∣∣∣∣∣
.

The following example shows that for a Laurent transformally essential system, its sparse
difference resultant may not involve the coefficients of some Pi.

Example 3.12 Let n = 2 and Pi has the form

P0 = u00 + u01y1y2, P1 = u10 + u11y
(1)
1 y

(1)
2 , P2 = u20 + u21y2.

Clearly, P0,P1,P2 form a Laurent transformally essential system. And the sparse difference
resultant of P0,P1,P2 is

R = u
(1)
00 u11 − u

(1)
01 u10,

which is free from the coefficients of P2.

The above example can be used to illustrate the difference between the differential
and difference cases. If P0,P1,P2 in Example 3.12 are differential polynomials, then the
sparse differential resultant is u201u10u

2
20u

2
21 − u01u

′
00u11u20u

2
21u

′
20 + u00u

′
01u11u20u

2
21u

′
20 +

u01u00u11u
2
20(u

′
21)

2 + u00u01u11u
2
21(u

′
20)

2 − 2u01u00u11u20u21u
′
20u

′
21 + u01u

′
00u11u

2
20u

′
21u21 −

u00u
′
01u11u21u

′
21u

2
20 which contains coefficients of P0,P1,P2.
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Remark 3.13 When all the Ai (i = 0, . . . , n) are sets of difference monomials, unless ex-
plicitly mentioned, we always consider Pi as Laurent difference polynomials. But when we
regard Pi as difference polynomials, ResA0,...,An is also called the sparse difference resultant
of the difference polynomials Pi and we call Pi a transformally essential system. In this
paper, sometimes we regard Pi as difference polynomials where we will highlight it.

We now define the sparse difference resultant for any set of specific Laurent difference
polynomials over a Laurent transformally essential system. For any finite set A of Laurent
difference monomials, we use L(A) to denote the set of all Laurent difference polynomials of
the form

∑
M∈A aMM where the aM are in some difference extension field of Q. Then L(A)

can be considered as the set of all l-tuples over Q where l = |A|.

Definition 3.14 Let Ai = {Mi0,Mi1, . . . ,Mili} (i = 0, 1, . . . , n) be a Laurent transfor-
mally essential system. Consider n + 1 Laurent difference polynomials (F0, F1, . . . , Fn) ∈∏n

i=0L(Ai). The sparse difference resultant of F0, F1, . . . , Fn, denoted as ResF0,...,Fn, is ob-
tained by replacing ui by the corresponding coefficient vector of Fi in ResA0,...,An(u0, . . . ,un).

A major unsolved problem about difference resultant is whetherR defined above contains
all the information about the elimination ideal IY,u defined in (3). More precisely, we propose
the following problem.

Problem 3.15 As shown by Example 2.3, the characteristic set for a reflexive prime differ-
ence ideal could contain more than one elements. Let IY,u be the ideal defined in (3). Then
IY,u is a reflexive prime difference ideal of codimension one and

IY,u = sat(R, R1, . . . , Rm),

where R is the sparse difference resultant of P0, . . . ,Pn and R, R1, . . . , Rm is a characteristic
set of IY,u. We conjecture that m = 0, or equivalently IY,u = sat(R), which is similar the
differential case. If this is valid, then better properties can be shown for sparse difference
resultant as we will explain later.

3.3 Criterion for Laurent transformally essential systems in terms of the

supports

Let Ai (i = 0, . . . , n) be finite sets of Laurent difference monomials. According to Defini-
tion 3.4, in order to check whether they form a Laurent transformally essential system, we
need to check whether there existMiki ,Miji ∈ Ai(i = 0, . . . , n) such that△tr.degQ〈M0k0/M0j0 ,
. . . ,Mnkn/Mnjn〉/Q = n. This can be done with the difference characteristic set method via
symbolic computation [15]. In this section, a criterion will be given to check whether a
Laurent difference system is essential in terms of their supports, which is conceptually and
computationally simpler than the naive approach based on the characteristic set method.

Let Bi =
∏n

j=1

∏s
k≥0(y

(k)
j )dijk (i = 1, . . . ,m) be m Laurent difference monomials. We

now introduce a new algebraic indeterminate x and let

dij =
s∑

k=0

dijkx
k (i = 1, . . . ,m, j = 1, . . . , n)
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be univariate polynomials in Z[x]. If ord(Bi, yj) = −∞, then set dij = 0. The vector (di1, di2,
. . . , din) is called the symbolic support vector of Bi. The matrix M = (dij)m×n is called the
symbolic support matrix of B1, . . . , Bm.

Note that there is a one-to-one correspondence between Laurent difference monomials
and their symbolic support vectors, so we will not distinguish these two concepts in case
there is no confusion. The same is true for a set of Laurent difference monomials and its
symbolic support matrix.

Definition 3.16 A matrix M = (dij)m×n over Q(x) is called normal upper-triangular of
rank r if for each i ≤ r, dii 6= 0 and di,i−k = 0 (1 ≤ k ≤ i− 1), and the last m− r rows are
zero vectors.

A normal upper-triangular matrix is of the following form:




a11 ∗ · · · ∗ · · · ∗
0 a22 · · · ∗ · · · ∗
...

...
. . .

...
0 0 · · · arr · · · ∗
0 0 · · · 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 · · · 0 · · · 0




Definition 3.17 A set of Laurent difference monomials B1, B2, . . . , Bm is said to be in r-
upper-triangular form if its symbolic support matrix M is a normal upper triangular matrix
of rank r.

The following lemma shows that it is easy to compute the difference transcendence degree
of a set of Laurent difference monomials in upper-triangular form.

Lemma 3.18 Let B1, . . . , Bm be a set of Laurent difference monomials in r-upper-triangular
form. Then △tr.degQ〈B1, . . . , Bm〉/Q = r.

Proof: From the structure of the symbolic support matrix, for i = 1, . . . , r, Bi =
∏n

j=i

∏
k≥0(y

(k)
j )dijk

with ord(Bi, yi) ≥ 0 and Br+1 = · · · = Bm = 1. Let B′
i =

∏r
j=i

∏
k≥0(y

(k)
j )dijk . Then

△tr.degQ〈B1, . . . , Bm〉/Q

= △tr.degQ〈B1, . . . , Br〉/Q

≥ △tr.degQ〈yr+1, . . . , yn〉〈B1, . . . , Br〉/Q〈yr+1, . . . , yn〉

= △tr.degQ〈B′
1, . . . , B

′
r〉/Q.

So it suffices to prove △tr.degQ〈B′
1, . . . , B

′
r〉/Q = r.

If r = 1, B′
1 is a nonconstant Laurent difference monomial in y1, so△tr.degQ〈B′

1〉/Q = 1.

Suppose we have proved for the case r − 1. Let B′′
i =

∏r−1
j=i

∏
k≥0(y

(k)
j )dijk , then by the
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hypothesis, △tr.degQ〈B′′
1 , . . . , B

′′
r−1〉/Q = r − 1. Thus,

r ≥ △tr.degQ〈B′
1, . . . , B

′
r〉/Q

= △tr.degQ〈B′
r〉/Q +△tr.degQ〈B′

1, . . . , B
′
r〉/Q〈B′

r〉

≥ 1 +△tr.degQ〈yr〉〈B
′
1, . . . , B

′
r−1〉/Q〈yr〉

= 1 +△tr.degQ〈B′′
1 , . . . , B

′′
r−1〉/Q = r.

So △tr.degQ〈B1, . . . , Bm〉/Q = r. �

In the following, we will show that each set of Laurent difference monomials can be
transformed to an upper-triangular set with the same difference transcendence degree. Here
we use three types of elementary matrix transformations. For a matrix M over Q[x], Type
1 operations consist of interchanging two rows of M , say the i-th and j-th rows, denoted by
r[i, j]; Type 2 operations consist of adding an f(x)-multiple of the j-th row to the i-th row,
where f(x) ∈ Q[x], denoted by [i+ j(f(x))]; and Type 3 operations consist of interchanging
two columns, say the i-th and j-th columns, denoted by c[i, j]. In this section, by elementary
transformations, we mean the above three types of transformations.

Let B1, . . . , Bm be Laurent differential monomials and M their symbolic support matrix.
Then the above three types of elementary transformations of M correspond to certain trans-
formations of the difference monomials. Indeed, interchanging the i-th and the j-th rows of
M means interchanging Bi and Bj , and interchanging the i-th and the j-th columns of M
means interchanging yi and yj in B1, . . . , Bm(or in the variable order). Multiplying the i-th
row of M by a polynomial f(x) = adx

d + ad−1x
d−1 + · · · + a0 ∈ Q[x] and adding the result

to the j-th row means changing Bj to
∏d

k=0(σ
kBi)

akBj.

Lemma 3.19 Let B1, . . . , Bm be Laurent difference monomials and C1, . . . , Cm obtained
by successive elementary transformations defined above. Then △tr.degQ〈B1, . . . , Bm〉/Q
= △tr.degQ〈C1, . . . , Cm〉/Q.

Proof: It suffices to show that Type 2 operations keep the difference transcendence degree.
That is, for

∑d
i=0 aix

i ∈ Q[x], △tr.degQ〈B1, B2〉/Q = △tr.degQ〈B1,
∏d

k=0(σ
kB1)

akB2〉/Q.

Suppose ai = pi/q where pi, q ∈ Z∗. Then, clearly, △tr.degQ〈B1〉/Q = △tr.degQ〈
∏d

k=0

(σkB1)
pk〉/Q. Thus,△tr.degQ〈B1,

∏d
k=0(σ

kB1)
akB2〉/Q = △tr.degQ〈

∏d
k=0(σ

kB1)
pk ,

∏d
k=0

(σkB1)
pkBq

2〉/Q = △tr.degQ〈
∏d

k=0(σ
kB1)

pk , Bq
2〉/Q = △tr.degQ〈B1, B2〉/Q. �

Theorem 3.20 Let B1, . . . , Bm be a set of Laurent difference monomials with symbolic sup-
port matrix M . Then △tr.degQ〈B1, . . . , Bm〉/Q = rk(M).

Proof: By Lemma 3.18 and Lemma 3.19, it suffices to show that M can be reduced to a
normal upper-triangular matrix by performing a series of elementary transformations.

Suppose M = (dij) 6= 0m×n and we denote the new matrix obtained after performing
elementary transformations also by M . Firstly, perform Type 1 and Type 3 operations when
necessary to make d11 6= 0. Secondly, try to use d11(x) to reduce other elements in the first
column to 0 by performing Type 2 operations. If there exists an element in the first column
such that it can not be divisible by d11, say dk1, suppose dk1(x) = d11(x)q(x) + r(x) where
r(x) 6= 0 and deg(r(x)) < deg(d11(x)). After performing the transformations [k + 1(−q(x))]
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and r[1, k] successively, we obtain a new matrix in which the degree of d11 strictly decreases.
Repeat this process when necessary, then after a finite number of steps, we obtain a new
matrix M such that d11(x) divides each nonzero element in the first column, and by using
d11(x) to perform Type 2 operations we obtain

M =

(
d11 ∗
0 M1

)
.

Now we repeat the above process for M1 and whenever Type 3 operations are performed for
M1, we assume the same transformations are performed for the whole matrix M . In this
way, after a finite number of steps, we obtain a normal upper-triangular matrix M . �

Example 3.21 Let B1 = y1y2 and B2 = y
(a)
1 y

(b)
2 . Then the symbolic support matrix of B1

and B2 is M =

(
1 1
xa xb

)
. Then rk(M) =

{
1 if a = b
2 if a 6= b.

Thus, by Theorem 3.20, if

a 6= b, B1 and B2 are transformally independent over Q. Otherwise, they are transformally
dependent over Q.

Consider the set of generic Laurent difference polynomials defined in (1):

Pi = ui0Mi0 +

li∑

k=1

uikMik (i = 1, . . . ,m).

Let βik be the symbolic support vector of Mik/Mi0. Then the vector wi =
∑li

k=0 uikβik is
called the symbolic support vector of Pi and the matrix MP whose rows are w0, . . . , wn is
called the symbolic support matrix of P0, . . . ,Pn. In terms of MP, we have the following
result.

Theorem 3.22 Follow the above notations. Then the following three conditions are equiv-
alent.

1. P0, . . . ,Pn form a Laurent transformally essential system.

2. There exist Miki (i = 0, . . . , n) with 1 ≤ ki ≤ li such that the symbolic support matrix
of M0k0/M00, . . . ,Mnkn/Mn0 is of rank n.

3. The rank of MP is equal to n.

Proof: The equivalence of 1) and 2) is a direct consequence of Theorem 3.20 and Def-
inition 3.4. And the equivalence of 2) and 3) follows from the fact that det(M

P,̂i) =
∑

k0,...,k̂i...,kn

∏n
j=0,j 6=i ujkj det((β0k0 , . . . ,

ˆβiki , . . . , βnkn)
T), where M

P,̂i is the matrix obtained

by deleting the (i+ 1)-th row from M . �

We will end this section by introducing a new concept, namely supper-essential systems,
through which one can identify certain Pi such that their coefficients will not occur in the
sparse difference resultant. This will lead to the simplification in the computation of the
resultant. Let T ⊂ {0, 1, . . . , n}. We denote by PT the Laurent difference polynomial set
consisting of Pi (i ∈ T), and MPT

its symbolic support matrix. For a subset T ⊂ {0, 1, . . . , n},
if card(T) = rk(MPT

), then PT, or {Ai : i ∈ T}, is called a transformally independent set.
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Definition 3.23 Let T ⊂ {0, 1, . . . , n}. Then we call T or PT supper-essential if the follow-
ing conditions hold: (1) card(T) − rk(MPT

) = 1 and (2) card(J) = rk(MPJ
) for each proper

subset J of T.

Note that supper-essential systems are the difference analogue of essential systems intro-
duced in [27] and also that of rank essential systems introduced in [23] . Using this definition,
we have the following property, which is similar to Corollary 1.1 in [27].

Theorem 3.24 If {P0, . . . ,Pn} is a Laurent transformally essential system, then for any
T ⊂ {0, 1, . . . , n}, card(T) − rk(MPT

) ≤ 1 and there exists a unique T which is supper-
essential. In this case, the sparse difference resultant of P0, . . . ,Pn involves only the coeffi-
cients of Pi (i ∈ T).

Proof: Since n = rk(MP) ≤ rk(MPT
)+card(P)−card(PT) = n+1+rk(MPT

)−card(T), we have
card(T)−rk(MPT

) ≤ 1. Since card(T)−rk(MPT
) ≥ 0, for any T, either card(T)−rk(MPT

) = 0
or card(T)−rk(MPT

) = 1. From this fact, it is easy to show the existence of a supper-essential
set T. For the uniqueness, we assume that there exist two subsets T1,T2 ⊂ {1, . . . ,m} which
are supper-essential. Then, we have

rk(MPT1∪T2
) ≤ rk(MPT1

) + rk(MPT2
)− rk(MPT1∩T2

)

= card(T1)− 1 + card(T2)− 1− card(T1 ∩ T2)
= card(T1 ∪ T2)− 2,

which means that MP is not of full rank, a contradiction.
Let T be a supper-essential set. Similar to the proof of Theorem 3.6, it is easy to show

that [Pi]i∈T∩Q{ui}i∈T is of codimension one, which means that the sparse difference resultant
of P0, . . . ,Pn involves only of coefficients of Pi (i ∈ T). �

Using this property, one can determine which polynomial is needed for computing the
sparse difference resultant, which will eventually reduce the computation complexity.

Example 3.25 Continue from Example 3.12. It is easy to show that P = {P0,P1,P2} is
a Laurent transformally essential system and P0,P1 constitute a supper-essential system.
Recall that the sparse difference resultant of P is free from the coefficients of P2.

4 Basic properties of sparse difference resultant

In this section, we will prove some basic properties for the sparse difference resultant R(u0,
. . . ,un).

4.1 Necessary condition for existence of nonzero solutions

In this section, we will first give a condition for a system of Laurent difference polynomials to
have nonzero solutions in terms of sparse difference resultant, and then study the structures
of nonzero solutions.

To be more precise, we first introduce some notations. Let A0, . . . ,An be a Laurent trans-
formally essential system of Laurent monomial sets. Each element (F0, . . . , Fn) ∈ L(A0) ×
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· · · ×L(An) can be represented by one and only one point (v0, . . . ,vn) ∈ E l0+1 × · · · × E ln+1

where vi = (vi0, vi1, . . . , vili) is the coefficient vector of Fi and E is some difference field
extension of Q (E is not fixed but depends on the set Fi). Let Z0(A0, . . . ,An) be a set con-
sisting of points (v0, . . . ,vn) such that the corresponding Fi = 0 (i = 0, . . . , n) have nonzero
solutions. That is,

Z0(A0, . . . ,An) = {(v0, . . . ,vn) : F0 = · · · = Fn = 0 have

a common nonzero solution}. (5)

The following result shows that the vanishing of sparse differential resultant gives a necessary
condition for the existence of nonzero solutions.

Lemma 4.1 Z0(A0, . . . ,An) ⊆ V
(
ResA0,...,An

)
.

Proof: Let P0, . . . ,Pn be a generic Laurent transformally essential system corresponding to
A0, . . . ,An with coefficient vectors u0, . . . ,un. By Definition 3.8, ResA0,...,An ∈ [P0,P1, . . . ,Pn]
∩Q{u0, . . . ,un}. For any point (v0, . . . ,vn) ∈ Z0(A0, . . . ,An), let (P0, . . . ,Pn) ∈ L(A0) ×
· · ·×L(An) be the difference polynomial system represented by (v0, . . . ,vn). Since P0, . . . ,Pn

have a nonzero common solution, ResA0,...,An vanishes at (v0, . . . ,vn). �

Example 4.2 Continue from Example 3.11. Suppose F = Q(x) and σf(x) = f(x + 1).
In this example, we have ResP0,P1,P2 6= 0. But y1 = 0, y2 = 0 consist of a zero solution of
P0 = P1 = P2 = 0. This shows that Lemma 4.1 is not correct if we do not consider nonzero
solutions. This example also shows why we need to consider nonzero difference solutions,
or equivalently why we consider Laurent difference polynomials instead of usual difference
polynomials.

Remark 4.3 If Problem 3.15 can be solved positively, then R = 0 also gives a sufficient
condition for P0 = · · · = Pn = 0 to have a nonzero solution in certain sense.

The following lemma reflects the structures of the nonzero solutions.

Lemma 4.4 Let A0, . . . ,An be a Laurent transformally essential system and R = ResA0,...,An .
Then there exists some τ such that deg(R, uτ0) > 0. Suppose Pi = 0 is a system represented
by (v0, . . . ,vn) ∈ Z0(A0, . . . ,An) and ∂R

∂uτ0
(v0, . . . ,vn) 6= 0. If ξ is a common nonzero

difference solution of Pi = 0(i = 0, . . . , n), then for each k, we have

Mτk(ξ)

Mτ0(ξ)
=

∂R

∂uτk
(v0, . . . ,vn)

/ ∂R

∂uτ0
(v0, . . . ,vn). (6)

Proof: Since I = [N(P0), . . . ,N(Pn)] : m is a reflexive prime difference ideal and R ∈ I,
there exists some τ and k such that deg(R, uτk) > 0. By Lemma 4.8, deg(R, uτ0) > 0.
Denote N(Pi) = MiPi (i = 0, . . . , n). For each j = 1, . . . , l0, by equation (7) with k = 0,
the polynomial ∂R

∂uτ0
MτMτj −

∂R
∂uτj

MτMτ0 ∈ I. Thus, if ξ is a common nonzero difference

solution of Pi = 0, then ∂R
∂uτ0

(v0, . . . ,vn) · Mτj(ξ) −
∂R
∂uτj

(v0, . . . ,vn)Mτ0(ξ) = 0. Since
∂R
∂uτ0

(v0, . . . ,vn) 6= 0, (6) follows. �
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4.2 Sparse difference resultant is transformally homogeneous

We now introduce the concept of transformally homogeneous polynomials.

Definition 4.5 A difference polynomial f ∈ F{y0, . . . , yn} is called transformally homoge-
neous if for a new difference indeterminate λ, there exists a difference monomial M(λ) in λ
such that f(λy0, . . . , λyn) = M(λ)p(y0, . . . , yn). If deg(M(λ)) = m, f is called transformally
homogeneous of degree m.

The difference analogue of Euler’s theorem related to homogeneous polynomials is valid.

Lemma 4.6 f ∈ F{y0, y1, . . . , yn} is transformally homogeneous if and only if for each
r ∈ N0, there exists mr ∈ N0 such that

n∑

i=0

y
(r)
i

∂f(y0, . . . , yn)

∂y
(r)
i

= mrf.

Proof: “=⇒” Denote Y = (y0, . . . , yn) temporarily. Suppose f is transformally homoge-
neous. That is, there exists a difference monomial M(λ) =

∏r0
r=0(λ

(r))mr such that f(λY) =

M(λ)f(Y). Then
∑n

i=0 y
(r)
i

∂f

∂y
(r)
i

(λY) =
∑n

i=0
∂f

∂y
(r)
i

(λY)∂(λyi)
(r)

∂λ(r) = ∂f(λY)

∂λ(r) = ∂M(λ)f(Y)

∂λ(r) =

mr

λ(r) f(λY). Substitute λ = 1 into the above equality, we have
∑n

i=0 y
(r)
i

∂f

∂y
(r)
j

= mrf .

“⇐=” Suppose ord(f,Y) = r0. Then for each r ≤ r0, λ
(r) ∂f(λY)

∂λ(r) = λ(r)
∑n

i=0 y
(r)
i

∂f

∂y
(r)
i

(λY) =
∑n

i=0(λyi)
(r) ∂f

∂y
(r)
i

(λY) = mrf(λY). So f(λY) is homogeneous of degree mr in λ(r). Thus,

f(λY) = f(λy0, . . . , λyn;λ
(1)y

(1)
0 , . . . , λ(1)y

(1)
n ; . . . ;λ(r0)y

(r0)
0 , . . . , λ(r0)y

(r0)
n ) =

∏r0
r=0(λ

(r))mrf(Y).
Thus, f is transformally homogeneous. �

Sparse difference resultants have the following property.

Theorem 4.7 The sparse difference resultant is transformally homogeneous in each ui which
is the coefficient set of Pi.

Proof: Suppose ord(R,ui) = hi ≥ 0. Follow the notations used in Theorem 3.6. By

Lemma 3.9, R(u; ζ0, . . . , ζn) = 0. Differentiating this identity w.r.t. u
(k)
ij (j = 1, . . . , li)

respectively, we have
∂R

∂u
(k)
ij

+
∂R

∂u
(k)
i0

(
−

Mij(η)

Mi0(η)

)(k)
= 0. (7)

In the above equations, ∂R

∂u
(k)
ij

(k = 0, . . . , hi; j = 0, . . . , li) are obtained by replacing ui0 by

ζi (i = 0, 1, . . . , n) in each ∂R

∂u
(k)
ij

respectively.

Multiplying (7) by u
(k)
ij and for j from 1 to li, adding them together, we get

∑li
j=1 u

(k)
ij

∂R

∂u
(k)
ij

+

∂R

∂u
(k)
i0

ζ
(k)
i = 0. Thus, the difference polynomial fk =

∑li
j=0 u

(k)
ij

∂R

∂u
(k)
ij

vanishes at (ζ0, . . . , ζn).
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Since ord(fk, ui0) ≤ ord(R, ui0) and deg(fk) = deg(R), by Lemma 3.9, there exists an
mk ∈ Z such that fk = mkR. Thus, by Lemma 4.6, R is transformally homogeneous in ui.

�

4.3 Order bound in terms of Jacobi number

In this section, we will give an order bound for the sparse difference resultant in terms of
the Jacobi number of the given system similar to the differential case.

Consider a generic Laurent transformally essential system {P0, . . . ,Pn} defined in (1)
with ui = (ui0, ui1, . . . , uili) being the coefficient vector of Pi (i = 0, . . . , n). Suppose R is the
sparse difference resultant of P0, . . . ,Pn. Denote ord(R,ui) to be the maximal order of R
in uik (k = 0, . . . , li), that is, ord(R,ui) = maxkord(R, uik). If ui does not occur in R, then
set ord(R,ui) = −∞. Firstly, we have the following result.

Lemma 4.8 For fixed i and s, if there exists k0 such that deg(R, u
(s)
ik0

) > 0, then for all

k ∈ {0, 1, . . . , li}, deg(R, u
(s)
ik ) > 0. In particular, if ord(R,ui) = hi ≥ 0, then ord(R, uik) =

hi (k = 0, . . . , li).

Proof: Firstly, for each k ∈ {1, . . . , li}, by differentiating R(u; ζ0, . . . , ζn) = 0 w.r.t. u
(s)
ik ,

we have ∂R

∂u
(s)
ik

(u, ζ0, . . . , ζn) +
∂R

∂u
(s)
i0

(u, ζ0, . . . , ζn)
(
− Mik(η)

Mi0(η)

)(s)
= 0. If k0 = 0, then ∂R

∂u
(s)
i0

is a

nonzero difference polynomial not vanishing at (u, ζ0, . . . , ζn) by lemma 3.9. So ∂R

∂u
(s)
ik

6= 0.

Thus, deg(R, u
(s)
ik ) > 0 for each k. If k0 6= 0, then ∂R

∂u
(s)
ik0

(u, ζ0, . . . , ζn) 6= 0 and ∂R

∂u
(s)
i0

6= 0

follows. So by the case k0 = 0, for all k, deg(R, u
(s)
ik ) > 0.

In particular, if ord(R,ui) = hi ≥ 0, then there exists some k0 such that deg(R, u
(hi)
ik0

) >

0. Thus, for each k = 0, . . . , li, deg(R, u
(hi)
ik ) > 0 and ord(R, uik) = hi follows. �

Let A = (aij) be an n × n matrix where aij is an integer or −∞. A diagonal sum of A
is any sum a1σ(1) + a2σ(2) + · · · + anσ(n) with σ a permutation of 1, . . . , n. If A is an m× n
matrix with M = min{m,n}, then a diagonal sum of A is a diagonal sum of any M × M
submatrix of A. The Jacobi number of a matrix A is the maximal diagonal sum of A, denoted
by Jac(A).

Let ord(N(Pi), yj) = sij (i = 0, . . . , n; j = 1, . . . , n) and ord(N(Pi)) = si. We call the
(n+1)×nmatrix A = (sij) the order matrix of P0, . . . ,Pn. By Aî, we mean the submatrix ofA
obtained by deleting the (i+1)-th row from A. We use P to denote the set {N(P0), . . . ,N(Pn)}
and by Pî, we mean the set P\{N(Pi)}. We call Ji = Jac(Aî) the Jacobi number of the system
P
î
, also denoted by Jac(P

î
). Before giving an order bound for sparse difference resultant in

terms of the Jacobi numbers, we first list several lemmas.

Given a vector
−→
K = (k0, k1, . . . , kn) ∈ Zn+1

≥0 , we can obtain a prolongation of P:

P[
−→
K ] =

n⋃

i=0

N(Pi)
[ki]. (8)
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Let tj = max{s0j+k0, s1j +k1, . . . , snj+kn}. Then P[
−→
K ] is contained in Q[u[

−→
K ],Y[

−→
K ]], where

u[
−→
K ] = ∪n

i=0u
[ki]
i and Y[

−→
K ] = ∪n

j=1y
[tj ]
j .

Denote ν(P[
−→
K ]) to be the number of Y and their transforms appearing effectively in

P[
−→
K ]. In order to derive a difference relation among ui (i = 0, . . . , n) from P[

−→
K ], a sufficient

condition is
|P[

−→
K ]| ≥ ν(P[

−→
K ]) + 1. (9)

Note that ν(P[
−→
K ]) ≤ |Y[

−→
K ]| =

∑n
j=1(tj + 1). Thus, if |P[

−→
K ]| ≥ Y[

−→
K ] + 1, or equivalently,

k0 + k1 + · · ·+ kn ≥
n∑

j=1

max(s0j + k0, s1j + k1, . . . , snj + kn) (10)

is satisfied, then so is the inequality (9).

Lemma 4.9 Let P be a Laurent transformally essential system and
−→
K = (k0, k1, . . . , kn) ∈

Zn+1
≥0 a vector satisfying (10). Then ord(R,ui) ≤ ki for each i = 0, . . . , n.

Proof: Denote m[
−→
K ] to be the set of all monomials in variables Y[

−→
K ]. Let I = (P[

−→
K ]) : m[

−→
K]

be an ideal in the polynomial ring Q[Y[
−→
K ],u[

−→
K ]]. Denote U = u[

−→
K ]\ ∪n

i=0 u
[ki]
i0 . Let ζil =

−(
∑li

k=1 uikMik/Mi0)
(l) for i = 0, 1, . . . , n; l = 0, 1, . . . , ki. Denote ζ = (U, ζ0k0 , . . . , ζ00, . . . ,

ζnkn , . . . , ζn0). It is easy to show that (Y[
−→
K ], ζ) is a generic point of I. Let I1 = I ∩Q[u[

−→
K ]].

Then I1 is a prime ideal with a generic point ζ. Since Q(ζ) ⊂ Q(Y[
−→
K ], U), Codim(I1) =

|U |+
∑n

i=0(ki+1)−tr.degQ(ζ)/Q ≥ |U |+ |P[
−→
K ]|−tr.degQ(Y[

−→
K ], U)/Q = |P[

−→
K ]|−|Y[

−→
K ]| ≥ 1.

Thus, I1 6= {0}. Suppose f is a nonzero polynomial in I1. Clearly, ord(f,ui) ≤ ki and
f ∈ [P] : m ∩ Q{u0, . . . ,un}. By Lemma 3.9 and Lemma 4.8, ord(R,ui) ≤ ord(f,ui) ≤ ki.

�

Lemma 4.10 [23, Lemma 5.6] Let P be a system with Ji ≥ 0 for each i = 0, . . . , n. Then
ki = Ji (i = 0, . . . , n) satisfy (10) in the equality case.

Corollary 4.11 Let P be a Laurent transformally essential system and Ji ≥ 0 for each
i = 0, . . . , n. Then ord(R,ui) ≤ Ji (i = 0, . . . , n).

Proof: It is a direct consequence of Lemma 4.9 and Lemma 4.10. �

The above corollary shows that when all the Jacobi numbers are not less that 0, then
Jacobi numbers are order bounds for the sparse difference resultant. In the following, we deal
with the remaining case when some Ji = −∞. To this end, two more lemmas are needed.

Lemma 4.12 [6, 20] Let A be an m×n matrix whose entries are 0’s and 1’s. Let Jac(A) =
J < min{m,n}. Then A contains an a× b zero sub-matrix with a+ b = m+ n− J .
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Lemma 4.13 Let P be a Laurent transformally essential system with the following (n+1)×n
order matrix

A =

(
A11 (−∞)r×t

A21 A22

)
,

where r + t ≥ n + 1. Then r + t = n + 1 and Jac(A22) ≥ 0. Moreover, when regarded
as difference polynomials in y1, . . . , yr−1, {P0, . . . ,Pr−1} is a Laurent transformally essential
system.

Proof: The proof is similar to [23, Lemma 5.9]. �

Theorem 4.14 Let P be a Laurent transformally essential system and R the sparse differ-
ence resultant of P. Then

ord(R,ui) =

{
−∞ if Ji = −∞,
hi ≤ Ji if Ji ≥ 0.

Proof: Corollary 4.11 proves the case when Ji ≥ 0 for each i. Now suppose there exists at
least one i such that Ji = −∞. Without loss of generality, we assume Jn = −∞ and let
An = (sij)0≤i≤n−1;1≤j≤n be the order matrix of Pn̂. By Lemma 4.12, we can assume that An

is of the following form

An =

(
A11 (−∞)r×t

Ā21 Ā22

)
,

where r + t ≥ n+ 1. Then the order matrix of P is equal to

A =

(
A11 (−∞)r×t

A21 A22

)
.

Since P is Laurent transformally essential, by Lemma 4.13, r+t = n+1 and Jac(A22) ≥ 0.
Moreover, considered as difference polynomials in y1, . . . , yr−1, P̃ = {p0, . . . , pr−1} is Laurent
transformally essential and A11 is its order matrix. Let J̃i = Jac((A11 )̂i). By applying the

above procedure when necessary, we can suppose that J̃i ≥ 0 for each i = 0, . . . , r − 1.
Since [P] ∩ Q{u0, . . . ,un} = [P̃] ∩ Q{u0, . . . ,ur−1}, R is also the sparse difference resultant
of the system P̃ and ur, . . . ,un will not occur in R. By Corollary 4.11, ord(R,ui) ≤ J̃i.
Since Ji = Jac(A22) + J̃i ≥ J̃i for 0 ≤ i ≤ r − 1, ord(R,ui) ≤ Ji for 0 ≤ i ≤ r − 1 and
ord(R,ui) = −∞ for i = r, . . . , n. �

Example 4.15 Let n = 2 and Pi has the form

P0 = u00 + u01y1y
(1)
1 , P1 = u10 + u11y1, P2 = u10 + u11y

(1)
2 .

In this example, the order matrix of P is A =




1 −∞
0 −∞

−∞ 1


. Thus J0 = 1, J1 = 2, J2 =

−∞. And ord(R,u0) = 0 < J0, ord(R,u1) = 1 < J1, ord(R,u2) = −∞.

Corollary 4.16 Let P be supper-essential. Then Ji ≥ 0 for i = 0, . . . , n and ord(R,ui) ≤ Ji.
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Proof: From the proof of Theorem 4.14, if Ji = −∞ for some i, then P contains a proper
transformally essential subsystem, which contradicts to Theorem 3.24. Therefore, Ji ≥ 0 for
i = 0, . . . , n. �

We conclude this section by giving two improved order bounds based on the Jacobi bound
given in Theorem 4.14.

For each j ∈ {1, . . . , n}, let oj = min{k ∈ N0| ∃ i s.t. deg(N(Pi), y
(k)
j ) > 0}. In other words,

oj is the smallest number such that y
(oj)

j occurs in {N(P0), . . . ,N(Pn)}. Let B = (sij − oj)

be an (n + 1) × n matrix. We call J̄i = Jac(Bî) the modified Jacobi number of the system
Pî. Denote γ =

∑n
j=1 oj . Clearly, J̄i = Ji − γ. Then we have the following result.

Theorem 4.17 Let P be a Laurent transformally essential system and R the sparse differ-
ence resultant of P. Then

ord(R,ui) =

{
−∞ if Ji = −∞,
hi ≤ Ji − γ if Ji ≥ 0.

Proof: The proof is similar to [23, Theorem 5.13]. �

Now, we assume that P is a Laurent transformally essential system which is not supper-
essential. Let R be the sparse difference resultant of P. We will give a better order bound
for R. By Theorem 3.24, P contains a unique supper-essential sub-system PT. Without loss
of generality, suppose T = {0, . . . , r} with r < n. Let AT be the order matrix of PT and for
i = 0, . . . , r, let (AT)̂i be the matrix obtained from AT by deleting the (i + 1)-th row. Note
that (AT)̂i is an r × n matrix. Then we have the following result.

Theorem 4.18 With the above notations, we have

ord(R,ui) =

{
hi ≤ Jac((AT)̂i) i = 0, . . . , r,
−∞ i = r + 1, . . . , n.

Proof: Similarly to the proof of [23, Theorem 5.16], it can be proved. �

Example 4.19 Continue from Example 4.15. In this example, T = {0, 1}. Then AT =(
1
0

)
. Thus Jac((AT)0̂) = 0, Jac((AT)1̂) = 1. And ord(R,u0) = 0 = Jac((AT)0̂), ord(R,u1) =

1 = Jac((AT)1̂), ord(R,u2) = −∞.

5 A single exponential algorithm to compute the sparse dif-

ference resultant

In this section, we give an algorithm to compute the sparse difference resultant for a Laurent
transformally essential system with single exponential complexity. The idea is to estimate
the degree bounds for the resultant and then to use linear algebra to find the coefficients of
the resultant.
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5.1 Degree bound for sparse difference resultant

In this section, we give an upper bound for the degree of the sparse difference resultant,
which will be crucial to our algorithm to compute the sparse resultant. Before proposing the
main theorem, we first give some algebraic results which will be needed in the proof.

Lemma 5.1 [23, Theorem 6.2] Let I be a prime ideal in K[x1, . . . , xn] and Ik = I ∩
K[x1, . . . , xk] for any 1 ≤ k ≤ n. Then deg(Ik) ≤ deg(I).

Lemma 5.2 [28, Corollary 2.28] Let V1, . . . , Vr ⊂ P
n (r ≥ 2) be pure dimensional projective

varieties in P
n. Then

r∏

i=1

deg(Vi) ≥
∑

C

deg(C)

where C runs through all irreducible components of V1 ∩ · · · ∩ Vr.

Now we are ready to give the main theorem of this section.

Theorem 5.3 Let P0, . . . ,Pn be a Laurent transformally essential system of form (1) with
ord(N(Pi)) = si and deg(N(Pi),Y) = mi. Suppose N(Pi) =

∑li
k=0 uikNik and Ji is the Jacobi

number of {N(P0), . . . ,N(Pn)}\{N(Pi)}. Denote m = maxi{mi}. Let R(u0, . . . ,un) be the
sparse difference resultant of Pi (i = 0, . . . , n). Suppose ord(R,ui) = hi for each i. Then the
following assertions hold:

1) deg(R) ≤
∏n

i=0(mi + 1)hi+1 ≤ (m+ 1)
∑n

i=0(Ji+1), where m = maxi{mi}.

2) R has a representation

n∏

i=0

n∏

k=0

(N
(k)
i0 )deg(R) ·R =

n∑

i=0

hi∑

k=0

GikN(Pi)
(k) (11)

where Gik ∈ Q[u
[h0]
0 , . . . ,u

[hn]
n ,Y[h]] and h = max{hi+ei} such that deg(GikN(Pi)

(k)) ≤
[m+ 1 +

∑n
i=0(hi + 1)deg(Ni0)]deg(R).

Proof: In R, let ui0 be replaced by
(
N(Pi)−

∑li
k=1 uikNik

)
/Ni0 for each i = 0, . . . , n and let R

be expanded as a difference polynomial in N(Pi) and their transforms. Then there exist aik ∈

N and polynomials Gik such that
∏n

i=0

∏hi

k=0

(
N

(k)
i0

)aikR =
∑n

i=0

∑hi

k=0GikN(Pi)
(k)+T with

T ∈ Q{u,Y} free from ui0. Since T ∈ I = [N(P0), . . . ,N(Pn)] :m, T vanishes identically, for
I ∩Q{u,Y} = {0} by Theorem 3.6. Thus,

n∏

i=0

hi∏

k=0

(
N

(k)
i0

)aikR =

n∑

i=0

hi∑

k=0

GikN(Pi)
(k).

1) Let J =
(
N(P0)

[h0], . . . ,N(Pn)
[hn]

)
: m[h] be an algebraic ideal in R = Q[Y[h],u

[h0]
0 ,

. . . ,u
[hn]
n ] where h = maxi{hi + si} and m[h] is the set of all monomials in Y[h]. Then

R ∈ J by the above equality. Let η = (η1, . . . , ηn) be a generic point of [0] over Q〈u〉
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and denote ζi = −
∑li

k=1 uik
Nik(η)
Ni0(η)

(i = 0, . . . , n). It is easy to show that J is a prime ideal

in R with a generic point (η[h]; ũ, ζ
[h0]
0 , . . . , ζ

[hn]
n ) and J ∩ Q[u

[h0]
0 , . . . ,u

[hn]
n ] = (R), where

ũ = ∪iu
[hi]
i \{u

[hi]
i0 }. Let Hik be the homogeneous polynomial corresponding to N(Pi)

(k)

with x0 the variable of homogeneity. Then J 0 = ((Hik)1≤i≤n;0≤k≤hi
) : m̃ is a prime ideal

in Q[x0,Y
[h],u

[h0]
0 , . . . ,u

[hn]
n ] where m̃ is the whole set of monomials in Y[h] and x0. And

deg(J 0) = deg(J ).

Since V((Hik)1≤i≤n;0≤k≤hi
) = V(J 0) ∪ V(Hik, x0)

⋃
∪j,lV(Hik, y

(l)
j ), V(J 0) is an irre-

ducible component of V((Hik)1≤i≤n;0≤k≤hi
). By Lemma 5.2, deg(J 0)≤

∏n
i=0

∏hi

k=0(mi+1) =
∏n

i=0(mi + 1)hi+1. Thus, deg(J ) ≤
∏n

i=0(mi + 1)hi+1. Since J ∩ Q[u
[h0]
0 , . . . ,u

[hn]
n ] = (R),

by Lemma 5.1, deg(R) ≤ deg(J ) ≤
∏n

i=0(mi +1)hi+1 ≤ (m+ 1)
∑n

i=0(Ji+1) follows. The last
inequality holds because hi ≤ Ji by Theorem 4.17.

2) To obtain the degree bounds for the above representation of R, that is, to estimate

deg(GikN(Pi)
(k)) and aik, we take each monomial M in R and substitute ui0 by

(
N(Pi) −∑li

k=1 uikNik

)
/Ni0 into M and then expand it. To be more precise, we take one monomial

M(u;u00, . . . , un0) = uγ
∏n

i=0

∏hi

k=0(u
(k)
i0 )dik with |γ| +

∑n
i=0

∑hi

k=0 dik = deg(R) for an
example, where uγ represents a difference monomial in u and their transforms with exponent
vector γ. Then

M(u;u00, . . . , un0) = uγ

n∏

i=0

hi∏

k=0

((
N(Pi)−

li∑

k=1

uikNik

)(k))dik
/ n∏

i=0

hi∏

k=0

(
N

(k)
i0

)dik .

When expanded, every term of
∏n

i=0

∏hi

k=0

(
N

(k)
i0

)dikM is of degree bounded by |γ| +
∑n

i=0

∑hi

k=0(mi+1)dik ≤ (m+1)deg(R) in u
[h0]
0 , . . . ,u

[hn]
n and Y[h]. SupposeR =

∑
M aMM

and aik ≥ maxM{dik}. Then

n∏

i=0

hi∏

k=0

(
N

(k)
i0

)aikR =

n∑

i=0

hi∑

k=0

GikN(Pi)
(k)

with deg(GikN(Pi)
(k)) ≤ (m + 1)deg(R) +

∑n
i=0

∑hi

k=0 deg(Ni0)aik. Clearly, we can take
aik = deg(R) and then deg(GikN(Pi)

(k)) ≤ (m + 1 +
∑n

i=0(hi + 1)deg(Ni0))deg(R). Thus,
(11) follows. �

For a transformally essential difference polynomial system with degree 0 terms, the second
part of Theorem 5.3 can be improved as follows.

Corollary 5.4 Let Pi = ui0+
∑li

k=1 uikNik (i = 0, . . . , n) be a transformally essential differ-
ence polynomial system with m = maxi{deg(Pi,Y)} and Ji the Jacobi number of {P0, . . . ,Pn}\{Pi}.
Let R(u0, . . . , un) be the sparse difference resultant of Pi (i = 0, . . . , n). Suppose ord(R,ui) =
hi for each i and h = max{hi + si}. Then R has a representation

R(u0, . . . ,un) =

n∑

i=0

hi∑

j=0

GijP
(j)
i

where Gij ∈ Q[u
[h0]
0 , . . . ,u

[hn]
n ,Y[h]] such that deg(GijP

(j)
i ) ≤ (m+1)deg(R) ≤ (m+1)

∑n
i=0(Ji+1)+1.
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Proof: It is direct consequence of Theorem 5.3 by setting Ni0 = 1. �

The following result gives an effective difference Nullstellensatz under certain conditions.

Corollary 5.5 Let f0, . . . , fn ∈ F{y1, . . . , yn} have no common solutions with deg(fi) ≤ m.
Let Jac({f0, . . . , fn}\{fi}) = Ji. If the sparse difference resultant of f0, . . . , fn is nonzero,

then there exist Hij ∈ F{y1, . . . , yn} s.t.
∑n

i=0

∑Ji
j=0Hijf

(j)
i = 1 and deg(Hijf

(j)
i ) ≤ (m +

1)
∑n

i=0(Ji+1)+1.

Proof: The hypothesis implies that P(fi) form a transformally essential system. Clearly,
R(u0, . . . ,un) has the property stated in Corollary 5.4, where ui are coefficients of P(fi).
The result follows directly from Corollary 5.4 by specializing ui to the coefficients of fi. �

5.2 A single exponential algorithm to compute sparse difference resultant

If a polynomial R is the linear combination of some known polynomials Fi(i = 1, . . . , s), that
is R =

∑s
i=1 HiFi, and we know the upper bounds of the degrees of R and HiFi, then a

general idea to estimate the computational complexity of R is to use linear algebra to find
the coefficients of R.

For sparse difference resultant, we already have given its degree bound and the degrees
of the expressions in the linear combination in Theorem 5.3.

Now, we give the algorithm SDResultant to compute sparse difference resultants based
on the linear algebra techniques. The algorithm works adaptively by searching for R with
an order vector (h0, . . . , hn) ∈ Nn+1

0 with hi ≤ Ji by Theorem 5.3. Denote o =
∑n

i=0 hi.
We start with o = 0. And for this o, choose one vector (h0, . . . , hn) at a time. For this
(h0, . . . , hn), we search for R from degree d = 1. If we cannot find an R with such a degree,
then we repeat the procedure with degree d+1 until d >

∏n
i=0(mi+1)hi+1. In that case, we

choose another (h0, . . . , hn) with
∑n

i=0 hi = o. But if for all (h0, . . . , hn) with hi ≤ Ji and∑n
i=0 hi = o, R cannot be found, then we repeat the procedure with o + 1. In this way, we

will find an R with the smallest order satisfying equation (11), which is the sparse resultant.

Theorem 5.6 Let P0, . . . ,Pn be a Laurent transformally essential system of form (1). De-
note P = {N(P0), . . . ,N(Pn)}, Ji = Jac(Pî), J = maxiJi and m = maxni=0deg(Pi,Y). Algo-
rithm SDResultant computes sparse difference resultant R of P0, . . . ,Pn with the following
complexities:

1) In terms of the degree bound D of R, the algorithm needs at most O(DO(lJ)(nJ)O(lJ))
Q-arithmetic operations, where l =

∑n
i=0(li + 1) is the size of all Pi.

2) The algorithm needs at most O(mO(nlJ2)(nJ)O(lJ)) Q-arithmetic operations.

Proof: The algorithm finds a difference polynomial P in Q{u0, . . . ,un} satisfying equation
(11), which has the smallest order and the smallest degree in those with the same order.
Existence for such a difference polynomial is guaranteed by Theorem 5.3. By the definition
of sparse difference resultant, P must be R.

We will estimate the complexity of the algorithm below. Denote D to be the degree
bound of R. By Theorem 5.3, D ≤ (m+1)

∑n
i=0(Ji+1). In each loop of Step 3, the complexity
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Algorithm 1 — SDResultant(P0, . . . ,Pn)

Input: A generic Laurent transformally essential system P0, . . . ,Pn.
Output: The sparse difference resultant R(u0, . . . ,un) of P0, . . . ,Pn.

1. For i = 0, . . . , n, set N(Pi) =
∑li

k=0 uikNik with deg(Ni0) ≤ deg(Nik).
Set mi = deg(N(Pi)), mi0 = deg(Ni0), ui = coeff(Pi) and |ui| = li + 1.
Set sij = ord(N(Pi), yj), A = (sij) and compute Ji = Jac(A

î
).

2. Set R = 0, o = 0, m = maxi{mi}.
3. While R = 0 do

3.1. For each (h0, . . . , hn) ∈ Nn+1
0 with

∑n
i=0 hi= o and hi ≤ Ji do

3.1.1. U = ∪n
i=0u

[hi]
i , h = maxi{hi + ei}, d = 1.

3.1.2. While R = 0 and d ≤
∏n

i=0(mi + 1)hi+1 do
3.1.2.1. Set R0 to be a homogeneous GPol of degree d in U .
3.1.2.2. Set c0 = coeff(R0, U).
3.1.2.3. Set Hij(i = 0, . . . , n; j = 0, . . . , hi) to be GPols of degree

[m+ 1 +
∑n

i=0(hi + 1)mi0]d−mi − 1 in Y[h], U .
3.1.2.4. Set cij = coeff(Hij ,Y

[h] ∪ U).

3.1.2.5. Set P to be the set of coefficients of
∏n

i=0

∏hi

k=0(N
(k)
i0 )dR0−∑n

i=0

∑hi

j=0Hij(N(Pi))
(j) as a polynomial in Y[h], U .

3.1.2.6. Solve the linear equation P = 0 in variables c0 and cij .
3.1.2.7. If c0 has a nonzero solution, then substitute it into R0 to

get R and go to Step 4, else R = 0.
3.1.2.8. d:=d+1.

3.2. o:=o+1.
4. Return R.

/*/ GPol stands for generic algebraic polynomial.

/*/ coeff(P, V ) returns the set of coefficients of P as an ordinary polynomial in variables V .

of the algorithm is clearly dominated by Step 3.1.2, where we need to solve a system of linear
equations P = 0 over Q in c0 and cij . It is easy to show that |c0| =

(
d+L−1
L−1

)
and |cij | =(

d1−mi−1+L+n(h+1)
L+n(h+1)

)
, where L =

∑n
i=0(hi + 1)(li + 1) and d1 = [m+ 1 +

∑n
i=0(hi + 1)mi0]d.

Then P = 0 is a linear equation system with N =
(
d+L−1
L−1

)
+
∑n

i=0(hi+1)
(
d1−mi−1+L+n(h+1)

L+n(h+1)

)

variables and M =
(
d1+L+n(h+1)
L+n(h+1)

)
equations. To solve it, we need at most (max{M,N})ω

arithmetic operations over Q, where ω is the matrix multiplication exponent and the cur-
rently best known ω is 2.376.

The iteration in Step 3.1.2 may go through 1 to
∏n

i=0(mi + 1)hi+1 ≤ (m+ 1)
∑n

i=0(Ji+1),
and the iteration in Step 3.1 at most will repeat

∏n
i=0(Ji +1) ≤ (n+1)(J +1) times, where

J = maxiJi. And by Theorem 5.3, Step 3 may loop from o = 0 to
∑n

i=0(Ji + 1). The whole
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algorithm needs at most

∑n
i=0(Ji+1)∑

o=0

∑

hi≤Ji∑
i hi=o

∏n
i=0(mi+1)hi+1∑

d=1

(
max{M,N}

)2.376

≤ O(DO(lJ)(nJ)O(lJ)) ≤ O(mO(nlJ2)(nJ)O(lJ))

arithmetic operations over Q. In the above inequalities, we assume that (m+1)
∑n

i=0(Ji+1)+1 ≥
l(n + 1)J and l ≥ (n + 1)2, where l =

∑n
i=0(li + 1). Our complexity assumes an O(1)-

complexity cost for all field operations over Q. Thus, the complexity follows. �

Remark 5.7 As we indicated at the end of Section 3.3, if we first compute the suuper-
essential set T, then the algorithm can be improved by only considering the Laurent difference
polynomials Pi (i ∈ T) in the linear combination of the sparse resultant.

Remark 5.8 Algorithm SDResultant can be improved by using a better search strategy. If
d is not big enough, instead of checking d+1, we can check 2d. Repeating this procedure, we
may find a k such that 2k ≤ deg(R) ≤ 2k+1. We then bisecting the interval [2k, 2k+1] again
to find the proper degree for R. This will lead to a better complexity, which is still single
exponential.

For difference polynomials with non-vanishing degree terms, a better degree bound is
given in Corollary 5.4. Based on this bound, we can simplify the Algorithm SDResultant
to compute the sparse difference resultant by removing the computation for N(Pi) and Ni0

in the first step where Ni0 is exactly equal to 1.

Theorem 5.9 Algorithm SDResultant computes sparse difference resultants for a trans-
formally essential system of the form Pi = ui0+

∑li
k=1 uikNik with at most O(n3.376JO(n)mO(nlJ2))

Q-arithmetic operations.

Proof: Follow the proof process of Theorem 5.6, it can be shown that the complexity is
O(n3.376JO(n)mO(nlJ2)). �

6 Difference resultant

In this section, we introduce the notion of difference resultant and prove its basic properties.

Definition 6.1 Let ms,r be the set of all difference monomials in Y of order ≤ s and degree
≤ r. Let u = {uM}M∈ms,r be a set of difference indeterminates over Q. Then,

P =
∑

M∈ms,r

uMM

is called a generic difference polynomial of order s and degree r.

26



Throughout this section, a generic difference polynomial is assumed to be of degree
greater than zero. Let

Pi = ui0 +
∑

α ∈ Z
n(si+1)
≥0

1 ≤ |α| ≤ mi

uiα(Y
[si])α (i = 0, 1, . . . , n) (12)

be generic Laurent difference polynomials of order si, degree mi, and coefficients ui respec-
tively. Since {1, y1, . . . , yn} is contained in the support of each Pi, clearly, they form a
supper-essential system and the sparse difference resultant ResP0,...,Pn(u0, . . . ,un) exists. We
define ResP0,...,Pn(u0, . . . ,un) to be the difference resultant of P0, . . . ,Pn. That is,

Definition 6.2 Let Pi (i = 0, 1, . . . , n) be a generic difference polynomial system of the form
(12). Then the difference resultant R(u0, . . . ,un) of P0, . . . ,Pn is defined as the irreducible
difference polynomial contained in [P0, . . . ,Pn]∩Q{u0, . . . ,un} of minimal order in each ui,
which is unique up to a factor in Q.

Difference resultants hold all the properties we have proved for sparse difference resultants
in previous sections. Apart from these, in the following, we will show difference resultants
possess other better properties. Firstly, we will give the precise degree for the difference
resultant, which is of BKK-type [1, 7]. Before doing so, we need some results about algebraic
sparse resultants.

Let K[X] = K[x1, . . . , xn] be the polynomial ring defined over a field K. For any vector
α = (a1, . . . , an) ∈ Zn, denote the Laurent monomial xa11 xa22 · · · xann by Xα. Let B0, . . . ,Bn ⊂
Zn be subsets which jointly span the affine lattice Zn. Suppose 0 = (0, . . . , 0) ∈ Bi for each
i and |Bi| = li + 1 ≥ 2. Let

Fi(x1, . . . , xn) = ci0 +
∑

α∈Bi\{0}

ci,αX
α (i = 0, 1, . . . , n) (13)

be generic sparse Laurent polynomials defined w.r.t Bi (i = 0, 1, . . . , n). Bi or {X
α : α ∈ Bi}

are called the support of Fi. Denote ci = (ciα)α∈Bi
and c = ∪i(ci\{ci0}). Let Qi be the

convex hull of Bi in Rn, which is the smallest convex set containing Bi. Qi is also called the
Newton polytope of Fi, denoted by NP(Fi). In [27], Sturmfels gave the definition of algebraic
essential set and proved that a necessary and sufficient condition for the existence of sparse
resultant is that there exists a unique subset {Bi}i∈ I which is essential. Now, we restate the
definition of essential sets in our words for the sake of later use.

Definition 6.3 Follow the notations introduced above.

• A collection of {Bi}i∈ J, or {Fi}i∈J of the form (13), is said to be algebraically inde-
pendent if tr.degQ(c)(Fi − ci0 : i ∈ J)/Q(c) = |J|. Otherwise, they are said to be
algebraically dependent.

• A collection of {Bi}i∈ I is said to be essential if {Bi}i∈I is algebraically dependent and
for each proper subset J of I, {Bi}i∈ J are algebraically independent.
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In the case that {B0, . . . ,Bn} is essential, the degree of the sparse resultant can be
described by mixed volumes.

Theorem 6.4 ([27]) Suppose that {B0, . . . ,Bn} is essential. For each i ∈ {0, 1, . . . , n}, the
degree of the sparse resultant in ci is a positive integer, equal to the mixed volume

M(Q0, . . . ,Qi−1,Qi+1, . . . ,Qn) =
∑

J⊂{0,...,i−1,i+1,...,n}

(−1)n−|J|vol(
∑

j∈J

Qj)

where vol(Q) means the n-dimensional volume of Q ⊂ Rn and Q1+Q2 means the Minkowski
sum of Q1 and Q2.

Now, we give the first main result of this section.

Theorem 6.5 Let Pi (i = 0, . . . , n) be generic difference polynomials in Y = {y1, . . . , yn}
with order si, degree mi, and coefficients ui respectively. Let R(u0, . . . ,un) be the difference
resultant of P0, . . . ,Pn. Denote s =

∑n
i=0 si. Then R(u0, . . . ,un) is also the algebraic sparse

resultant of P
[s−s0]
0 , . . . ,P

[s−sn]
n as polynomials in Y[s], and for each i ∈ {0, 1, . . . , n} and

k = 0, . . . , s − si,

ord(R,ui) = s− si (14)

deg(R,u
(k)
i ) = M

(
(Qjl)j 6=i,0≤l≤s−sj ,Qi0, . . . ,Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
(15)

where Qjl is the Newton polytope of P
(l)
j as a polynomial in Y[s] and u

(k)
i = {u

(k)
iα , uiα ∈ ui}.

Proof: Regard P
(k)
i (i = 0, . . . , n; k = 0, . . . , s − si) as polynomials in the n(s + 1) variables

Y[s] = {y1, . . . , yn, y
(1)
1 , . . . , y

(1)
n , . . . , y

(s)
1 , . . . , y

(s)
n }, and we denote its support by Bik. Since

the coefficients of P
(k)
i can be treated as algebraic indeterminates, P

(k)
i are generic sparse

polynomials with supports Bik respectively. Now we claim that:

C1) B = {Bik : 0 ≤ i ≤ n; 0 ≤ k ≤ s− si} is an essential set.

C2) B = {Bik : 0 ≤ i ≤ n; 0 ≤ k ≤ s− si} jointly spans the affine lattice Zn(s+1).

Note that |B| = n(s + 1) + 1. To prove C1), it suffices to show that any n(s + 1) of

distinct P
(k)
i are algebraically independent. Without loss of generality, we prove that for a

fixed l ∈ {0, . . . , s− s0},

Sl = {(P
(k)
i )1≤i≤n;0≤k≤s−si,P0, . . . ,P

(l−1)
0 ,P

(l+1)
0 , . . . ,P

(s−s0)
0 }

is an algebraically independent set. Clearly, {y
(k)
j , . . . , y

(si+k)
j

∣∣j = 1, . . . , n} is a subset of the

support of P
(k)
i . Now we choose a monomial from each P

(k)
i and denote it by m(P

(k)
i ). Let

m(P
(k)
0 ) =

{
y
(k)
1 0 ≤ k ≤ l − 1

y
(s0+k)
1 l + 1 ≤ k ≤ s− s0

and m(P
(k)
1 ) =

{
y
(l+k)
1 0 ≤ k ≤ s0

y
(s1+k)
2 s0 + 1 ≤ k ≤ s− s1

.
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For each i ∈ {2, . . . , n}, let

m(P
(k)
i ) =

{
y
(k)
i 0 ≤ k ≤

∑i−1
j=0 sj

y
(si+k)
i+1

∑i−1
j=0 sj + 1 ≤ k ≤ s− si

.

So m(Sl) is equal to {y
[s]
j : 1 ≤ j ≤ n}, which are algebraically independent over Q.

Thus, the n(s + 1) members of Sl are algebraically independent over Q. For if not, all the

P
(k)
i −u

(k)
i0 (P

(k)
i ∈ Sl) are algebraically dependent over Q(v) where v = ∪n

i=0u
[s−si]
i \{u

[s−si]
i0 }.

Now specialize the coefficient ofm(P
(k)
i ) in P

(k)
i to 1, and all the other coefficients of P

(k)
i −u

(k)
i0

to 0, by the algebraic version of Lemma 2.2, {m(P
(k)
i ) : P

(k)
i ∈ Sl} are algebraically dependent

over Q, which is a contradiction. Thus, claim C1) is proved. Claim C2) follows from the fact

that 1 and Y[s] are contained in the support of P
[s−s0]
0 .

By C1) and C2), the sparse resultant of (P
(k)
i )0≤i≤n;0≤k≤s−si exists and we denote it

by G. Then (G) =
(
(P

(k)
i )0≤i≤n;0≤k≤s−si

)⋂
Q[u

[s−s0]
0 , · · · ,u

[s−sn]
n ], and by Theorem 6.4,

deg(G,u
(k)
i ) = M

(
(Qjl)j 6=i,0≤l≤s−sj ,Qi0, . . . , Qi,k−1,Qi,k+1, . . . ,Qi,s−si

)
, where u

(k)
i = (u

(k)
i0 ,

. . . , u
(k)
iα , . . .). The theorem will be proved if we can show that G = c ·R for some c ∈ Q.

Since G ∈ [P0, . . . ,Pn] and ord(G,ui) = s−si, by Lemma 3.9, ord(R,ui) ≤ s−si for each

i = 0, . . . , n. If for some i, ord(R,ui) = hi < s−si, thenR ∈ ((P
(k)
j )j 6=i;0≤k≤s−sj ,Pi, . . . ,P

(hi)
i ),

a contradiction to C1). Thus, ord(R,ui) = s− si and R ∈ (G). Since R is irreducible, there
exists some c ∈ Q such that G = c · R. So R is equal to the algebraic sparse resultant of

P
[s−s0]
0 , . . . ,P

[s−sn]
n . �

As a direct consequence of the above theorem and the determinant representation for
algebraic sparse resultant given by D’Andrea [8], we have the following result.

Corollary 6.6 The difference resultant for generic difference polynomials Pi, i = 0, . . . , n
can be written as the form det(M1)/det(M0) where M1 and M0 are matrixes whose elements
are coefficients of Pi and their transforms up to the order s− si and M0 is a minor of M1.

Based on the matrix representation given in the above corollary, the single exponential
algorithms given by Canny, Emiris, and Pan [11, 12] an be used to compute the difference
resultant.

Remark 6.7 From the proof of Theorem 6.5, we can see that for each i and 0 ≤ k ≤ s− si,

deg(R,u
(k)
i ) > 0. Furthermore, by Lemma 4.8, deg(R, u

(k)
i0 ) > 0 and deg(R, u

(k)
iα ) > 0 for

each α. In particular, deg(R, ui0) > 0 and deg(R, uiα) > 0.

Now, we proceed to give a Poisson-type product formula for difference resultant. Let
ũ = ∪n

i=0ui \{u00} and Q〈ũ〉 be the transformally transcendental extension of Q in the usual

sense. Let Q0 = Q〈ũ〉(u00, . . . , u
(s−s0−1)
00 ). Here, Q0 is not necessarily a difference overfield of

Q, for the transforms of u00 are not defined. In the following, we will follow Cohn [4] to obtain
algebraic extensions Gi of Q0 and define transforming operators to make Gi difference fields.

Consider R as an irreducible algebraic polynomial r(u
(s−s0)
00 ) in Q0[u

(s−s0)
00 ]. In a suitable
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algebraic extension field of Q0, r(u
(s−s0)
00 ) = 0 has t0 = deg(r, u

(s−s0)
00 ) = deg(R, u

(s−s0)
00 ) roots

γ1, . . . , γt0 . Thus

R(u0,u1, . . . ,un) = A

t0∏

τ=1

(u
(s−s0)
00 − γτ ) (16)

where A ∈ Q0. Let Iu = [P0, . . . ,Pn] ∩ Q{u0, . . . ,un}. Then by Definition 6.2, Iu is an
essential reflexive prime difference ideal in the decomposition of {R} which is not held by
any difference polynomial of order less than s− s0 in u00. Suppose R,R1,R2, . . . is a basic
sequence1 of R corresponding to Iu. That is, Iu =

⋃
k≥0 asat(R,R1, . . . ,Rk). Regard all

the Ri as algebraic polynomials over the coefficient field Q〈ũ〉. Denote γτ0 = γτ . Clearly,

u
(s−s0)
00 = γτ0 is a generic point of asat(R). Suppose γτi (i ≤ k) are found in some al-

gebraic extension field of Q0 such that u
(s−s0+i)
00 = γτi (0 ≤ i ≤ k) is a generic point of

asat(R,R1, . . . ,Rk). Then let γτ,k+1 be an element such that u
(s−s0+i)
00 = γτi (0 ≤ i ≤ k+1)

is a generic point of asat(R,R1, . . . ,Rk,Rk+1). Clearly, γτ,k+1 is also algebraic over Q0. Let

Gτ = Q〈ũ〉(u00, . . . , u
(s−s0−1)
00 , γτ , γτ1, . . .). Clearly, Gτ is an algebraic extension of Q0 and Gτ

is algebraically isomorphic to the quotient field of Q{u0, . . . ,un}/Iu. Since the quotient field
of Q{u0, . . . ,un}/Iu is also a difference field, we can introduce a transforming operator στ
into Gτ to make it a difference field such that the above isomorphism becomes a difference
one. That is, στ |Q0 = σ|Q0 and

σk
τ (u00) =

{
u
(k)
00 0 ≤ k ≤ s− s0 − 1

γτ,k−s−s0 k ≥ s− s0

In this way, (Gτ , στ ) is a difference field.
Let F be a difference polynomial in Q{u0,u1, . . . ,un} = Q{ũ, u00}. For convenience,

by the symbol F
∣∣
u
(s−s0)
00 =γτ

, we mean substituting u
(s−s0+k)
00 by σk

τγτ = γτk (k ≥ 0) into F .

Similarly, by saying F vanishes at u
(s−s0)
00 = γτ , we mean F

∣∣
u
(s−s0)
00 =γτ

= 0. The following

lemma is a direct consequence of the above discussion.

Lemma 6.8 F ∈ Iu if and only if F vanishes at u
(s−s0)
00 = γτ .

Proof: Since Iu =
⋃

k≥0 asat(R,R1, . . . ,Rk) and u
(s−s0+i)
00 = γτi (0 ≤ i ≤ k) is a generic

point of asat(R,R1, . . . ,Rk), the lemma follows. �

Remark 6.9 In order to make Gτ a difference field, we need to introduce a transform-
ing operator στ which is closely related to γτ . Since even for a fixed τ, generic points of

asat(R,R1, . . . ,Rk) beginning from u
(s−s0)
00 = γτ may not be unique, the definition of στ also

may not be unique, which is different from the differential case. In fact, it is a common
phenomena in difference algebra. Here, we just choose one, for they do not influence the
following discussions.

1For the rigorous definition of basic sequence, please refer to [4]. Here, we list its basic properties: i) For
each k ≥ 0, ord(Rk, u00) = s − s0 + k and R,R1, . . . ,Rk is an irreducible algebraic ascending chain, and ii)⋃

k≥0 asat(R,R1, . . . ,Rk) is a reflexive prime difference ideal.
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Now we give the following Poisson type formula for the difference resultant.

Theorem 6.10 Let R(u0, . . . ,un) be the difference resultant of P0, . . . ,Pn. Let deg(R, u
(s−s0)
00 )

= t0. Then there exist ξτk (τ = 1, . . . , t0; k = 1, . . . , n) in overfields (Gτ , στ ) of (Q〈ũ〉, σ) such
that

R = A

t0∏

τ=1

P0(ξτ1, . . . , ξτn)
(s−s0), (17)

where A ∈ Q〈u1, . . . ,un〉[u
[s−s0]
0 \u

(s−s0)
00 ]. Note that (17) is formal and should be understood

in the following precise meaning: P0(ξτ1, . . . , ξτn)
(s−s0) △

= σs−s0u00+σs−s0
τ (

∑
α u0α(ξ

[s−s0]
τ )α),

where ξτ = (ξτ1, . . . , ξτn).

Proof: By Theorem 4.7, there exists m ∈ N such that

u00
∂R

∂u00
+

∑

α

u0α
∂R

∂u0α
= mR.

Setting u
(s−s0)
00 = γτ in both sides of the above equation, we have

u00
∂R

∂u00

∣∣∣
u
(s−s0)
00 =γτ

+
∑

α

u0α
∂R

∂u0α

∣∣∣
u
(s−s0)
00 =γτ

= 0.

Let ξτα = ( ∂R
∂u0α

/ ∂R
∂u00

)
∣∣
u
(s−s0)
00 =γτ

. Then u00 = −
∑

α u0αξτα with u
(s−s0)
00 = γτ . That is,

γτ = −σs−s0
τ (

∑
α u0αξτα) = −(

∑
α u0αξτα)

(s−s0). Thus,

R = A

t0∏

τ=1

(u00 +
∑

α

u0αξτα)
(s−s0).

Suppose P0 = u00 +
∑n

j=1 u0j0yj + T0. Let ξτj = ( ∂R
∂u0j0

/ ∂R
∂u00

)
∣∣
u
(s−s0)
00 =γτ

(j = 1, . . . , n) and

ξτ = (ξτ1, . . . , ξτn). It remains to show that ξτα = (ξ
[s0]
τ )α.

Let ζi = −
∑

α uiα(Y
[si])α (i = 0, . . . , n). Clearly, ζ = (u, ζ0, . . . , ζn) is a generic point of

Iu = [P0, . . . ,Pn]∩Q{u0, . . . ,un}, where u = ∪n
i=1ui\{ui0}. For each (Y[s0])α =

∏n
j=1(y

(k)
j )djk ,

by equation (7), (Y[s0])α = ∂R
∂u0α

/
∂R
∂u00

=
n∏

j=1

s0∏
k=0

((
∂R

∂u0j0

/
∂R
∂u00

)(k))djk
, where ∂R

∂u0α
= ∂R

∂u0α

∣∣∣
ui0=ζi

.

So ∂R
∂u0α

n∏
j=1

s0∏
k=0

((
∂R
∂u00

)(k))djk
− ∂R

∂u00

n∏
j=1

s0∏
k=0

((
∂R

∂u0j0

)(k))djk
∈ Iu. By Lemma 6.8, ξτα =

n∏
j=1

s0∏
k=0

(
ξ
(k)
τj

)djk = (ξ
[s0]
τ )α. Thus, (17) follows. �

Theorem 6.11 The points ξτ = (ξτ1, . . . , ξτn) (τ = 1, . . . , t0) in (17) are generic points of
the difference ideal [P1, . . . ,Pn] ⊂ Q〈u1, . . . ,un〉{Y}.
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Proof: Clearly, ξτ are n-tuples over Q〈u1, . . . ,un〉. For each i = 1, . . . , n, rewrite Pi =

ui0 +
∑
α
uiα

n∏
j=1

si∏
k=1

(y
(k)
j )αjk . Since ζi = −

∑
α
uiα

n∏
j=1

si∏
k=1

(y
(k)
j )αjk and yj = ∂R

∂u0j0

/
∂R
∂u00

, ζi +

∑
α
uiα

n∏
j=1

si∏
k=1

(
( ∂R
∂u0j0

/
∂R
∂u00

)(k)
)αjk = 0. Let ajk = maxααjk. Then ui0

n∏
j=1

si∏
k=1

(
( ∂R
∂u00

)(k)
)ajk +

∑
α
uiα

n∏
j=1

si∏
k=1

(
( ∂R
∂u0j0

)(k)
)αjk

(
( ∂R
∂u00

)(k)
)ajk−αjk ∈ Iu. Thus, by Lemma 6.8, Pi(ξτ ) = ui0 +

∑
α
uiα

n∏
j=1

si∏
k=1

(ξ
(k)
τj )

αjk = 0 (i = 1, . . . , n).

On the other hand, suppose F ∈ Q〈u1, . . . ,un〉{Y} vanishes at ξτ . Without loss of gen-
erality, suppose F ∈ Q{u1, . . . ,un,Y}. Clearly, P1, . . . ,Pn constitute an ascending chain
in Q{u1, . . . ,un,Y} with ui0 as leaders. Let G be the difference remainder of F with re-
spect to this ascending chain. Then G is free from ui0 and F ≡ Gmod [P1, . . . ,Pn]. Then
G(ξτ ) = G(ũ; ξτ1, . . . , ξτn) = 0, where ũ = ∪n

i=1ui\{ui0}. So there exist ak ∈ N such that
G1 =

∏
k

(
( ∂R
∂u00

)(k)
)akG(ũ;Y) ∈ Iu. Thus, G1 vanishes at ui0 = ζi (i = 1, . . . , n) while ∂R

∂u00

does not. It follows that G(ũ;Y) ≡ 0 and F ∈ [P1, . . . ,Pn]. So ξτ are generic points of
[P1, . . . ,Pn] ⊂ Q〈u1, . . . ,un〉{Y}. �

By Theorem 6.10 and 6.11, we can see that difference resultants have Poisson-type prod-
uct formula which is similar to their algebraic and differential analogues.

7 Conclusion and problem

In this paper, we first introduce the concepts of Laurent difference polynomials and Lau-
rent transformally essential systems and give a criterion for Laurent transformally essential
systems in terms of their supports. Then the sparse difference resultant for a Laurent trans-
formally essential system is defined and its basic properties are proved. Furthermore, order
and degree bounds for the sparse difference resultant are given. Based on these bounds, an
algorithm to compute the sparse difference resultant is proposed, which is single exponential
in terms of the order, the number of variables, and the size of the Laurent transformally es-
sential system. Besides these, the difference resultant is introduced and its basic properties
are given, such as its precise order, degree, determinant representation and the Poisson-type
product formula.

In the rest of this section, we propose several questions for further study apart form
Problem 3.15.

It is useful to represent the sparse difference resultant as the quotient of two determinants,
as done in [8, 11] in the algebraic case. In the difference case, Theorem 6.5 shows that
difference resultant has such a matrix formula, but for sparse difference resultant, we do not
have such a formula yet. From (11), a natural idea to find a matrix representation is trying

to define the sparse difference resultant as the algebraic sparse resultant of P = {P
(k)
i (i =

0, . . . , n, k = 0, . . . , hi)} considered as Laurent polynomials in y
(j)
l .

The degree of the algebraic sparse resultant is equal to the mixed volume of certain
polytopes generated by the supports of the polynomials [24] or [16, p.255]. A similar degree
bound is given [23, Theorem 1.3] for the differential resultant. And Theorem 6.5 shows that
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the degree of difference resultants is exactly of such BKK-type. We conjecture that sparse
difference resultant has such degree bounds.

There exist very efficient algorithms to compute algebraic sparse resultants [10, 11, 12, 8],
which are based on matrix representations for the resultant. How to apply the principles
behind these algorithms to compute sparse difference resultants is an important problem.
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of a Finitely Generated Perfect Differential Ideal. Journal of Symbolic Computation,
31(6), 631-649, 2001.

[3] J. F. Canny. Generalized Characteristic Polynomials. Journal of Symbolic Computation,
9, 241-250, 1990.

[4] R. M. Cohn. Manifolds of Difference Polynomials. Trans. Amer. Math. Soc., 64(1), 1948.

[5] R. M. Cohn. Difference Algebra. Interscience Publishers, New York, 1965.

[6] R. M. Cohn. Order and Dimension. Proc. Amer. Math. Soc., 87(1), 1983.

[7] D. Cox, J. Little, D. O’Shea. Using Algeraic Geometry. Springer, 1998.

[8] C. D’Andrea. Macaulay Style Formulas for Sparse Resultants. Trans. of AMS, 354(7),
2595-2629, 2002.

[9] D. Eisenbud, F. O. Schreyer, and J. Weyman. Resultants and Chow Forms via Exterior
Syzygies. Journal of Amer. Math. Soc., 16(3), 537-579, 2004.

[10] I. Z. Emiris. On the Complexity of Sparse Elimination. J. Complexity, 12, 134-166, 1996.

[11] I. Z. Emiris and J. F. Canny. Efficient Incremental Algorithms for the Sparse Resultant
and the Mixed Volume. Journal of Symbolic Computation, 20(2), 117-149, 1995.

[12] I. Z. Emiris and V. Y. Pan. Improved algorithms for computing determinants and re-
sultants. Journal of Complexity, 21, 43-71, 2005.

[13] X. S. Gao and S. C. Chou. On the Dimension for Arbitrary Ascending Chains. Chinese
Bull. of Sciences, vol. 38, 396-399, 1993.

[14] X. S. Gao, W. Li, C. M. Yuan. Intersection Theory in Differential Algebraic Geometry:
Generic Intersections and the Differential Chow Form. arXiv:1009.0148v2, 58 pages,
2011, accepted by Trans. of Amer. Math. Soc..

[15] X. S. Gao, Y. Luo, C. M. Yuan. A Characteristicset Method for Ordinary Difference
Polynomial Systems. Journal of Symbolic Computation, 44(3), 242-260, 2009.

33

http://arxiv.org/abs/1009.0148


[16] I. M. Gelfand, M. Kapranov, A. Zelevinsky. Discriminants, Resultants and Multidimen-
sional Determinants. Boston, Birkhäuser, 1994.
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