
Decomposition of Ordinary Difference

Polynomials

Mingbo Zhang

KLMM and Department of Mathematics
University of Science and Technology of China, Hefei Province, China

Xiao-Shan Gao

Key Laboratory of Mathematics Mechanization
Institute of Systems Science, AMSS, Chinese Academy of Sciences

Abstract

In this paper, we present an algorithm to decompose ordinary nonlinear difference polynomi-
als with rational functions as coefficients. The algorithm provides an effective reduction of the
decomposition of difference polynomials to the decomposition of linear difference polynomials
over the same coefficient field. The algorithm is implemented in Maple for the constant coeffi-
cient case. Experimental results show that the algorithm is quite effective and can be used to
decompose difference polynomials with thousands of terms.
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1. Introduction

Functional decomposition for algebraic polynomials has been studied in detail and
there exist complete theoretical (15) and efficient algorithmic (4; 5) results. In the 1950s,
Ritt and his students established the differential algebra (14) and difference algebra (6)
to deal with the differential and difference equations from the algebraic and algorith-
mic viewpoint. Naturally, the decomposition of differential polynomials and difference
polynomials becomes a problem worth studying.
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Most existing work on decomposing differential and difference polynomials focuses
on the linear case. Classical algorithms for factoring linear differential operators, such
as Beke’s algorithm and its improvements, can also be used in the difference case (1).
Actually, linear differential and difference polynomials can be treated uniformly in the
setting of Ore algebra (1; 2; 11; 12). In (9; 19; 20), partial results were given to decom-
pose differential polynomials. In (10), a complete decomposition algorithm for nonlinear
ordinary differential polynomials was given.

The main motivation for studying decomposition algorithms is to simplify the solution
of differential or difference equations (17; 21). Theoretically, decomposition problems are
closely related to various forms of Lüroth’s theorem (16).

In this paper, we will give an algorithm to decompose nonlinear ordinary difference
polynomials. Our algorithm consists of three steps. First, the problem of decomposing a
general difference polynomial is reduced to the problem of decomposing a homogeneous
one, which will be presented in Section 5. Second, the decomposition of a homogeneous
difference polynomial is reduced to the construction of the linear left decomposition
factors of another homogenous difference polynomial, which will be presented in Section
4. Finally, construction of linear left decomposition factors of a homogenous difference
polynomial is reduced to the decomposition of linear difference polynomials, which will
be presented in Section 3. As mentioned above, there exist decomposition algorithms for
linear difference polynomials (1; 2; 11).

The worst case complexity of the algorithm is exponential. The reason is due to the
combinatorial selections in the algorithm. Notice that the complexity of decomposing
linear difference polynomials is also exponential. Despite of the exponential complexity,
the algorithm is quite effective practically. There are two reasons for this. First, all the
computations in the algorithm use explicit formulas to compute the result, and as a
consequence, for each of the combinatorial selection, the computation is extremely fast.
Second, in most practical examples, the number of possible combinatorial selections is not
very large. The experimental results also support this assertion. Similar to the differential
case (10), our algorithm presented in this paper does not introduce new parameters
during the decomposition process and works in the coefficient field of the given difference
polynomial.

The algorithm is implemented in Maple in the constant coefficient case 1 . Extensive
experiments show that the program can be used to decompose difference polynomials
with thousands of terms effectively. The results can found in Section 7.

Comparing to decomposition algorithms for algebraic polynomials, our algorithm is a
generalization of the algorithm by Kozen and Landau (4) to ordinary difference polynomi-
als. We need to consider much more cases than the algorithm in (4) due to the introduc-
tion of the difference operators. The decomposing algorithm for difference polynomials
presented in this paper is quite different from its differential counterpart presented in
(10). This is mainly due to the distinct properties of the differential and difference opera-
tors. Let y and z be indeterminants, δ a difference operator, and ∂ a differential operator.
Then, we have δ(y2 + yz) = δ(y)2 + δ(y)δ(z) and ∂(y2 + yz) = 2y∂(y) + ∂(y)z + y∂(z).
From this, we can see that the “structure” of a difference polynomial does not change
after the action of a difference operator, which is not the case for differential polynomials.

1 The package is available at http://www.mmrc.iss.ac.cn/˜ xgao/software/dec-chafen.zip
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Due to this property, our algorithm for decomposing difference polynomials is simpler
and more efficient than its differential counter part.

The rest of the paper is organized as follows. In Section 2, notations and preliminary
results are presented. In Sections 3, 4, and 5, we present the three major steps of the al-
gorithm. In Section 6, we show how to find decomposition factors containing parameters.
Experimental results are given in Section 7. We conclude the paper in Section 8.

2. Notations and Preliminary Results

Let K = Q(x) be the field of rational functions in x, δ a difference operator over K
such that δ(r) = r for r ∈ Q, δ(x) 6= x, and for any s ∈ K there exists a t ∈ K such that
δ(t) = s. In other words, K is a reflexive difference field (6). For instance, we may take
δ(x) = x + 1 or δ(x) = q · x for q ∈ Q \ {0} as the difference operator.

For a difference indeterminate y, let K{y} be the ordinary difference polynomial ring
over K (6). An element in K{y} is called a difference polynomial. We denote by yi = δiy
the i-th transform of y. Let f ∈ K{y} \ K. The largest i such that yi appears in f is
called the order of f , denoted by of . We can write f as the following form

f = fdy
d
of

+ fd−1y
d−1
of

+ · · ·+ f0 (1)

where fi is an algebraic polynomial in y, y1, y2, . . . , yof−1 and fd 6= 0. We call df , d the
degree of f and if , fd the initial of f . We can also write f as

f =
∑

ai0i1···iof
yi0yi1

1 · · · y
iof
of

where each ai0i1···iof
∈ K. We call ai0i1···iof

yi0yi1
1 · · · y

iof
of a term of f .

max{i0 + i1 + · · ·+ iof
| ai0i1···iof

6= 0}
is called the total degree of f , which is denoted by tdeg(f).

max{i1 + 2i2 + · · ·+ of iof
| ai0i1···iof

6= 0}
is called the difference degree of f and is denoted by ddeg(f).

If the total degrees of all the terms in f are the same, f is called homogeneous;
furthermore, if the difference degrees of all the terms in f are equal, f is called difference
homogeneous. In particular, if f is homogeneous and its total degree equals one, f is
called linear.

We may define a rank between two terms according to the pure lexicographical order
induced by the variable order y < y1 < y2 < · · · . In a difference polynomial f , the term
with the highest rank is called the leading term of f and is denoted by lf . A difference
polynomial f is said to be of lower rank than that of g if the leading term of f is of lower
rank than that of g.

Let g, h ∈ K{y}. We use g ◦ h to denote the functional composition of g and h, which
is defined by substituting yi in g with the i-th transform of h. If f = g ◦ h, g and h are
called the left and right decomposition factors of f respectively. A decomposition f = g◦h
is called nontrivial, if both g and h are not of the form ay + b, where a and b are in K.
Two decompositions f = g1 ◦ h1 and f = g2 ◦ h2 are called equivalent if there exist
a, b ∈ K such that h1 = (ay + b) ◦ h2. A decomposition f = p1 ◦ p2 · · · ◦ pn is called a

3



maximal decomposition of f , if there is no nontrivial decomposition for each pi. In this
paper, we only consider how to compute a decomposition of length two and we are only
interested in the nontrivial and nonequivalent decompositions. Let us see two examples
of decompositions of difference polynomials.

Example 1. (x + 1)y1y
3
2y2

3 + xyy3
1y2

2 =
(
(x + 1)y1y2 + xyy1

) ◦ yy2
1 is a decomposition

over the field Q(x).

Notice that the decomposition factors of linear difference polynomials may contain
parameters as shown by the following example.

Example 2. Let the difference operator be: δ(x) = x + 1.

y2 − 3y1 + 2y =
(

y1 − c · 2x − 2
c · 2x − 1

y

)
◦

(
y1 − 2(c · 2x − 1)

c · 2x − 2
y

)

is a decomposition of y2 − 3y1 + 2y in Q(x, 2x), where c is any difference constant.

In Sections 3, 4 and 5, we will give algorithms to find decomposition factors for a
difference polynomial, which do not contain parameters like the one in Example 2. In
Section 6, we will show how to modify our algorithms to find decomposition factors with
parameters.

The following properties of the difference decomposition can be easily verified.

Lemma 3. The composition operation is associative: f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Lemma 4. If f = g ◦ h is a decomposition of f , then of = og + oh, df = dg · dh, and
if = (ig ◦ h) · (ih)dg

og .

By Lemma 3, for any c ∈ K, we have f = g ◦ h =
(

g ◦ (y + c)
)
◦

(
(y− c) ◦ h

)
. So we

can assume that h has no term in K. In this case, the term of f in K is equal to that of
g. So we will assume that f , g, and h have no terms in K in the rest of this paper.

In this paper, we will show how to find a nontrivial decomposition f = g ◦ h for a
given difference polynomial f . After obtaining the right decomposition factor of f , we
can compute the corresponding left decomposition factor easily. One possible way is to
estimate the total degree and the order of g with Lemma 4 and then find the coefficients
of g by solving a algebraic linear equation system. The following algorithm gives a more
direct solution to this problem.

Algorithm 1. Input: difference polynomials f and h.
Output: a difference polynomial g such that f = g ◦ h if such a g exists.

S1 If f = 0, then return g = 0. Let og = of − oh, dg = df/dh. By Lemma 4, if og < 0 or
dg is not an integer, g does not exist and the algorithm terminates.

S2 Suppose that g = igy
dg
og + ug. We will find ig and ug separately.

S3 By Lemma 4, ig ◦ h = if/(ih)dg
og . If q = if/(ih)dg

og is not a difference polynomial, g
does not exist and the algorithm terminates. Otherwise, execute Algorithm 1 with q
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and h as input and ig as output. If ig does not exist, g does not exist and the algorithm
terminates.

S4 Let f1 = f − (igy
dg
og ) ◦ h. Then f1 = g ◦ h− (igy

dg
og ) ◦ h = (g− igy

dg
og ) ◦ h = ug ◦ h. Call

Algorithm 1 with f1 and h as input and ug as output. If ug exists, output igy
dg
og + ug;

otherwise g does not exist.
The algorithm clearly terminates since q and f1 are of lower ranks than that of f . Due

to Dickson’s Lemma (7), a sequence of difference polynomials with strictly decreasing
ranks must be finite.

In the rest of this paper, we will concentrate on computing the right decomposition
factor of a given difference polynomial.

3. Linear Left Decomposition Factor

In this section, we will solve the following problem:
Problem L. For a homogeneous difference polynomial f , compute a decomposition f =
g ◦ h such that g is linear.

The key idea is that we can construct a linear difference polynomial L such that if g
is a linear left decomposition factor of f , then g must be a left factor of L. This reduces
the problem to decomposition of linear difference polynomials.

In the rest of this section, we will assume that f and h are homogeneous and g is
linear. Notice that when f, g, h satisfy the conditions of Problem L, f and h have the
same total degree. We first prove the following lemma.

Lemma 5. If ddeg(f) < tdeg(f), then f has no nontrivial decomposition f = g ◦h such
that g is linear.

Proof. Let u = aIy
il

l · · · yim
m be any term of f , where l is the minimal integer such that

yl appears in u. If l ≥ 1, then ddeg(f) ≥ ddeg(u) = l · il + · · ·+ m · im ≥ il + · · ·+ im =
tdeg(u) = tdeg(f) (recall that f and h are assumed to be homogeneous in this section),
which contradicts to ddeg(f) < tdeg(f). So y must appear in each term of f . But for
a non-trivial decomposition f = g ◦ h where g is linear, we have og > 0 and g ◦ h must
contain a term which does not involve y, a contradiction.

Let a = ddeg(f), α = tdeg(f) and write f as the sum of difference homogeneous parts:

f = Fa + Fa−1 + · · ·+ F0

where Fj is the sum of terms in f with difference degree j (0 ≤ j ≤ a). Let k = a mod α
and a = t · α + k. By Lemma 5, we have t ≥ 1. Let

Li(y, z) = Fa−izt + Fa−α−izt−1 + · · ·+ Fa−tα−iz , i = 0, . . . , k (2)

Then Li is a linear difference polynomial in z with coefficients in K{y}.

Lemma 6. If a linear difference polynomial g ∈ K{y} is a left decomposition factor of
f , then it must be a left decomposition factor of each Li for i = 0, . . . , k.
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Proof. Let g = cnyn + · · · + c0y ∈ K{y} be a linear left decomposition factor of f
and h = Hb + Hb−1 + · · · + H0 be the corresponding right decomposition factor, where
b = ddeg(h) and Hl is the sum of terms with difference degree l(0 ≤ l ≤ b). Then

Fa + Fa−1 + · · ·+ F0 = (cnyn + cn−1yn−1 + · · ·+ c0y) ◦ (Hb + Hb−1 + · · ·+ H0). (3)

It is clear that Fa = cnyn ◦Hb, from which we can derive that a = b + nα. For a fixed
0 ≤ i ≤ k, by comparing the parts with difference degree a − jα − i = b − i + (n − j)α
(0 ≤ j ≤ t) on both sides of (3), we have

Fa−jα−i = cnyn ◦Hb−i−jα + cn−1yn−1 ◦Hb−i−(j−1)α + · · ·+ cn−jyn−j ◦Hb−i.

While the coefficient of zt−j in

(cnzn + · · ·+ c0z) ◦ (Hb−izt−n + Hb−i−αzt−n−1 + · · ·+ Hb−i−(t−n)αz)

is cnyn ◦ Hb−i−jα + cn−1yn−1 ◦ Hb−i−(j−1)α + · · · + cn−jyn−j ◦ Hb−i = Fa−jα−i. From
(2), we have

Li = (cnzn + · · ·+ c0z) ◦ (Hb−izt−n + Hb−i−αzt−n−1 + · · ·+ Hb−i−(t−n)αz) (4)

Namely, g is a left decomposition factor of Li.

By Lemma 6, we can first compute the common left decomposition factors of the linear
difference polynomials Li, i = 0, . . . , k and check whether they are left decomposition
factors of f . Notice that Li also involves the difference variable y, which can be eliminated
by using the following result.

Lemma 7. If g ∈ K{y} is a linear left decomposition factor of f , then we can choose
γi ∈ K such that Li(γi, z) 6= 0 and g is a left decomposition factor of

L̄i = Li(γi, z) = Fa−i(γi)zt + Fa−α−i(γi)zt−1 + · · ·+ Fa−tα−i(γi)z, i = 0, . . . , k.

Proof. By Lemma II on page 201 of (6), we can always choose a γi ∈ K such that
Li(γi, z) 6= 0 for each i. Since g = cnyn + · · ·+ c0y is a left decomposition factor of f , by
Lemma 6, we have equation (4). Replacing y with γi ∈ K in (4), we have

Li(γi, z) = (cnzn + · · ·+ c0z) ◦ (Hb−i(γi)zt−n + · · ·+ Hb−(t−n)α−i(γi)z)

So, g must be a linear left decomposition factor of L̄i.

By Lemma 7, to solve Problem L, we need only to find all the common left decom-
position factors of the linear difference polynomials L̄i ∈ K{z}, i = 0, . . . , k and check
whether they are left decomposition factors of f .

It is clear that decomposing a linear difference polynomial is equivalent to factoring a
linear difference operator. Most of the algorithms for factoring differential operators can
be used for the difference case, such as Beke’s algorithm (1).

Based on the above analysis, we give the following algorithm to solve Problem L.

Algorithm 2. Input: a homogeneous difference polynomial f and a positive integer n.
Output: a set S of all possible (g, h) such that f = g ◦ h is a nontrivial decomposition

of f , og = n and g is linear.
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S1 Let S := {}. If y appears in every term of f , by Lemma 6, f has no linear decompo-
sition factors. Return S.

S2 Let α = tdeg(f), a = ddeg(f), t = b a
αc, and a = t · α + k. If a < n · α, then g and

h do not exist and the algorithm terminates. Otherwise, write f as the sum of the
difference degree homogeneous parts: f = Fa + Fa−1 + · · · + F0 and let Li(y, z) =
Fa−izt + Fa−α−izt−1 + · · ·+ Fa−tα−iz, i = 0, . . . , k.

S3 For each Li, choose a γi ∈ K such that L̄i = Li(γi, z) 6= 0, i = 0, . . . , k.
S4 Compute the greatest common left divisor L̃ of L̄i, i = 0, · · · , k with the left Euclidean

remainder sequence method (1; 12).
S5 Compute the left decomposition factors of L̃ of order n with algorithms in (1; 2; 11;

12).
S6 For each g obtained in S5, check whether g is a left decomposition factor of f with

Algorithm 3. If it is, compute the correspondent right decomposition factor h and add
(g, h) to S, return S. Note that g and h may contain parameters, this issue will be
addressed later in Section 6.
Note that in Step S3, the coefficients of the linear difference polynomial L̄i are still

in K. In other words, we do not need to do the decomposition in an extension field.

Algorithm 3. Input: a difference polynomial f and a linear difference polynomial g.
Output: a difference polynomial h such that f = g ◦ h if such an h exists.

S1 Let h := 0.
S2 Since g is linear, by Lemma 4 we have oh = of − og, dh = df , ih = y−og ◦ (if/ig). If

ih is not a difference polynomial, then h does not exist and the algorithm terminates.
S3 Let h := h− ihydh

oh
, f := f − g ◦ (ihydh

oh
). If f = 0, output h; otherwise, go to S2.

In step S2, we use y−og ◦ p to represent the following inversion procedure. Let m be

the minimal integer such that ym appears in p and p =
∑

aim···iof
yim

m · · · yiof
of . If og > m,

y−og
◦ p does not exist; otherwise y−og

◦ p =
∑

(δ−ogaim···iof
)yim

m−og
· · · yiof

of−og
.

Algorithm 3 is correct because g is linear and hence g◦(ihydh
oh

+uh) = g◦(ihydh
oh

)+g◦uh.

Remark 8. In Steps S3 and S4 of Algorithm 2, we may use the following strategy to
improve the computational efficiency. We may select more values ηi ∈ K, i = 0, . . . , k
such that L′i = Li(ηi, z) 6= 0, i = 0, . . . , k. Let L̃′ be the greatest common left divisor of
L̄i, L

′
i, i = 0, · · · , k. Then L̃′ could be of lower order than that of L̃. In Step S5, we can

compute the factors of L̃′ in stead of L̃.

Example 9. Let the difference operator be δ(x) = x + 1. Let f = y2y3 + y2
3 + y2y4 +

yy1 + y2
1 + yy2 be a homogeneous difference polynomial over K. We use Algorithm 2 to

compute its linear left decomposition factors of order two.
In S2, we have α = tdeg(f) = 2, a = ddeg(f) = 6, k = mod (a, α) = 0, and

f = F6 + F5 + F2 + F1 = (y2
3 + y2y4) + (y2y3) + (yy2 + y2

1) + (yy1). By Lemma 6, if g(y)
is a linear left decomposition factor of f , g(z) must be a linear left decomposition factor
of L0 = (y2

3 + y2y4)z3 + (yy2 + y2
1)z1.

In S3, if we choose y = 1, we have that g(z) is a linear left decomposition factor of
L0(1, z) = 2z3 + 2z1. It is clear that g(z) = z2 + z and h = 2z1. If we choose y = x,
then L0(x, z) = (2x2 + 12x + 17)z3 + (2x2 + 4x + 1)z1. The only non-equivalent linear
left decomposition factor of L0(x, z) with order two is g(z) = z2 + z (L0(x, z) = (z2 +
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z) ◦ (
(2x2 + 4x + 1)z1

)
). In S6, we can check that g(y) = y2 + y is really a linear left

decomposition factor of f : f = (y2 + y) ◦ (yy2 + y2
1 + yy1).

4. Decomposition of Homogeneous Difference Polynomials

In this section, we consider the following decomposition problem.
Problem H. Let f be a homogeneous difference polynomial. Find all the decomposition
factors of f .

The idea is first reducing the problem to the decomposition of another difference
polynomial f ′, the initial of whose left decomposition factor must be in K and then
solving this new problem directly. We first prove two lemmas.

Lemma 10. If f = g ◦ h, then fdf−i is divisible by yog ◦ h
dg−i
dh

(0 ≤ i ≤ dg), where fj is
the coefficient of yj

of
in f .

Proof. If f = g ◦ h, we write f, g, h as their canonical representations similar to (1)

f = fdf
y

df
of + fdf−1y

df−1
of + . . . + f1yof

+ f0

g = gdg
ydg

og
+ gdg−1y

dg−1
og

+ . . . + g1yog
+ g0 (5)

h = hdh
ydh

oh
+ hdh−1y

dh−1
oh

+ . . . + h1yoh
+ h0.

We have

g ◦ h = (gdg
◦ h) · [(yog

◦ hdh
)ydh

og+oh
+ · · ·+ yog

◦ h0

]dg + (gdg−1 ◦ h) ·
[
(yog

◦ hdh
)ydh

og+oh
+ · · ·+ yog

◦ h0

]dg−1 + · · ·+ g0 ◦ h

Comparing the coefficients of yi
of

(df ≥ i ≥ df − dh − 1) on both sides of f = g ◦ h, we
have

fdf
= (gdg

◦ h) · yog
◦ h

dg

dh

fdf−1 = (gdg
◦ h) · yog

◦ [dgh
dg−1
dh

hdh−1]

· · ·
fdf−i = (gdg ◦ h) · yog ◦ [dgh

dg−1
dh

hdh−i + Ti] (6)

· · ·
fdf−dh

= (gdg
◦ h) · yog

◦ [dgh
dg−1
dh

h0 + Tdh
] + (gdg−1 ◦ h) · (yog

◦ h
dg−1
dh

)

where

Ti = (hdh
ydh

oh
+ hdh−1y

dh−1
oh

+ · · ·+ hdh−i+1y
dh−i+1
oh

)dg

df−i

(7)

denotes the coefficient of y
df−i
oh in (hdh

ydh
oh

+ hdh−1y
dh−1
oh

+ · · ·+ hdh−i+1y
dh−i+1
oh

)dg (1 ≤
i ≤ dh). Notice that Ti is divisible by h

dg−i
dh

, so we prove the lemma.
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Lemma 11. If f = g ◦ h, then h is also a right decomposition factor of the difference
polynomials f (k), k = 1, . . . , s which are defined as: f (0) = f , g(0) = g, and

g(k) = ig(k−1) , f (k) =
if(k−1)

yo
g(k−1) ◦ i

d
g(k−1)

h

= g(k) ◦ h, k = 1, . . . , s. (8)

Proof. By the first equation in (6), we have

f (1) =
if

yog ◦ i
dg

h

=
fdf

yog ◦ h
dg

dh

= gdg
◦ h = g(1) ◦ h

which proves the case: k = 1. By repeating this process, we may prove other cases. Note
that these results are true under the condition that f (k) are difference polynomials.

Before solving Problem H, we first solve the following simpler problem.
Problem H1. Let F be a homogeneous difference polynomial. Find the decompositions
f = g ◦ h such that (dh, oh, hdh

) equals to the given value and the initial of g is in K.
We consider two cases:
(1) dg = 1. Since g is homogeneous, g is linear. We can compute g, h with Algorithm

2.
(2) dg > 1. From the first equation in (6), we have

gdg
=

fdf

yog
◦ h

dg

dh

. (9)

We can do this, because gdg ∈ K and hence gdg ◦ h = gdg . We can obtain hi for i =
1, . . . , dh − 1 from the second to the (dh − 1)-th equations in (6) as follows

hdh−i = (y−og
◦ fdf−i

gdg

− Ti)/(dgh
dg−1
dh

), i = 1, . . . , dh − 1. (10)

To compute h0, from the last formula in (6), we have

dggdg · yog ◦ h0 + gdg−1 ◦ h =
(

fdf−dh
− gdg · yog ◦ Tdh

)/
yog ◦ h

dg−1
dh

, F1 (11)

Substituting h0 = h− ∑
1≤i≤dh

hiy
i
oh

into (11), we have

(dggdgyog + gdg−1) ◦ h = F1 + dggdgyog ◦ (
∑

1≤i≤dh

hiy
i
oh

) , F2 (12)

Note that gdg−1 is a linear difference polynomial with order less than og and F2 can be
computed. Then dggdg

yog
+ gdg−1 is a linear left decomposition factor of F2 with order

og and we can obtain all possible h by executing Algorithm 2 with input (F2, og).

Now, we can describe our algorithm in three steps.
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• By Lemmas 4 and 10, the three elements (dh, oh, hdh
) satisfy dh | df , oh ≤ of , (yog ◦

h
dg−i
dh

) divides fdf−i(0 ≤ i ≤ dg). From these equations, we may guess all possible
values for (dh, oh, hdh

) from f .
• After (dh, oh, hdh

) is known, by Lemma 4, we have dg = df

dh
, og = of − oh. Repeat

(8) until either f (k) is not a difference polynomial or f (k+1) ∈ K. In the first case,
there exists no h satisfying the condition. In the second case, we solve Problem H1 as
mentioned above.

• Finally, we check whether the right decomposition factors found in the preceding step
are the right decomposition factor of f .
Based on the analysis above, we propose the following algorithm to compute all the

decompositions of a given homogeneous difference polynomial.

Algorithm 4. Input: a homogeneous difference polynomial f ∈ K{y}.
Output: T = {(g, h)} is the set of all non-equivalent decomposition factors of f .

S1 T := {}, f̄ := f . Let S = {(dh, oh, hdh
) : dh|df , 0 ≤ oh ≤ of , yof−oh

◦h
df /dh−i
dh

divides
fdf−i(0 ≤ i ≤ dg − 1)}, where fi is the coefficient of yi

of
in f .

S2 If S is empty, then return T ; otherwise, choose a (dh, oh, hdh
) in S and let S :=

S \ {(dh, oh, hdh
)}. Let f̄ = f .

S3 Let dg := df̄

dh
, og := of̄ − oh, and f̄i the coefficient of yi

of̄
in f̄ . If dg is not an integer,

or og < 0, or there exists an i (0 ≤ i ≤ dg) such that yog
◦h

dg−i
dh

does not divide f̄df̄−i,
then there exists no h corresponding to (dh, oh, hdh

) and go to S2; otherwise, go to S4.

S4 Let f̂ :=
f̄d

f̄

yog◦h
dg
dh

. If f̂ /∈ K, then f̄ := f̂ and go to S3; otherwise, go to S5. This step

corresponds to (8).
S5 If dg = 1, then g is linear and execute Algorithm 2 with input f̄ , og. Let the output

be the set G, go to S7.
S6 If dg > 1, compute gdg

with (9) and compute hdh−i, i = 1, . . . , dh−1, F1 and F2 with
(10), (11), and (12) respectively. In the above computation, if one of the results is not
a difference polynomial, then go to S2. Execute Algorithm 2 with input F2, og. Let the
output be G.

S7 For each (g, h) in G, check whether h is a right decomposition factor of f with
Algorithm 1. If it is and the corresponding left decomposition factor is g′, then add
(g′, h) to T . Go to S2.

Example 12. Let f = (x+1)y1y
3
2y2

3+xyy3
1y2

2 ∈ K{y}. We compute all the decomposition
factors of f .

In step S1, we have S = {(1, 1, 1), (1, 2, 1), (1, 3, 1), (1, 1, y), (1, 2, y1), (1, 3, y2), (2, 3, 1),
(2, 3, y2), (2, 3, y2

2), (2, 3, y3
2), (2, 3, y1), (2, 3, y1y2), (2, 3, y1y

2
2), (2, 3, y1y

3
2), (2, 2, 1), (2, 2,

y1), (2, 2, y2
1), (2, 2, y3

1), (2, 2, y), (2, 2, yy1), (2, 2, yy2
1), (2, 2, yy3

1), (2, 1, 1), (2, 1, y), (2, 1, y2),
(2, 1, y3)}.

In step S2, we choose (2, 1, y) ∈ S to start the computation. Steps S3 and S4 run three
times continually and output f̄ = (x + 1)y2y

2
3 (dg = 1). In step S5, execute Algorithm

2 to compute the second order linear left decomposition factor of f̄ = (x + 1)y2y
2
3 , the

output is
(
y2, (x− 1)yy2

1

)
. In step S7, we can check that f = (y1y2

x + yy1
x−1 ) ◦ (

(x− 1)yy2
1

)
.
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If we choose other elements in S to start in step S2, only (2, 2, yy3
1) leads to the

decomposition f = (y1 +y)◦ (xyy3
1y2

2). Here we omit the details. Note that (y1y2
x + yy1

x−1 )◦(
(x− 1)yy2

1

)
=

(
(x + 1)y1y2 + xyy1

) ◦ yy2
1 are two equivalent decompositions.

From the above example, we can see that there could exist many choices for (dh, oh, hdh
),

but most of them do not lead to a decomposition. This may reduce the efficiency. How
to improve the algorithm on this aspect is one of our future research topics.

5. Decomposition in the General Case

We now consider the decomposition algorithm in the general case, which is based on
the following result.

Theorem 13. Let f = g ◦ h be a nontrivial decomposition of f , t, a, b the total degrees
of f, g, h respectively, and

f = Ft + Ft−1 + · · ·+ F1

g = Ga + Ga−1 + · · ·+ G1

h = Hb + Hb−1 + · · ·+ H1

the representations of f, g, h as sums of homogeneous parts respectively. Then Ft = Ga ◦
Hb and Hi(1 ≤ i ≤ b− 1) can be determined explicitly and uniquely from Hb, Ga and f .

Now, we can give the general framework for our main algorithm. For a given difference
polynomial f , we write f as the sum of its homogeneous parts f = Ft + Ft−1 + · · ·+ F1.
With Algorithm 4, we can find all p and q such that Ft = p ◦ q. Then we will use q as a
candidate for Hb to compute h based on Theorem 13. Finally, g can be computed with
Algorithm 1.

Before proving Theorem 13, we need to give two lemmas and a crucial sub-algorithm.

Lemma 14. Let u, v, h, p be difference polynomials. We denote the leading term of a
difference polynomial f by lf . Then we have
(1) lu·v = lu · lv.
(2) lu◦v = lu ◦ lv.
(3) If yj appears in lu, then l ∂u

∂yj

= ∂lu
∂yj

.

(4) For a nonnegative integer j, if yj appears in lu, the leading term of ∂u
∂yj

◦ h · yj ◦ p
is

∂lu
∂yj

◦ lh · yj ◦ lp = βj lu ◦ lh · yj ◦ lp
lh

where βj = degyj
lu is the degree of lu in yj.

Proof. The first three properties can be easily proved and the fourth one can be deduced
from the first three.

11



Lemma 15. Let f, g, and h be homogeneous difference polynomials. If a difference poly-
nomial p satisfies

f =
∑

0≤j≤og

∂g

∂yj
◦ h · yj ◦ p (13)

and tdeg(p) < tdeg(h), then p is unique and can be computed from f, g and h explicitly.

Proof. We use rank(f)>rank(g) to denote the fact that the rank of f is higher than the
rank of g. Assume that there is a p satisfying the conditions in the lemma and q is an
arbitrary term included in g. Let

lg = αyak

k y
ak+1
k+1 · · · y

aog
og , q = βybn

n y
bn+1
n+1 · · · ybm

m

where k is the least integer such that yk appears in lg and n,m are the minimal and
maximal integers such that yn, ym appear in q. We divide the problem into two cases.
(1). rank(p)> rank(h). By Lemma 14, the leading term of

∑
0≤j≤og

∂q
∂yj

◦ h · yj ◦ p is

∂q

∂ym
◦ lh · ym ◦ lp = bmq ◦ lh · ym ◦ lp

lh
.

Since rank(lg)≥rank(q), og ≥ m, and rank(p)>rank(h), the rank of aog lg ◦ lh · yog ◦ lp
lh

is

higher than that of bmq ◦ lh · ym ◦ lp
lh

. Then the leading term of
∑

0≤j≤og

∂g
∂yj

◦ h · yj ◦ p is

∂lg
∂yog

◦ lh · yog
◦ lp = aog

lg ◦ lh · yog
◦ lp

lh
.

So we have lf = ∂lg
∂yog

◦ lh · yog
◦ lp and hence

lp = y−og
◦

(
lf

/
(

∂lg
∂yog

◦ lh)
)

(14)

(2). rank(p)<rank(h). By Lemma 14, the leading term of
∑

0≤j≤og

∂q
∂yj

◦ h · yj ◦ p is

∂q

∂yn
◦ lh · yn ◦ lp = bnq ◦ lh · yn ◦ lp

lh
.

If n ≥ k, by rank(lp)<rank(lh), we have rank(yk ◦ lp
lh

)>rank(yn ◦ lp
lh

) and the rank of

aklg ◦ lh · yk ◦ lp
lh

is higher than that of biq ◦ lh · yn ◦ lp
lh

. Then the leading term of∑
0≤j≤og

∂g
∂yj

◦ h · yj ◦ p is

∂lg
∂yk

◦ lh · yk ◦ lp = aklg ◦ lh · yk ◦ lp
lh

.

So we have lf = ∂lg
∂yk

◦ lh · yk ◦ lp and hence

lp = y−k ◦
(

lf

/
(
∂lg
∂yk

◦ lh)
)

. (15)
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If n < k, it is easy to check that rank( ∂lg
∂yk

)>rank( ∂q
∂yn

) and rank(yk ◦ lp)>rank(yn ◦ lp).

So the rank of ∂lg
∂yk

◦ lh · yk ◦ lp is higher than that of ∂q
∂yn

◦ lh · yn ◦ lp and the equality
(15) still holds.

Since tdeg(p) < tdeg(h) and p, h are both homogeneous, the case of rank(p)=rank(h)
will not happen. Hence lp can be computed from (14) and (15). Let p = lp + p̄. Since
yj ◦ p = yj ◦ lp + yj ◦ p̄, p̄ still satisfies a formula similar to (13). Therefore, p can be
computed by using (14) and (15) repeatedly.

If there exist two distinct difference polynomials p1 and p2 such that




f =
∑

0≤j≤og

∂g
∂yj

◦ h · yj ◦ p1

f =
∑

0≤j≤og

∂g
∂yj

◦ h · yj ◦ p2

then we have ∑

0≤j≤og

∂g

∂yj
◦ h · yj ◦ (p1 − p2) = 0.

p1 − p2 still satisfies the conditions of the lemma. Then either (14) or (15) must hold.
We have lp1−p2 = 0, which means p1 = p2, a contradiction.

Following the proof of Lemma 15, we give the following algorithm.

Algorithm 5. Input: homogeneous difference polynomials f, g, h.
Output: a difference polynomial p such that f =

∑
0≤i≤og

∂g
∂yi

◦ h · yi ◦ p and tdeg(p) <

tdeg(h), if it exists.

S1 Let lf , lg, lh be the leading terms of f, g, h respectively, k = min{i : yi appears in lg}
and p := 0. By the proof of Lemma 15, the leading term lp of p must satisfy one and
only one of the following two equalities





∂lg
∂yk

◦ lh · yk ◦ lp = lf if rank(p)>rank(h)
∂lg

∂yog
◦ lh · yog

◦ lp = lf if rank(p)<rank(h)

S2 If f = 0, then return p. Use (15) to compute lp. If lp is not a difference polynomial,
then go to S3; otherwise go to S4. This step computes lp in the case of rank(p)>rank(h).

S3 Use (14) to compute lp. If lp is not a difference polynomial, then terminate the
algorithm and return “p does not exist”; otherwise go to step S4. This step computes
lp in the case of rank(p)<rank(h).

S4 Let p := p + lp, f := f − ∑
0≤j≤og

∂g
∂yj

◦ h · yj ◦ lp. Go to step S2.

Now we give the proof for Theorem 13.
If f has a decomposition f = g ◦ h, we have

Ft + Ft−1 + · · ·+ F1 = (Ga + Ga−1 + · · ·+ G1) ◦ (Hb + Hb−1 + · · ·+ H1).

Comparing the homogeneous parts on both sides of f = g ◦ h, we have

13



Ft = Ga ◦Hb

Ft−1 =
∑

0≤i≤oGa

∂Ga

∂yi
◦Hb · yi ◦Hb−1

· · · (16)

Ft−k = Ga ◦ (Hb + · · ·+ Hb−k+1)
t−k

+
∑

0≤i≤oGa

∂Ga

∂yi
◦Hb · yi ◦Hb−k

· · ·
Ft−b+1 = Ga ◦ (Hb + Hb−1 + · · ·+ H2)

t−b+1

+
∑

0≤i≤oGa

∂Ga

∂yi
◦Hb · yi ◦H1

where u
i

is the sum of terms in u with total degree i. Using Algorithm 4, we can

determine all possible Ga and Hb from the first formula in (16). By Lemma 15, we can
determine Hb−1, · · · ,H1 uniquely one by one starting from the second equality. So we
have h = Hb +Hb−1 + · · ·+H1. Such an h is not necessarily a right decomposition factor
of f , because we have only compared the terms with total degrees from t − b + 1 to t.
We need to check whether h is a right decomposition factor of f , which can be done by
Algorithm 1.

Based on the analysis in this section, we have the following decomposition algorithm.

Algorithm 6. Input: a difference polynomial f .
Output: a nontrivial decomposition of f : f = g ◦ h.

S1 Write f as the sum of homogeneous parts f = Ft + Ft−1 + · · ·+ F1.
S2 Execute Algorithm 4 with input Ft. Assume that the output is T .
S3 If T is empty, then return “f has no nontrivial decompositions”; otherwise, choose a

(g, h) ∈ T and T := T − {(g, h)}.
S4 Let a = tdeg(g), b = tdeg(h), Ga = g, and Hb = h. For k = 1, . . . , b − 1, execute

Algorithm 5 to compute Hb−k, . . . , H1 with input

Ft−k − Ga ◦ (Hb + Hb−1 + · · ·+ Hb−k+1)
t−k

, Ga,Hb

respectively.
S5 Let h = Hb + Hb−1 + · · ·+ H1 and compute a left decomposition factor g such that

f = g ◦ h by Algorithm 1. If g exists, return (g, h); otherwise, go to S3.
The worst case complexity of the algorithm is exponential. The reason is due to the

combinatorial selection in several places. For instance, in step S5 of Algorithm 2, we need
to consider all the decomposition factors of a linear difference polynomial, which could
be exponential.

Despite of the exponential complexity, the algorithm is quite effective practically.
There two reasons for this. First, all the algorithms use explicit formulas to compute the
result and as a consequence, for each of the combinatorial selection, the computation is
extremely fast. Second, in most cases, the number of possible the combinatorial selections
is not very large. The experimental results given in the next section support this assertion.

A consequence of the algorithm is that we do not need to introduce new parameters
in the decomposition process.
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Example 16. Let f = (x+1)y1y
3
2y2

3+xyy3
1y2

2+(x+1)(x+2)y1y
2
2y3+(x+1)2y2

2y2
3+x(x+

1)yy2
1y2 + x2y2

1y2
2 + y1y

2
2 + xyy2

1 + (x + 1)2(x + 2)y2y3 + x2(x + 2)y1y2 + (x + 1)y2 + x2y1.
In step S1, write f as the sum of homogeneous parts f = F6 +F4 +F3 +F2 +F1, where

F6 = (x+1)y1y
3
2y2

3 +xyy3
1y2

2 , F4 = (x+1)(x+2)y1y
2
2y3 +(x+1)2y2

2y2
3 +x(x+1)yy2

1y2 +
x2y2

1y2
2 , F3 = y1y

2
2 +xyy2

1 , F2 = (x+1)2(x+2)y2y3+x2(x+2)y1y2, F1 = (x+1)y2+x2y1.
In step S2, using Algorithm 4, we obtain the decomposition of F6: T = {(x+1)y1y2 +

xyy1, yy2
1), (y1 + y, xyy3

1y2
2)} (see Example 12).

In step S3, choose
(
(x+1)y1y2 +xyy1, yy2

1

)
and in step S4, we obtain H3 = yy2

1 ,H2 =
0,H1 = xy1. In step S5, we can check that h = H3 + H2 + H1 = yy2

1 + xy1 is a right
decomposition factor of f : f =

(
(x + 1)y1y2 + xyy1 + y1 + xy

) ◦ (yy2
1 + xy1).

In the following example, we will show an application of decomposition algorithm in
solving difference equations.

Example 17. Find the sequence {xn} determined by the recursive equation: xn+2 =
x2

n+1 − (2xn − 1)xn+1 + x2
n and x0 = 0, x1 = 2.

Let y = y(n) = xn be the function of the discrete variable n and yi = y(n + i) the
i-th transform of y. Then the recursive relation is equivalent to the difference equation
f = y2 − y2

1 + (2y − 1)y1 − y2 = 0. By Algorithm 6, we can decompose f as f =

(y1 − y2) ◦ (y1 − y). So the equation is split into two “simpler” ones

{
z1 − z2 = 0
y1 − y = z

,

where z is also a function of n and z1 denotes the difference operation on z. The general
solution of the first equation is z = c2n

1 and by substituting z into the second equation
we have y(n) =

∑
0≤k≤n−1

c2k

1 + c2, where c1, c2 are difference constants. By the initial

conditions, we have c1 = 2, c2 = 0. So the sequence {xn} is xn =
∑

0≤k≤n−1

22k

.

6. Compute Decomposition Factors with Parameters

In Example 2, we showed that the decomposition factors of a linear difference poly-
nomial may contain parameters. Fortunately, these parameters can be handled with al-
gebraic equations as shown by the following result.

Proposition 18. Let f be a linear difference polynomial of order n. Then each right
decomposition factor g of f with order m can be written as a difference polynomial with
coefficients in F = CK[c1, . . . , cN ], where CK is the invariant subfield of K under δ,
N ≤ (m + 1)· (

n
m

)
, and ci are constant parameters satisfying a set of algebraic equations

ei = 0, i = 1, . . . , s for ei ∈ F.

Proof. Note that to find a right decomposition factor of a linear difference polynomial is
equivalent to find a right factor of a linear difference operator. By the algorithm proposed
in (1), to compute a right factor with order m of a given difference operator with order
n, we need to compute the hyperexponential solutions of m + 1 linear homogeneous
difference equations with order not greater than

(
n
m

)
. By Theorem XII in page 272 of

(6), we can conclude that the number of the parameters which may appear in the right
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factor is not greater than (m + 1) · (n
m

)
. Furthermore, the parameters take values in the

invariant subfield of K under δ and they satisfy some algebraic equations.

In all the algorithms given in Sections 2, 3, 4, and 5, we assume that the parameters
do not exist. If the parameters occur, we need to modify some of the algorithms to
treat these parameters. We say that a computation step or an algorithm is affected by
the parameters if distinct parametric values may result in different results in this step
or algorithm. For instance, if f and g are difference polynomials with parameters, then
f + g is not affected by the parameters, but lf is affected by the parameters since some
parametric values may vanish the leading coefficient of f and hence change lf . Let us
first check which algorithms are affected by the existence of parameters.

Consider the main Algorithm 6. Step S1 is not affected by parameters. Step S2 is
affected by the parameters. In Step S2, we call Algorithm 4. The input difference poly-
nomial of Algorithm 4 is from the main algorithm and does not contain parameters. The
computation steps in this algorithm do not involve parameters either. The output of this
algorithm contains parameters which are introduced when executing Algorithm 2.

The input difference polynomial f of Algorithm 2 is from Algorithm 4 and does not
contain parameters. The computation in this algorithm does not involve parameters. The
parameters are introduced in Step S5 when decomposing linear difference polynomials.

In Algorithm 2, we need to call Algorithm 3. The input difference polynomials f and
g of Algorithm 3 contain parameters. The only step affected by the parameters is Step
S2, where we need to compute an inversion y−og and a quotient if/ig which are affected
by the parameters.

Now we have checked Step S2 of the main algorithm. Step S3 does not affected by
the parameters. Step S4, which is Algorithm 5, is affected by the parameters. The input
difference polynomials f and h of Algorithm 5 may contain parameters. In step S1 of
Algorithm 5, we need to compute the leading terms of f, g, h, which is affected by the
parameters. In Steps S2 and S3, we use (15) and (14) which are also affected by the
parameters. Here again, we need to compute an inversion and a quotient.

Now return to the main algorithm. Step S5 is basically Algorithm 1 which is affected by
the parameters. The input difference polynomials of Algorithm 1 may contain parameters.
In Steps S1 and S2, we need to compute of , df , dh, and oh which are affected by the
parameters. We need to compute the leading terms of f, g, h, which is also affected by
the parameters. In Step S3, we need to compute a quotient which is affected by the
parameters.

Summarizing the above analysis, we have the following conclusion. The computations
affected by the parameters include three categories:
(1) Compute of , df , lf for a difference polynomial f containing parameters.
(2) Compute an inversion y−o ◦ f for a difference polynomial f containing parameters.
(2) Compute the quotient f/g for two difference polynomials f and g containing pa-
rameters.

As a consequence, we need only show how to treat these three computation problems.
To make the problem precise, we introduce the following notations. Let c1, . . . , cN be

some constant parameters, P = {p1, . . . , ps}, and D = {d1, . . . , dt} where pi, dj ∈ F =
CK[c1, . . . , cN ] and CK is the constant field of K under the transforming operator. Let E
be an algebraically closed extension field of CK. We use Zero(P/D) to denote all η ∈ EN

such that pi(η) = 0, i = 1, . . . , s and dj(η) 6= 0, j = 1, . . . , t.
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By Proposition 18, we may assume that a difference polynomial f containing param-
eters is represented by

f ∈ F{y} and Zero(P/D)
meaning that the coefficients of f are constrained by P = {p1 = 0, . . . , ps = 0} and
D = {d1 6= 0, . . . , dt 6= 0}.

First, consider the computation of lf . Let lf = CfMf where Mf =
∏of

i=0 yni
i and

Cf ∈ K[c1, . . . , cN ]. It is clear that

Zero(P/D) = Zero(P/D ∪ {Cf}) ∪ Zero(P ∪ {Cf}/D).

Check whether C1 = Zero(P/D ∪ {Cf}) = ∅ and C2 = Zero(P ∪ {Cf}/D) = ∅ with the
characteristic set method (22) or the Gröbner basis method (3).

If C1 6= ∅, then Cf is not zero for any element of C1, that is, lf = CfMf is always
valid on C1. In this case, we can continue our algorithm on C1. If C1 = ∅, then Cf is
identically zero on C1. Note that in this case, we have C2 = Zero(P/D) and lf = lf−Cf Mf

on C2. We may repeat the above procedure for f1 = f − CfMf on C2.
Intuitively speaking, the above procedure is to divide the parametric space into disjoint

regions such that on each region, lf is well defined. We can compute of , df , and y−of in
a similar way.

Let f and g be difference polynomials whose coefficients satisfy the constraints P =
{p1 = 0, . . . , ps = 0} and D = {d1 6= 0, . . . , dt 6= 0} for pi, dj ∈ F. We now show how
to compute the quotient q = f/g. We always have oq ≤ of and tdeg(q) ≤ tdeg(f).
To compute a q such that f = q · g, let q =

∑
I gIy

i0yi1
1 · · · yic

c , where c = of and
i0+i1+· · ·+ic ≤ tdeg(f). Substituting f, g, q into f = q ·g and comparing the coefficients
of the monomials on both sides, we obtain a parametric linear system L about the
coefficients gI . Solve the parametric system P = 0,L = 0 and D 6= 0 with methods from
(8; 18), we may obtain a decomposition:

Zero(P ∪ L/D) = ∪kZero(Pk/Dk)

such that on each component Ck = Zero(Pk/Dk) we have a difference polynomial qk

whose leading term is not zero on Ck and f = qk · g. In the rest of the computation, we
need to consider each of the quotient qk on the component Ck.

We may give a parametric version for Algorithm 1 according to the above idea. If
f = g ◦ h, we always have og ≤ of and tdeg(g) ≤ tdeg(f). To compute a g such that
f = g ◦ h, let g =

∑
I gIy

i0yi1
1 · · · yic

c , where c = of and i0 + i1 + · · · + ic ≤ tdeg(f).
Substituting f, g, h into f = g ◦ h and comparing the coefficients of the monomials on
both sides, we obtain a parametric linear system L about gI . The other steps are similar.

7. Experimental Results

We implement Algorithm 6 in Maple for the constant field case K = Q. The reason is
that if f ∈ Q{y} and is linear then computing the decomposition factors of f is equivalent
to the factorization of a univariate polynomial with coefficients in Q. In this case, there
exist no parameters. To implement Algorithm 6 for K = Q(x), we need an implementation
which could give all the possible factorizations of a linear difference operator, which is not
available in Maple. Besides this point, our implementation suits the case of K = Q(x).
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Two sets of experiments are done. In Table 1, we generate a difference polynomial
randomly and decompose it. All the randomly generated difference polynomials in Table
1 are indecomposable. In Table 1, of and tf are the order and the total degree of the
tested difference polynomials respectively. For each value of (of , tf ), we run ten examples.
The index nf is the average number of the terms in the ten difference polynomials. The
column starting with time(s) is the average running time for the ten examples in seconds.
The running times are collected on a PC with a 3.2GHz CPU and 512M of memory.

(of , tf , nf ) time(s) (of , tf , nf ) time(s)

(2,15, 399.6) 0.0546 (2,20,1067.6) 0.220

(2, 30,2612.4) 0.986 (2, 35,3250.2) 1.301

(3,10,538.3) 0.1376 (3, 15, 1735.3) 0.4313

(3,20,3431.3) 1.976 (3, 25, 14140.8) 6.984

(4,10,1275.4) 0.465 (4, 15, 8809.7) 8.094

(5,10,4332.6) 2.646 (5, 12, 9290.2) 11.15

(6,8,3064.2) 1.914 (6,11,14985) 13.737

(7,8,6919.2) 7.118 (7,9,13212.3) 21.44

(8,6,2849.4) 3.196 (8,8,16826.9) 34.965

Table 1. Decomposing Randomly Generated Difference Polynomials

In Table 2, we generate two difference polynomials g and h randomly and decompose
f = g ◦ h. The difference polynomials g and h are given in Table 3.

From these experimental results, we may conclude that our algorithm is efficient in
handling large difference polynomials with thousands of terms. The computational effi-
ciency is due to the fact that all computations in the algorithm are based on explicit

g, h (og, tg) (oh, th) (of , tf , nf ) time(s)

g1, h1 (0,8) (1,8) (1,64,761) 6.671

g2, h2 (1,6) (1,8) (2,48,2302) 1.969

g3, h3 (1,6) (2,4) (3,24,1538) 1.375

g4, h4 (1,4) (3,4) (4,16,2329) 0.547

g5, h5 (2,4) (1,6) (3,24,1558) 0.437

g6, h6 (2,4) (2,6) (4,24,363) 3.782

g7, h7 (2,4) (3,4) (5,16,716) 0.672

g8, h8 (3,4) (2,6) (5,24,4475) 2.141

g9, h9 (3,4) (3,4) (6,16,10079) 9.984

g10, h10 (4,3) (3,4) (7,12,807) 0.766

Table 2. Decomposing f = g ◦ h for randomly generated g and h
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g1 −37y8 − 20y7 − 29y6 + 48y5 + 20y4 − 3y3

h1 48y − 18yy1 − 48y4 + 42y3y2
1 + 2y6 + 41y4y3

1 + 19y4y4
1

g2 −10y2y1 − 11y3
1 − 31y5y1

h2 32y + 19y1 − 39y3 − 19y2y1 − 24y2y2
1 − y5y2

1 − 9y3y5
1 + 29yy7

1

g3 13y2 − 49y2y2
1 − 21y3y2

1 + 17y5
1 + 21y4y2

1

h3 38y1y
2
2 − 13y3y1 − 37yy3

1 + 19y3
1y2 − 40y1y

3
2

g4 36y − 50y1 − 17y2y1 + 10y2
1y − 21y3

1 − 22y2
1y2 − 3y3

1y

h4 48y2
1 − 32y2y1 − 40y2

2y3 + 23yy2
2y3 + yy3

3 + 8y2
1y2y3 + 5y2

1y2
3 + 32y4

2

g5 −5y + 44y3
1 + 16y2

1y2 + 14y2y2
2 − 13yy1y

2
2 + 31y2

1y2
2

h5 −18yy1 + 15y3 − 20y4
1 − 3yy4

1 + 28y6 − 19y4y2
1

g6 17y2 + 20y1y2 − 18y2y1 + 47y2y2 + 43y2y2
2 − 46yy2

1y2

h6 43y3 − 34y4
1 + 25y4y1 − 47y2y3

1y2

g7 35y2 − 30y3 − 19y3
1 − 18y3y1 + 2yy2

1y2 + 19y1y
3
2

h7 3y2y1 + 46y2y2
2 + 13yy3

1 − 5y1y
2
2y3 + 26y1y

3
3

g8 −5y − 9y3y
2 + 28y2

2y − 45y1y
2
2 + 32y1y

3 − 24y2y
3 − 16y2

2y2

+28y2
2y3y − 16y2

1y2
3 + 7y2y

3
3

h8 45yy2 − 41y3
1 − 6y5

1 − 44y3
1y2

2 + 16y2
1y3

2 + 6y1y
4
2 + 32y1y

2
2y3

g9 −41y2 − 10y1y
2
2 + 25y2y2

1 − 29yy1y
2
3 + 5yy2y

2
3 − 48y2

2y2
3

h9 18y2 + 36y2
2 − 37y3y2 − 3y2y1y3 + 20y2y2

2 + 33y2y2y3 + 46yy3
1

+31yy2
1y3 + 37y3

1y2 − 5y2
1y2y3

g10 21y2 − 13y3 + 6yy1 − 23y3y4 + 12yy1y3 − 38yy1y4 − 6yy2
2

−16yy2
4 − 24y2

1y3 + 18y3
2

h10 −26yy1 + 14y2y3 + 32y2y2 + 29y2y3 − 27y2
1y3 − 46y2

2y2
3

Table 3. Randomly generated g and h

formulas. Our program is especially fast for randomly generated difference polynomials.
The reason can be explained below. From Lemmas 10 and 15, we can see that a differ-
ence polynomial with a nontrivial decomposition has certain structures and a randomly
generated difference polynomial does not have these structures. As a consequence, the
program will stop early before going through all the cases.

Based on these experimental results, we may conclude that our algorithm provides an
efficient reduction of the decomposition of nonlinear difference polynomials to the linear
case.

8. Conclusions

In this paper, we give a complete algorithm to decompose a given nonlinear ordinary
difference polynomial. The algorithm provides an efficient reduction of the problem to
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the decomposition of linear difference polynomials. The algorithm is implemented and
can be used to decompose difference polynomials with thousands of terms. The treat-
ment of the parametric case in Section 6 is not satisfactory due to the occurrence of
general polynomial equation systems. It seems that this problem should be studied by
first exploring the detailed structure of the factors of linear difference operators.

Besides the algorithmic study for the decomposition, the uniqueness problem is also
an important property to be explored. Ritt gave a perfect result for the uniqueness of
decompositions for an algebraic polynomial (15). Similar results were proved for Ore
polynomials and hence for linear difference polynomials (13). It is interesting to see
whether these properties can be extended to the case of nonlinear difference polynomials.
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