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Abstract. Given a multivariate quadratic polynomial system in a finite field Fq, the
problem MAX-MQ is to find a solution satisfying the maximal number of equations. We
prove that the probability of a random assignment satisfying a non-degenerate quadratic
equation is at least 1

q −O(q−
n
2 ), where n is the number of the variables in the equation.

Consequently, the random assignment provides a polynomial-time approximation algo-
rithm with approximation ratio q + O(q−

n
2 ) for non-degenerate MAX-MQ. For large n,

the ratio is close to q. According to a result by H̊astad, it is NP-hard to approximate
MAX-MQ with an approximation ratio of q− ε for a small positive number ε. Therefore,
the minimal approximation ratio that can be achieved in polynomial time for MAX-MQ
is q.
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1. Introduction

Multivariate quadratic polynomial equations play an important role in developing new
public key cryptosystems such as the HFE system and the oil-vinegar system and they
are listed as one of the main computational problems used in cryptography (Chapter 8 in
[2]). The security of the related cryptosystems is based on the difficulty of solving such
equation systems in finite fields. Moreover, it is known that any equation system of higher
degrees can be transformed into quadratic equations by introducing new variables. So it
is important to consider the computational complexity of solving multivariate quadratic
polynomial equations.

It is known that to test whether a multivariate quadratic polynomial equation system
has a solution in a finite field is a NP complete problem [8]. So, it is natural to consider
using approximation algorithms to solve these equations. In order to use approximation
algorithms, we need to formulate the original problem as an optimization problem, that is,
given a system of m equations with n variables in a finite field, find a solution satisfying the
maximal number of equations. For linear equation systems and systems of equations with
degree at most two, the optimization problems are denoted as MAX-LIN and MAX-MQ
respectively. MAX-LIN and MAX-MQ have been proved to be NP-hard, which means that
it is hard to find its exact solutions unless P = NP .

For MAX-LIN, since the probability of a random assignment satisfying a linear equation
in Fq is 1

q , a random assignment for the linear system will satisfy 1
q fraction of the equations.



Minimal Achievable Approximation Ratio for MAX-MQ 17

Hence, random assignment is a polynomial-time approximation algorithm with approxima-
tion ratio (see Section 2 for definition) q for MAX-LIN. Surprisingly, H̊astad proved in [4]
that it is NP-hard to approximate MAX-LIN with an approximation ratio q − ε where ε is
an arbitrary small positive number by introducing the 3bit PCP Theorem. Therefore, the
random assignment method is the best possible polynomial-time algorithm for the problem
MAX-LIN. This deep result gives a complete description of using approximation algorithms
to solve MAX-LIN.

It is also NP-hard to approximate MAX-MQ with an approximation factor of q−ε where ε
is arbitrary small, since MAX-LIN is a subproblem of MAX-MQ. H̊astad gave an elementary
proof for this result when ε is an inverse polynomial [5]. Assuming that each equation has no
square terms, H̊astad gave a polynomial time approximation algorithm with approximation
ratio q2

q−1 [5]. There exists a gap between the approximation ratio q2

q−1 and inapproximability
ratio q−ε. A natural problem is how to fill the gap. In H̊astad’s algorithm, the approximation
ratio q2

q−1 can be made close to q if q is large.
In this paper, by detailed analyzing the structure of multivariate quadratic equations

in finite fields, we prove that the probability of a random assignment satisfying a non-
degenerate quadratic equation is at least 1

q −O(q−
n
2 ),where n is the number of the variables.

Consequently, the random assignment provides a polynomial-time approximation algorithm
with approximation ratio q +O(q−

n
2 ) for non-degenerate MAX-MQ. For large n, the ratio is

close to q. Therefore, we may conclude that the minimal approximation ratio (definition in
Section 2) that can be achieved in polynomial time for MAX-MQ is q.

The result mentioned above has the following advantages comparing to H̊astad’s result in
[5]. Our approximation ratio q + O(q−

n
2 ) depends on n, while H̊astad’s approximation ratio

q2

q−1 only depends on q. In cryptosystems, n usually takes a value greater than or equal to
128 and for such an n, q+O(q−

n
2 ) is very close to q. H̊astad’s result assumes that there exist

no square terms in the equation, which is not very natural. We assume that the equation
is non-degenerate in the sense that, by performing non-singular substitutions, the equation
still has n variables. If the equation is degenerate, then our approximation ratio becomes
q + O(q−

k
2 ) where k is the smallest number of variables in the new equations obtained by

performing non-singular linear substitutions.
The rest of this paper is organized as follows. In Section 2, we introduce the basic

notations and main results. In Section 3, we consider the case where q is even. In Section 4,
we consider the case where q is odd. Section 5 concludes the paper.

2. Basic notions and main result

First, we will give some definitions about approximation algorithms of optimization prob-
lems, detailed description of which can be found in [6, 3].

Definition 2.1 Let O be a maximization problem and let r ≥ 1 be a real number. For
an instance x of O, let OPT(x) be the optimal value. An r-approximation algorithm is an

algorithm that on each input x outputs a number ˜OPT (x) such that OPT (x)/r ≤ ˜OPT (x) ≤
OPT (x).
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We also use the notion “having performance ratio (or factor) r” or “approximation ratio (or
factor) r” instead of saying “being an r-approximation algorithm”.

Obviously, we only concern the approximation algorithms running in polynomial time.

Definition 2.2 An optimization problem O is said to be hard to approximate within a factor
of r if the existence of an r-approximation algorithm for O implies P=NP.

Using the constant approximation ratio scheme, we can divide the NP-hard optimization
problems into three classes:

1. For any constant r > 1, it is hard to approximate O with approximation ratio r.
2. There is a constant r0 > 1 such that for r > r0, O has a polynomial-time r-

approximation algorithm while for 1 < r < r0, it is hard to approximate O with approxima-
tion ratio r.

3. For any constant r > 1, O has a polynomial-time r-approximation algorithm.
Each of the three classes is not empty (Chapters 9 and 10 of [6]). For the second class,

a basic problem is to determine the minimal achievable approximation ratio r0, or simply,
minimal ratio.

In this paper, we will consider the following optimization problem MAX-MQ: given a set
of m equations {fi(x1, . . . , xn) = bi}m

i=1 such that fi is of the following form:

f(x1, . . . , xn) =
n∑

i,j=1

aijxixj +
n∑

j=1

bjxj = b (1)

where the coefficients and b belong to a finite field Fq, find a solution in Fn
q satisfying the

maximal number of equations.
A linear substitution can be expressed by the matrix form x = Cy, where C is an

n × n matrix over Fq and y is the column vector of new indeterminants y1, . . . , yn. If C
is nonsingular, we call it a nonsingular linear substitution. This transformation keeps the
number of solutions unchanged. Two quadratic polynomials f and g over Fq are called
equivalent if f can be transformed into g by means of a nonsingular linear substitution of
indeterminants.

Definition 2.3 If f is not equivalent to a quadratic polynomial in fewer than n indeter-
minants, we call f non-degenerate. If f is degenerate, the smallest number of variables in
the polynomials equivalent to f is called the rank of f . It is clear that a non-degenerate
polynomial has rank n.

The main result of this paper is the following theorem, which is a consequence of Corol-
laries 3.5 and 4.5 since q2

qn/2−q
> q(q−1)

qn/2−q+1
.

Theorem 2.4 The random assignment algorithm is a (q + q2

qn/2−q
)-approximation algorithm

for the non-degenerate MAX-MQ in Fq.

If some equations in the system are degenerate, the above theorem is still valid if n is
taken to be the smallest rank of all the equations.

As a direct consequence of Theorem 2.4, we have
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Corollary 2.5 Let Fq be a finite field and ε > 0 a small number. For n > 2 logq(
q(q+ε)

ε ), the
random assignment algorithm is a (q + ε)-approximation algorithm for the non-degenerate
MAX-MQ in Fq where n is the number of variables.

Combining the above theorem and H̊astad’s inapproximability result, we may conclude
that MAX-MQ belongs to the second class optimization problem with minimal approxima-
tion ratio q. This result gives a clear description of MAX-MQ when using constant ratio
approximation scheme.

3. Case 1: q is even

A quadratic form in n indeterminants over Fq is a homogeneous polynomial of degree
two:

f(x1, . . . , xn) =
n∑

i,j=1

aijxixj

Definition 3.1 For a ∈ E = Fql and K = Fq, the trace TrE/K(a) of a over K is defined by

TrE/K(a) = a + aq + · · ·+ aql−1

If q is a prime number, then TrE/K(a) is called the absolute trace of a and simply denoted
by TrE(a).

Definition 3.2 For any finite field Fq, the integer-valued function v on Fq is defined by
v(b) = −1 for b ∈ F ∗

q and v(0) = q − 1.

We use N(f(x1, . . . , xn) = b) to represent the number of solutions of the equation
f(x1, . . . , xn) = b in F q.

Lemma 3.3 [7] (Page 287, Page 288) Let f ∈ Fq[x1, . . . , xn], q even, be a non-degenerate
quadratic form.

1. If n is odd, then f is equivalent to x1x2 + x3x4 + . . . + xn−2xn−1 + x2
n, and N(x1x2 +

x3x4 + . . . + xn−2xn−1 + x2
n = b) = qn−1 in Fn

q .
2. If n is even, then f is either equivalent to x1x2 + x3x4 + . . . + xn−1xn or to x1x2 +

x3x4 + . . . + xn−1xn + x2
n−1 + ax2

n where a ∈ Fq satisfies TrFq(a) = 1, and the corresponding
number of solutions is as follows:

N(x1x2 + x3x4 + . . . + xn−1xn = b) = qn−1 + v(b)q(n−2)/2,
N(x1x2 + x3x4 + . . . + xn−1xn + x2

n−1 + ax2
n = b) = qn−1 − v(b)q(n−2)/2.

Given a system of multivariate equations {fi(x1, . . . , xn) = bi}m
i=1, the random assignment

method assigns random values to each xi and count the number of equations with these values
as solutions. To estimate the approximation ratio, we need to give a lower bound for the
number of solutions for a single quadratic equation.

Theorem 3.4 Let f(x1, . . . , xn) =
∑n

i,j=1 aijxixj+
∑n

j=1 bjxj be a non-degenerate quadratic
polynomial over Fq, where q is even. Then

N(f(x1, . . . , xn) = b) ≥ qn−1 − qn/2.
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Proof: Denote f(x1, . . . , xn) =
∑n

i,j=1 aijxixj +
∑n

j=1 bjxj = f1 + f2. We will discuss it in
three cases :

Case 1: If f is equivalent to a polynomial g without linear terms, then the quadratic part
of g contains n variables since f is non-degenerate. By Lemma 3.3 we have

N(f(x1, . . . , xn) = b) ≥ qn−1 − (q − 1)q(n−2)/2 > qn−1 − qn/2.

Case 2: If f is equivalent to a polynomial g whose quadratic part contains less than n
variables, that is, rank(f1)< n, then g must have a nonzero linear term ckxk such that xk

does not occur in the quadratic terms. It is clear that assigning random values in Fq to the
other n− 1 variables, xk will be uniquely determined. Hence,

N(f(x1, . . . , xn) = b) = qn−1.

Case 3: If f is equivalent to a polynomial g which has nonzero linear terms, and g′s
quadratic part contains n variables, that is, rank(f1)= n, then by introducing a new variable
xn+1, f becomes

n∑

i,j=1

aijxixj +
n∑

j=1

bjxjxn+1 = bx2
n+1.

We can rewrite it as

f ′(x1, . . . , xn, xn+1) =
n+1∑

i,j=1

a′ijxixj = 0.

Since f is degenerate, we have rank(f ′)≥ n.
It is obvious that

N(f(x1, . . . , xn) = b)
= N(f ′(x1, . . . , xn, xn+1) = 0|xn+1=1)

=
1

q − 1
N(f ′(x1, . . . , xn, xn+1) = 0|xn+1 6=0)

=
1

q − 1
(N(f ′(x1, . . . , xn, xn+1) = 0)−N(f ′(x1, . . . , xn, xn+1) = 0|xn+1=0)).

The second equality holds for the following reason:
Suppose

∑n
i,j=1 aijyiyj +

∑n
j=1 bjyj = b has a solution (y1, . . . , yn), let yi = xi

xn+1
with

xn+1 6= 0. Then for each xn+1 = j, j = 1, . . . , q − 1, we will obtain a solution (x1, . . . , xn, j)
for the equation

n∑

i,j=1

aijxixj +
n∑

j=1

bjxjxn+1 = bx2
n+1,

that is, f ′(x1, . . . , xn, xn+1) = 0.
If

N(
n∑

i,j=1

aijyiyj +
n∑

j=1

bjyj = b) = t
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then
N(f ′(x1, . . . , xn, xn+1) = 0|xn+1 6=0) = (q − 1)t

and the number of solutions for f ′(x1, . . . , xn, xn+1) = 0 with xn+1 = 1 is t. Hence,

N(f ′(x1, . . . , xn, xn+1) = 0|xn+1=1) =
1

q − 1
N(f ′(x1, . . . , xn, xn+1) = 0|xn+1 6=0).

We will next consider two cases:
1: n is even. Since

f ′(x1, . . . , xn, xn+1)|xn+1=0 = f1 =
n∑

i,j=1

aijxixj ,

and rank(f1)= n, by Lemma 3.3 we have

N(f ′(x1, . . . , xn, xn+1)|xn+1=0 = 0) ≤ qn−1 + (q − 1)q(n−2)/2.

Also by Lemma 3.3, N(f ′(x1, . . . , xn, xn+1) = 0) = qn, since n + 1 is odd. Hence,

N(f(x1, . . . , xn) = b) ≥ 1
q − 1

(qn − (qn−1 + (q − 1)q(n−2)/2))

= qn−1 − q(n−2)/2 > qn−1 − qn/2.

2: n is odd. Since n is odd and n + 1 is even, by Lemma 3.3, we have

N(f ′(x1, . . . , xn, xn+1)|xn+1=0 = 0) = N(
n∑

i,j=1

aijxixj = 0) = qn−1

and since rank(f ′)= k ≥ n,

N(f ′(x1, . . . , xn, xn+1) = 0) ≥ (qk−1 − (q − 1)q(k−2)/2)qn+1−k

= qn − (q − 1)qn− k
2

≥ qn − (q − 1)q
n
2 .

Hence,

N(f(x1, . . . , xn) = b) ≥ 1
q − 1

(qn − (q − 1)qn/2 − qn−1)

> qn−1 − qn/2.

Therefore, we conclude
N(f(x1, . . . , xn) = b) ≥ qn−1 − qn/2

no matter n is even or odd and the theorem holds. ¤

Corollary 3.5 The random assignment algorithm is a (q+ q2

qn/2−q
)-approximation algorithm

for the non-degenerate MAX-MQ in Fq if q is even.



22 S. Zhao and X.S. Gao

Proof: By Theorem 3.4, the number of solutions for each non-degenerate quadratic equation
is at least qn−1−qn/2. Then the probability of a random assignment to the variables satisfying
the equation is at least

qn−1 − qn/2

qn
=

1
q
− 1

qn/2
.

Therefore, a random assignment to the variables will satisfy at least 1
q − 1

qn/2 = 1

q+ q2

qn/2−q

fraction of the equations in the equation system. Hence, it is a q + q2

qn/2−q
-approximation

algorithm for the problem MAX-MQ. ¤

4. Case 2: q is odd

Consider a quadratic form in n indeterminants over Fq

f(x1, . . . , xn) =
n∑

i,j=1

bijxixj .

If q is odd, we can write each bijxixj as 1
2bijxixj + 1

2bijxixj and f can be represented as

f(x1, . . . , xn) =
n∑

i,j=1

aijxixj

where aij = aji. Let A be the n× n matrix whose (i, j) entry is aij . Then f can be written
as the matrix form xTAx with AT = A. We can also apply nonsingular linear substitutions
to reduce a quadratic form to standard forms.

Proposition 4.1 [7] (Page 280) If q is odd, every quadratic form over Fq is equivalent to
a diagonal quadratic form a1x

2
1 + . . . + akx

2
k, where ai ∈ Fq and k ≤ n is the rank of f .

The quadratic form f = xTAx is non-degenerate if and only if A has rank n. For a
non-degenerate f , we may define the determinant det(f) of f to be the determinant of A.

Lemma 4.2 [7](Page 282) Let f be a non-degenerate quadratic form over Fq in an even
number n of indeterminants. Then for b ∈ Fq, the number of solutions of the equation
f(x1, . . . , xn) = b in Fn

q is

qn−1 + v(b)q(n−2)/2η((−1)n/2 det(f))

Where η is the quadratic character function of Fq whose value is 1 or −1.

Lemma 4.3 [7] (Page 283) Let f be a non-degenerate quadratic form over Fq in an odd
number n of indeterminants. Then for b ∈ Fq the number of solutions of the equation
f(x1, . . . , xn) = b in Fn

q is

qn−1 + q(n−1)/2η((−1)(n−1)/2 det(f)b)
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The following theorem gives a lower bound for the number of solutions for a single
quadratic equation.

Theorem 4.4 Let f(x1, . . . , xn) =
∑n

i,j=1 aijxixj +
∑n

j=1 bjxj over the finite field Fq where
q is odd. Assume that f is non-degenerate. Then

N(f(x1, . . . , xn) = b) ≥ qn−1 − (q − 1)q(n−2)/2

Proof: Note that qn−1 − q(n−1)/2 > qn−1 − (q − 1)q(n−2)/2. If f is equivalent to a poly-
nomial g without linear terms, then g must have n variables in its quadratic part and
N(f(x1, . . . , xn) = b) ≥ qn−1 − (q − 1)q(n−2)/2 by Lemma 4.2 and Lemma 4.3.

If f is equivalent to a polynomial g whose linear terms are not zero, since f is non-
degenerate, then g has the following two forms by Proposition 4.1:

a′1x
2
1 + . . . + a′nx2

n + b′1x1 + . . . + b′kxk = b, 1 ≤ k ≤ n

or
a′1x

2
1 + . . . + a′lx

2
l + b′1x1 + . . . + b′nxn = b, l < n

For the first case, substituting xi = yi− bi(2ai)−1, i = 1, . . . , k, we have a′1y
2
1 + . . .+a′ny2

n = c
for some c in Fq.

Since nonsingular linear substitution does not change the number of solutions, by Lemma
4.2 and Lemma 4.3,

N(f(x1, . . . , xn) = b) = N(a′1y
2
1 + . . . + a′ny2

n = c)
≥ qn−1 − (q − 1)q(n−2)/2.

For the second case, it is obvious that b′n 6= 0, by assigning random values to x1, . . . , xn−1,
the value of xn is uniquely determined. Hence, N(f(x1, . . . , xn) = b) = qn−1 ≥ qn−1 − (q −
1)q(n−2)/2. ¤

For each equation of {fi(x1, . . . , xn) = bi}m
i=1, the probability of a random assignment to

the variables satisfying the equation is at least

qn−1 − (q − 1)q(n−2)/2

qn
=

1
q
− q − 1

q(n+2)/2
=

1

q + q(q−1)

qn/2−q+1

.

Therefore, we have the following result.

Corollary 4.5 The random assignment algorithm is a (q + q(q−1)

qn/2−q+1
)-approximation algo-

rithm for the non-degenerate MAX-MQ in Fq if q is odd.

5. Conclusion

We show that the problem MAX-MQ can be approximated with an approximation ratio
q+O(q−

n
2 ), where n is the number of variables if each equation is non-degenerate. Combining

this result with H̊astad’s inapproximability result, we may conclude that for any Fq, q is the
minimal achievable approximation ratio for MAX-MQ. It is still an interesting problem to
find a polynomial approximation algorithm with approximation ratio q+ε for a fixed number
ε ≥ 0.
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