
Decomposition of Differential Polynomials with Constant
Coefficients∗

Xiao-Shan Gao and Mingbo Zhang
Key Laboratory of Mathematics Mechanization

Institute of Systems Science, AMSS,
Academia Sinica, Beijing 100080, China

(xgao,mzhang)@mmrc.iss.ac.cn

ABSTRACT
In this paper, we present an algorithm to decompose differ-
ential polynomials in one variable and with rational number
as coefficients. Besides arithmetic operations, the algorithm
needs only factorization of multi-variable polynomials and
solution of linear equation systems. Experimental results
show that our method is quite efficient.

Categories and Subject Descriptors
I.1.2 [SYMBOLIC AND ALGEBRAIC MANIPULA-
TION ]: Algorithms —Algebraic algorithms

General Terms
Algorithm

Keywords
differential polynomial, decomposition, pseudo linear, differ-
ential degree

1. INTRODUCTION AND PRELIMINARIES
The study on functional decomposition started with the

decomposition of univariate polynomials (pols). The first
decomposition algorithms were presented by Barton-Zippel
[3] and Alagar-Tanh [1]. This was followed by the work of
Kozen and Landau [16] who proposed a pol time decomposi-
tion algorithm. Similar algorithms were given by Gutierrez
[12]. Gathen proposed an algorithm of better complexity
and a parallel algorithm in [9]. In [29], Zippel presented a
pol time algorithm to decompose a given univariate rational
function over an arbitrary field.

Decomposing linear ordinary differential equations (LODEs)
was first discussed by Singer in [19]. The algorithms to

∗ Partially supported by a National Key Basic Research
Project of China and by a USA NSF grant CCR-0201253.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’04, July 4–7, 2004, Santander, Spain.
Copyright 2004 ACM 1-58113-827-X/04/0007 ...$5.00.

decompose LODEs proposed by Bronstein, Petkovšek, and
Schwarz [4, 5, 18] were based on the classical work of Beke.
Another approach based on the eigenring of the LODE was
proposed by van der Put and Singer [28]. In [26, 27], van
Hoeij proposed an algorithm to decompose an LODE with
rational functions as well as power series coefficients, which
was extended to decompose LODEs over an exponential ex-
tension of a base field by Fredet [7]. In [23], Tsarev presented
an algorithm for complete enumeration of all factorizations
of an LODE. In [2, 6], Barkatou-Pflügel and Cluzeau pro-
posed decomposition algorithms for LODE systems. In [10],
Giesbrecht and Zhang presented methods to find decompo-
sition for the more general Ore pols. In [11], Grigor’ev gave
an algorithm to decompose LODEs and showed that the
worst case complexity of the algorithm is exponential. Ap-
plications of the decomposition of LODEs to compute closed
form solutions and to determine the Galois group were dis-
cussed by Singer and Ulmer [19, 21]. In [13], Li et al gave the
first algorithm to decompose systems of linear PDEs with
finite-dimensional solution spaces.

The problem of decomposing non-linear differential poly-
nomials (d-pols) was discussed in the classic work by Königs-
berger [15]. Methods for some special classes of d-pols were
given in [22, 25]. In [24], Tsarev considered d-pols of the
form yn − R(x, y, . . . , yn−1) and gave a decision procedure
for the existence of factorization. As far as we know, there
exist no effective methods to decompose non-linear d-pols.

In this paper, we give an algorithm for decomposing d-pols
in one variable and with constant coefficients. The algorithm
to find a decomposition f = g ◦ h for a given f consists of
three main steps. First, we try to find a decomposition
where g is a univariate pol. Second, the problem is reduced
to the case where g is pseudo linear. Third, the pseudo linear
case is solved.

Besides arithmetic operations, the algorithm needs only
factorization of multi-variable pols and solution of linear
equation systems, both of which have pol-time algorithms.
Our algorithm is exponential in the worst case due to the
need to select all possible left decomposition factors of an
LODE. We implement our algorithm in Maple and exper-
imental results show that our method is quite efficient in
handling large d-pols. We use examples to show that the
algorithm can be used to simplify the solution of non-linear
differential equations. We also discuss shortly how to extend
the algorithm in the paper to the case when the coefficients
of the d-pols are rational functions.



2. PRELIMINARY RESULTS
Let Q be the field of rational numbers, Q(t) the field of ra-

tional functions in t, x a differential indeterminate, Q(t){x}
the ordinary d-pol ring over Q(t) with differentiation ∂

∂t
[14].

An element in Q(t){x} is called a d-pol. We denote by xi

the i-th derivative of x. For a d-pol f , let xo be the highest
derivative appearing in f . Then o is called the order of f
and is denoted by of . Let of be the order of f , df the de-

gree of f in xof , if the coefficient of x
df
of

in f , sf = ∂f
∂xof

.

df , if , sf are called the degree, initial, and separant of f
respectively.

For a d-pol f and a non-negative integer k, let f(k) be the
k-th derivative of f . Then for k > 0, we have

f(k) = sfxof+k + Rf (1)

where Rf is a d-pol of lower order in x than of + k.
A monomial in Q(t){x} is always arranged in the form

a
∏r

i=1 xαi
βi

where a ∈ Q(t), αi ∈ N+, β1 > . . . > βr ≥ 0.

The number
r∑

i=1

αi is called the total degree and
r∑

i=1

αi · βi is

called the differential degree of the monomial. The largest
total degree and differential degree for all monomials in a
d-pol f is called the total degree and differential degree of f ,
denoted by tdeg(f) and ddeg(f) respectively.

Let q be a d-pol. If the total (differential) degrees of the
monomials in q are all equal, q is called total (differential)
degree homogeneous. If tdeg(q) = k and q is total degree
homogeneous, q is called k-total degree homogeneous. Fur-
thermore, if k = 1 we say that q is linear.

We may define a rank between two monomials according
to the pure lexicographical order induced by the variable
order x < x1 < x2 < . . .. In a d-pol p, the term with the
highest rank is called the leading term of p.

In the rest of this paper, we will assume that d-pols are
with coefficients in Q unless mentioned otherwise. Let g, h ∈
Q{x}, we use g ◦ h to denote the composition of two d-pols
g and h, which is obtained by substituting xi in g by h(i).
If f = g ◦ h, g, h are called the left and right decomposition
factor of f respectively. A decomposition f = g ◦ h is called
non-trivial, if both g and h are not in the form ax+ b(a, b ∈
Q).

Lemma 1. The composition operation is associate: f◦(g◦
h) = (f ◦ g) ◦ h.

Proof. Omitted. See the preprint [8].
For c ∈ Q, we have f = g ◦ h = [g ◦ (x + c)] ◦ [(x− c) ◦ h].

Then we may always assume that h has no term in Q. In
this case, the constant term of f is the same as that of g.
So we may further assume that f and g have no constant
terms.

In what follows, we assume that f is a d-pol in Q{x} of
positive order and has no term in Q. We will find a non-
trivial decomposition f = g ◦ h. We may write f, g, h as
follows.

f = ifx
df
of + f1, g = igx

dg
og + g1, h = ihxdh

oh
+ h1 (2)

where f1, g1, h1 are of lower degree in xof , xog , xoh than
df , dg, dh respectively.

Lemma 2. If f = g ◦ h, we have

of = og + oh, f(1) = g(1) ◦ h, sf = (sg ◦ h) · sh. (3)

Proof. Omitted. See the preprint [8].

Lemma 3. If f = g ◦h and g is a univariate pol, we have

of = oh, df = dgdh, if = (ig ◦ h)i
dg

h (4)

f(1) = (sg ◦ h)h(1). (5)

Proof. Omitted. See the preprint [8].

Lemma 4. If f = g ◦ h and og > 0, we have

df = dg, if = (ig ◦ h) · sdf

h (6)

Proof. Omitted. See the preprint [8].

Lemma 5. q, u, v are d-pols, q = u◦v. Let d = tdeg(q), d1 =
tdeg(u), d2 = tdeg(v), then d = d1 · d2. Furthermore, if
Qd, Ud1 , Vd2 are the sums of monomials in q, u, v with total
degree d, d1, d2 respectively, then Qd = Ud1 ◦ Vd2 .

Proof. Omitted. See the preprint [8].

3. POLYNOMIAL DECOMPOSITION
We first consider a special case og = 0, called polynomial

decomposition. This can be treated as a composition of a
univariate pol and a multi-variable pol in Q[x, x1, . . . , xof ],
which is considered in [9]. In what follows, we give a simple
algorithm based on differentiation, which is quite efficient as
shown by our experimental results.

Before presenting the algorithm, we first give two basic
algorithms which will also be used in other sections.

Algorithm 1. Input: d-pols f, h ∈ Q{x}.
Output: a d-pol g ∈ Q{x} such that f = g ◦ h if such a g

exists.

S1 If f ∈ Q, return g = f .

S2 Write f and h as (2). If of < oh, g does not exist. The
algorithm terminates.

S3 If of = oh, from (3), og = 0. From (4), dg = df/dh. If
dg is not an integer, g does not exist and the algorithm

terminates. Otherwise, let t =
if

i
dg
h

. From (4), t should

be ig ◦ h. Go to S5.

S4 If of > oh, from (3) and (6) the order og and leading
degree dg for g can be computed as follows: og = of −
oh, dg = df . Let t =

if

s
dg
h

. From (6), t should be ig ◦ h.

S5 If t is not a d-pol in Q{x}, g does not exist. The al-

gorithm terminates. Otherwise, let f1 = f − t · hdg

(og).

Then f1 = g ◦ h − (ig ◦ h)(x
dg
og ◦ h) = (g − igx

dg
og ) ◦ h,

which also has a right decomposition factor h. Call Al-
gorithm 1 with f1, h and t, h as inputs. Let the outputs

be g1 and ig. If ig and g1 exist, return g = igx
dg
og + g1.

Otherwise, g does not exist.

Example 1. Let f = 2x2(x
2
2 +x1)x3 +x4

2 +x3
2 +2x1x

2
2 +

x1x2 + x2
1, h = x2

2 + x1. Since of = 3 > oh = 2, we will

execute S4, where dg = df = 1, og = of − oh = 1, t =
if

s
dg
h

=

2x2(x2
2+x1)

2x2
= x2

2 + x1 = ig ◦ h. In S5, f1 = f − t · h(1) =

x4
2 + 2x1x

2
2 + x2

1. Execute Algorithm 1 with input t, h we



have ig = x. Executing Algorithm 1 with input f1, h we have
g1 = x2. So h is a right decomposition factor of f and the

corresponding left decomposition factor is g = igx
dg
og + g1 =

xx1 + x2.

Algorithm 2. Input: a d-pol p ∈ Q{x}.
Output: a d-pol q ∈ Q{x} such that q(1) = p if such a q

exists.

S1 Set q = 0.

S2 If p �∈ Q then go to the next step. If p = 0, return q.
Otherwise, q does not exist. The algorithm terminates.

S3 Let the leading term of p under the lexical order be
t = cp

∏r
i=1 xαi

βi
where β1 > . . . > βr ≥ 0, and cp ∈ Q.

S4 If α1 �= 1 then q does not exist and terminate.

S5 If r = 1 or β1 > β2 + 1, let

s = cpxβ1−1

r∏
i=2

xαi
βi

.

Otherwise, let

s =
cp

α2 + 1
xα2+1

β1−1

r∏
i=3

xαi
βi

.

If t > r in a product
∏r

i=t, the value of the product is
defined to be 1.

S6 Set q = q + s, p = p − s(1). Go to S2.

To see that Algorithm 2 is correct, let the leading term
of q be t = cq

∏r
i=1 xγi

τi
where τ1 > . . . > τr ≥ 0. The case

r = 1 is obvious. For r > 1, the leading term of q(1) is

l = cqγ1xτ1+1x
γ1−1
τ1

r∏
i=2

xγi
τi

.

Since q(1) = p, l should be the leading term of p. Then the
degree of p should be one, which implies the correctness of
S4. If γ1 > 1, xτ1 appears in l, which implies the first case
in S5. If γ1 = 1, xτ1 does not appear in l, which implies the
second case in S5.

Algorithm 3. Input: a d-pol f .
Output: a univariate pol g and a d-pol h such that f = g◦h

if such g and h exist.

S1 If f = g ◦ h is a pol decomposition of f , from (5) h(1)

is a proper factor of f(1) of order of + 1 and with no
constant terms. Let S be the set of such primitive
factors of f(1).

S2 For each p ∈ S, do S3 and S4.

S3 Use Algorithm 2 to find an h ∈ Q{x} such that h(1) = p.
If such an h does not exist, goto S2.

S4 Use Algorithm 1 to find a g ∈ Q[x] such that f = g ◦ h.
If such a g exists, return g and h; else, goto S2.

Example 2. Let f = x2x4
2 + (2xx1 + x)x2

2 + x2
1 +x1. We

have

f(1) = x2(2xx2
2 + 2x1 + 1)(2xx3 + x1x2 + 1)

The set of proper factors for f(1) of order of + 1 = 3 and
containing no terms in Q is S = {p : p = x2(2x3x + x2x1 +
1)}. With Algorithm 2 we find h = xx2

2+x1 such that h(1) =

p. With Algorithm 1 we find g = x2 +x such that f = g ◦h.
So we get the pol decomposition f = (x2 + x) ◦ (xx2

2 + x1).

4. REDUCTION TO PSEUDO LINEAR CASE
A d-pol p in Q{x} is called pseudo linear if p is of the form

p = cxop + p1 (7)

where c ∈ Q and p1 is of lower order than op.
In what follows, we will assume that og > 0 and compute

the decomposition f = g ◦ h. Since og > 0, by (6), we have
df = dg. Let d = df = dg and

f = fdxd
of

+ fd−1x
d−1
of

+ . . . + f1xof + f0

g = gdxd
og

+ gd−1x
d−1
og

+ . . . + g1xog + g0

By (1), xog◦h = shxog+oh+Rh = shxof +Rh(oRh < og+oh).

We have f = (gd◦h)(shxof +Rh)d+. . .+g0◦h. Let ai = gi◦h,

comparing the coefficients of xi
of

(0 ≤ i ≤ d), we have

fd = sd
h(gd ◦ h)

. . . (8)

fk = sk
h(

(
d

k

)
adRd−k

h +

(
d − 1

k

)
ad−1R

d−k−1
h + . . . + ak)

. . .

f0 = adRd
h + ad−1R

d−1
h + . . . + a1Rh + a0

Let T = {H : H = 1 or H is a primitive d-pol with
integer coefficients and Hi is the factor of fi(1 ≤ i ≤ d)}.
From (8), we can assume that sh is in T . The basic idea
of our algorithm is as follows: for each H in T , we will
examine whether there exists a decomposition f = g ◦h such
that sh = H.

Lemma 6. Let f = g◦h(og > 0), d = df (= dg). s(k)(f) =
∂kf

∂kxof

, s(k)(g) = ∂kg
∂kxog

(1 ≤ k ≤ d). Then we have s(i)(f)/si
h =

s(i)(g) ◦ h (1 ≤ i ≤ d).

Proof. By the third equation in (3), we have s(1)(f)/sh =
sf/sh = sg ◦h. This proves the case for i = 1. Suppose that

the lemma is valid for i = k, that is, we have s(k)(f)/sk
h =

s(k)(g) ◦ h. Using (3) to the formula above again, we have

s(k+1)(f)/sk+1
h =

∂(s(k)(f)/sk
h)

∂xof
s−1

h = ( ∂(s(k)(g))
∂xog

◦ h)shs−1
h =

s(k+1)(g) ◦ h. We may move sh out from the scope of the
partial differentiation, because osh < of = osf when d > 1.

In Lemma 6, setting i = d − 1, we have sd−1(f)/sd−1
h =

sd−1(g) ◦ h. By direct computation, sd−1(f) = ∂d−1f
∂d−1xof

=

d!fdxof + (d − 1)!fd−1, s
d−1(g) = d!gdxog + (d − 1)!gd−1.

Substituting them into sd−1(f)/sd−1
h = sd−1(g) ◦h, we have

(
fdxof +

1

d
fd−1

)/
sd−1

h = (gdxog +
1

d
gd−1) ◦ h (9)



We consider two cases .
Case 1. If fd

sd
h

/∈ Q, then from (8) h is a right decomposi-

tion factor of fd

sd
h

. Then we can repeat the procedure for fd

sd
h

.

Notice that the left decomposition factor of fd

sd
h

could be a

pol, but the analysis above assumes that og > 0. So we will

use Algorithm 3 to test whether fd

sd
h

has a pol decomposition

before the recursion.
Case 2. If fd

sd
h

= a ∈ Q, then by (9) and (1) we have

shxof +
1

ad
· fd−1

sd−1
h

= (
gd

a
xog +

1

ad
gd−1) ◦ h

=
gd

a
(shxof + Rh) +

1

ad
gd−1 ◦ h.

Compare the coefficients of xof , we have sh = ( gd
a

◦ h) · sh,

which implies gd
a

= 1. Let w = 1
ad

· fd−1

sd−1
h

, g1 = 1
ad

gd−1.

Then

p = shxof + w = (xog + g1) ◦ h (10)

The left decomposition factor of p is pseudo linear.
The following algorithm is based on the analysis above.

Algorithm 4. Input: d-pols f, H.
Output: d-pols g and h such that f = g ◦ h, or a d-pol

p such that if h is a right decomposition factor of f with
separant H, then h is a right decomposition factor of p and
the corresponding left decomposition factor of p w.r.t.h is
pseudo linear, or return the empty set which denotes that f
has no right decomposition factor with separant H.

S1 t = f .

S2 Let d = dt. Write t as the form t = tdxd
ot

+ . . . +
t1xot + t0. If ot < oH , then output the empty set and
terminate the algorithm; otherwise, we will try to find
a decomposition t = r ◦ h such that sh = H .

S3 If a = st
H

∈ Q, by (3), sr ◦ h = st/sh = st/H = a,
so sr = a and r is pseudo linear. Notice that the
order of r could be 0, which means t is a possible right
decomposition factor of f . Call Algorithm 1 with f
and t as input. If we find a g such that f = g ◦ t,
then output g and t; else, output p = t. Terminate the
algorithm.

S4 Execute Algorithm 3 with input t. If we find r, h such
that t = r ◦ h and sh

H
∈ Q, then use Algorithm 1 with

input f and h to find g such that f = g ◦ h. If such a
g exists, output g and h and terminate the algorithm;
otherwise, go to next step. This step solves the case
the left decomposition factor of t being a non-trivial
pol.

S5 Now t does not have a pol decomposition in which the
separant of the right decomposition factor equals H
and so the analysis in this section is correct. From (8),
Hi should be a factor of ti, for i = 1, . . . , d. If there
exists any i such that Hi � ti, then output the empty
set and terminate the algorithm.

S6 Let c = td/Hd. If c ∈ Q, let w = 1
ad

td−1
Hd−1 . By (10),

output p = Hxof + w and terminate the algorithm.

S7 If c /∈ Q, then by (8), h is also a right decomposition
factor of c. Let t = c − c1, where c1 denotes the con-
stant term of c. Then h is also a right decomposition
factor of t. Go to S2.

Example 3. f = 2x2(x
2
2+x1)x3+x4

2+x3
2+2x1x

2
2+x1x2+

x2
1, H = x2. Let t = f , we have dt = 1, t1 = 2x2(x

2
2+x1), H |

t1. From S2 to S6, the algorithm does nothing. In S7, we
get t = 2(x2

2 + x1). Return to S2. In S3, st
H

= 4 ∈ Q.

By Algorithm 1 we find a g = 1
4
xx1 + 1

4
x2 such that f =

( 1
4
xx1 + 1

4
x2) ◦ (2x2

2 + 2x1).

5. PSEUDO LINEAR CASE
We will solve the following problem: for two given d-pols

H and p with dp = 1, sp = H, find a decomposition p = r ◦h
under the condition that r is pseudo linear and sh = H.

We write d-pols p, r, h as the sum of total degree homoge-
neous parts:

p = Pd + Pd−1 + . . . + P2 + P1

r = Rd1 + Rd1−1 + . . . + R2 + R1

h = Hd2 + Hd2−1 + . . . + H2 + H1

where d, d1, d2 denote the total degree of p, r, h respectively.
Notice that p, r, h have no terms in Q. Since r is pseudo
linear, oRi < oR1 for 2 ≤ i ≤ d1.

Denote f
k

the sum of the monomials included in f with

total degree k. We assume that d1 < d2 (the case d1 ≥ d2

is similar). Comparing the sum of the monomials with total
degree l (1 ≤ l ≤ d) in p = r ◦ h, we have

P1 = R1 ◦ H1

. . . (11)

Pk = R1 ◦ Hk + Rk ◦ H1 +
∑

1<i<k

Ri ◦ (
∑

1≤j≤k−1 Hj)
k

(k < d1)

. . .

Pd1 = R1 ◦ Hd1 + Rd1 ◦ H1 +
∑

1<i<d1

Ri ◦ (
∑

1≤j≤d1−1
Hj)

d1
. . .

Ps = R1 ◦ Hs +
∑

1<i≤d1

Ri ◦ (
∑

1≤j≤s−1
Hj)

d2

(d1 < s ≤ d2)

. . .

Pv =
∑

1<i≤d1

Ri ◦ (
∑

1≤j≤v

Hj)

v

(v > d2)

. . .

Pd = Rd1 ◦ Hd2

The basic idea of our algorithm is as follows: find R1, H1

from the first equation in (11) and substitute R1, H1 into the
second equation to obtain P ′

2 = P2 − (R1 ◦ H2 + R2 ◦ H1).
From P ′

2 = 0, we obtain a system of linear equations in
the coefficients of R2 and H2. To solve this linear equation
system, we may obtain R2 and H2 and so on. To give a
precise algorithm, we need to solve the following problems.

1. How to determine d1 and d2?

2. How can we obtain R1, H1 from the first equation of (11),
that is, how to decompose linear d-pols with constant
coefficients?

3. Do Rk, Hk(1 ≤ k ≤ min{d1, d2}) exist and are they
unique? If they exist but are not unique, we will
face the difficult problem of solving algebraic equations
about the coefficients in the next step.



4. If d1 < d2, we will obtain Ri, Hi(1 ≤ i ≤ d1) firstly and
then compute Hj(d1 < j ≤ d2). We need to determine
whether Hj(d1 < j ≤ d2) is unique. Similarly, if d1 >
d2, is Rj(d2 < j ≤ d1) unique?

5. If P1 = 0, what shall we do?

For the first problem, by Lemma 5 we have d = d1d2. It is
obvious that d2 = tdeg(h) ≥ tdeg(H) + 1(H is the separant
of h which has been given). So we will search all possible
pairs (d1, d2) satisfying these two conditions.

For the second problem, we have the following result.

Lemma 7. Let q =
∑n

k=0 akxk, u =
∑m

i=0 bixi,

v =
∑n−m

j=0 cjxj, where m < n and ak, bi, cj ∈ Q(or C).

Then q = u ◦ v if and only if q̂ = ûv̂, where q̂ =
∑n

k=0 akyk,

û =
∑m

i=0 biy
i, v̂ =

∑n−m
j=0 cjy

j.

Proof. From q = u◦v, we have q = (
∑m

i=0 bixi)◦(∑n−m
j=0 cjxj)

=
∑m

i=0

∑n−m
j=0 bicjxi+j =

∑n
k=0(

∑
i+j=k bicj)xk. Compar-

ing the coefficients of xi, we have ak =
∑

i+j=k bicj . Then

ûv̂ = (
∑m

i=0 biy
i)(
∑n−m

j=0 cjy
j) =

∑n
k=0(

∑
i+j=k bicj)y

k =∑n
k=0 akyk = q̂.
By Lemma 7, the problem of decomposing an LODE q

with constant coefficients is equivalent to the problem of
factoring q̂, so R1, H1 could have many choices. Since oH ≤
oh and r is pseudo linear, we have or = oR1 = op − oh ≤
op − oH . So or = oR1 ≤ min{oP1 , op − oH}. This may
help us to reduce the choices of R1 and H1. Our algorithm
will start with a possible pair (R1, H1) and (d1, d2) obtained
from above.

Lemma 8. Let q, u be total degree homogeneous d-pols.
Let ddeg(q) = d̃, ddeg(u) = d̃2, and qd̃, ud̃2

denote the sum

of the monomials in q, u with differential degree d̃, d̃2 re-
spectively. n is a positive integer, ai ∈ Q(0 ≤ i ≤ n), we
have:

(1). If q = (anxn +an−1xn−1 + . . .+a1x1 +a0x)◦u, then

qd̃ = anxn ◦ ud̃2
, d̃ = n + d̃2.

(2). If q = u◦ (anxn +an−1xn−1 + . . .+a1x1 +a0x), then

qd̃ = a
tdeg(q)
n ud̃2

◦ xn, d̃ = n · tdeg(q) + d̃2.

Proof. Omitted. See the preprint [8].

Lemma 9. Let q be a d-pol, k = min{i : xi appears in
q}, n a positive integer. If q is not of the form cxk + q′,
where c ∈ Q and xk does not appear in q′, then xk appears
in xn ◦ q.

Proof. Omitted. See the preprint [8].
The theorem below answers problem 3 affirmatively.

Theorem 1. Let R1, H1 be linear d-pols and Pk a k-total
degree homogeneous d-pol with k > 1. If there exist k-total
degree homogeneous d-pols Rk, Hk such that oRk < oR1 and
Pk = R1 ◦ Hk + Rk ◦ H1, then they are unique.

Proof. Suppose that (Rk1, Hk1), (Rk2, Hk2) both satisfy the
condition, that is

Pk = R1 ◦ Hk1 + Rk1 ◦ H1 = R1 ◦ Hk2 + Rk2 ◦ H1 (12)

Since R1 is linear, from (12) we have

R1 ◦ (Hk1 − Hk2) + (Rk1 − Rk2) ◦ H1 = 0

Since Rk1 − Rk2 and Hk1 − Hk2 are still k-total degree
homogeneous, we need only to prove that there exist no
nonzero Rk and Hk such that R1 ◦ Hk = Rk ◦ H1. Sup-
pose such Hk, Rk exist. Let m = oR1 , n = oH1 , and the
sum of monomials included in Rk, Hk with differential de-
gree ddeg(Rk), ddeg(Hk) be R̃k, H̃k respectively. Compare
the sum of monomials with maximal differential degree in
both sides, since R1, H1 are linear, by Lemma 8 we have

a1xm ◦ H̃k = bk
1R̃k ◦ xn (13)

where a1, b1 are the initial of R1, H1 respectively (a1, b1 ∈
Q). Let k = min{i : xi appears in R̃k ◦ xn}. Then k ≥ n,
namely, xi(0 ≤ i < n) does not appear in the right side of

(13). By Lemma 9, since H̃k is k-total degree homogeneous
with k > 1, we have oH̃k

≥ n. Therefore,

oHk ≥ oH̃k
≥ n = oH1 .

But by R1 ◦ Hk = Rk ◦ H1, we have oR1 + oHk = oRk +
oH1 , which implies oR1 ≤ oRk . This contradicts with the
hypothesis.

The fourth problem is easier to explain: when d1 ≥ d2,
we obtain all H ′s firstly, then we have obtained the right
decomposition factor of p and the corresponding left decom-
position factor is unique certainly; when d1 < d2, we obtain
all R′s firstly. Hi(d1 < i ≤ d2) is unique from the fact: for
two given d-pols f and g, if g is linear, then the h which
satisfies f = g ◦ h is unique if it exists.

For the last problem, the method mentioned above is also
valid. Let k = min{i : Pi �= 0}. We will obtain R1, Hk from
the relation R1 ◦ Hk = Pk and get other Ri, Hj by solving
linear equations with their coefficients as unknowns. When
R1 is given , the uniqueness for Hj(k � j)) is obvious and the
uniqueness for Hj(k | j) is guaranteed by Theorem 2 which
follows below.

Lemma 10. If x1 ◦ r = s ◦ t, where r, s, t are total degree
homogeneous and tdeg(s) > 1, then there exists a d-pol s′

such that s = x1 ◦ s′.

Proof. Omitted. See the preprint [8].

Theorem 2. Let R1, H1 be linear d-pols and Pik a i · k-
total degree homogeneous d-pol. If there exist an i−total de-
gree homogeneous d-pol Ri and i·k-total degree homogeneous
d-pol Hik such that oRi < oR1 and Pik = R1 ◦Hik +Ri ◦Hk,
then they are unique.

Proof. Since R1, H1 are linear, we need only to prove that
there exist no nonzero Hik and Ri such that R1 ◦ Hik =
Ri ◦ Hk, as in Theorem 1. Suppose that such Hik, Ri ex-
ist. Let m = oR1 , and the sum of the monomials included
in Hik, Ri, Hk with differential degree ddeg(Hik), ddeg(Ri),

ddeg(Hk) be H̃ik, R̃i, H̃k respectively. Compare the sum of
monomials with maximal differential degree in both sides we
have

a1xm ◦ H̃ik = R̃i ◦ H̃k

where a1 is the initial of R1(a1 ∈ Q). By Lemma 10, there

exists some differential polynomial R′
i such that R̃i = xm ◦

R′
i, so we have oR1 = m ≤ oR̃i

≤ oRi , which contradicts
with the hypothesis.

To get R1 and Hk, we need to solve the problem: given
a total degree homogeneous d-pol q, how to obtain d-pols s, t
such that q = s ◦ t and s is linear.



Assume that q can be decomposed as q = s ◦ t, where s
is linear and t is total degree homogeneous. By Lemma 7,
we can assume that s = x1 + ax, a ∈ C. Let d̃ = ddeg(q).
Since ddeg(q)− ddeg(t) = 1, we write q and t as differential
degree homogeneous parts:

q = Qd̃ + Qd̃−1 + . . . + Q1 + Q0

t = Td̃−1 + Td̃−2 + . . . + T1 + T0.

Compare the sum of the monomials with differential degree
i(0 ≤ i ≤ d̃) of both sides of q = s ◦ t, we have

Qd̃ = x1 ◦ Td̃−1, . . . , Q0 = ax ◦ T0.

So we have: T0 = Q0
a

, Ti =
Qi−x1◦Ti−1

a
(1 ≤ i ≤ d̃ − 1).

Substituting T0, . . . , Td̃−1 into Qd̃ − x1 ◦ Td̃−1 = 0, we have

ad̃Qd̃ − ad̃−1(x1 ◦ Qd̃−1) + . . . + (−1)d̃xd̃ ◦ Q0 = 0.

When q is given, the Q′s are decided. So we obtain a set of
equations about a. Conversely, if a satisfies these equations
and a �= 0, then s = x1 + ax is a left decomposition factor
of q(to deal with the case a = 0, we will use Algorithm 2).
When consider s in Q{x}, we may use Lemma 7 to obtain
a linear left decomposition factor of maximal order of q.

Algorithm 5. Input: a total degree homogeneous d-pol
q.

Output: the linear left decomposition factor s of q with
maximal order, if it exists.

S1 Using Algorithm 2 to get the maximal n such that q =
xn ◦q′. Let d̃ = ddeg(q′), write q′ as q′ = Qd̃ +Qd̃−1 +
. . . + Q1 + Q0, where Qi is the sum of the monomials
included in q′ with differential degree i(0 ≤ i ≤ d̃).

Calculate Vi = xd̃−i ◦ Qi(0 ≤ i ≤ d̃).

S2 Let w = ad̃Vd̃ − ad̃−1Vd̃−1 + . . . + (−1)d̃−iaiVi + . . . +

(−1)d̃−1aV1+(−1)d̃V0, and S the set of the coefficients
of each monomial included in w. We obtain the equa-
tions S = 0 of a.

S3 To solve the equations S = 0 in Q with a �= 0, we
basically need to compute the GCD g of the pols in S.
If g ∈ Q, then there is no solution for a and output s =
xn(if n = 0, then the decomposition does not exist).
Otherwise, let g = al(am +am−1a

m−1 + . . .+a1a+a0)
where ai ∈ Q and a0 �= 0. By Lemma 7, the output is
s = xn ◦ (xm + am−1xm−1 + . . . + a1x1 + a0x).

Example 4. Let q = 2x1x3 +2x2
2 +xx3 +3x1x2 +2xx2 +

x2
1−xx1−x2. In S1, n = 0 and we have d̃ = 4, Q4 = 2x1x3+

2x2
2, Q3 = xx3 + 3x1x2, Q2 = 2xx2 + x2

1, Q1 = −xx1, Q0 =
−x2. So,



V4 = Q4 = 2x1x3 + 2x2
2

V3 = x1 ◦ Q3 = xx4 + 4x1x3 + 3x2
2

V2 = x2 ◦ Q2 = 2xx4 + 6x1x3 + 4x2
2

V1 = x3 ◦ Q1 = −(xx4 + 4x1x3 + 3x2
2)

V0 = x4 ◦ Q0 = −(8x1x3 + 6x2
2 + 2xx4)

In S2, we have p = a4V4 − a3V3 + a2V2 − aV1 + V0 =
(2a4 − 4a3 + 6a2 + 4a − 8)x1x3 + (2a4 − 3a3 + 4a2 + 3a −
6)x2

2+(−a3+2a2+a−2)xx4 = 0. Collecting the coefficients,

we have 


h1 = 2a4 − 4a3 + 6a2 + 4a − 8
h2 = 2a4 − 3a3 + 4a2 + 3a − 6
h3 = −a3 + 2a2 + a − 2

In S3, compute the GCD of h1, h2, h3, we have g = a2−1.
So the left decomposition factor of q with the maximal order
is: s = x2 − x.

We can now present the algorithm.

Algorithm 6. Input: d-pols f, p,H with dp = 1, ip = H.
Output: d-pols g, h such that f = g ◦ h where h is a right

decomposition factor of p and sh
H

∈ Q. If such g and h do
not exist, return nothing.

S1 Let d = tdeg(p). Write p as p =
∑d

i=1 Pi where Pi de-
notes the sum of the monomials in p with total degree
i(1 ≤ i ≤ d).

S2 Let k = min{i : Pi �= 0}. If k = 1, let L = P1;
else, let L be the linear left decomposition factor of
Pk with maximal order obtained with Algorithm 5. If
L does not exist, the algorithm terminates; otherwise,
let S ={(A, d′) : A is a linear left decomposition factor
of L and iA = 1, d′ is an integer such that d′ | tdeg(p)
and d′ ≥ tdeg(H)+1}. By Lemma 7, a left decomposi-
tion factor of L can be found by factoring a univariate
pol.

S3 If S �= ∅, select a (A, d′) from S and let R1 = A,d2 =
d′, d1 = tdeg(p)/d′. Otherwise, the algorithm termi-
nates.

S4 Let Hi = 0(1 ≤ i < k). Solve the equations (11) to find
Hk, R2, Hk+1, . . . , Rd1 , Hd2 by treating the coefficients
of R′s and H ′s as unknowns with the conditions oRl <
oR1 , oHj ≤ op − oR1 and tdeg(Rl)=l, tdeg(Hj)=j for
2 ≤ l ≤ d1, k ≤ j ≤ d2. By Theorems 1 and 2, such
a solution must be unique if it exists. If the solution
does not exist, S := S−{(A, d′)}, go to S3. Otherwise,
let h = Hk + Hk+1 + . . . + Hd2 .

S5 if sh
H

/∈ Q, S := S−{(A,d′)}, go to S3.

S6 Execute Algorithm 1 with input f, h, if we obtain a g
such that f = g ◦ h, then output g and h; else, S :=
S−{(A, d′)}, go to S3.

The example follows below shows how to obtain the de-
composition of a d-pol p when we have known that the
left decomposition factor of p is pseudo linear.

Example 5. Let p = (xx2 +x2
1)

2 +4x1(xx2 +x2
1)+4x2

1 −
xx1 + 3x1x2 + xx3 + 2x2 − 2x.

S1. d = tdeg(p) = 4, write p as p = P4 + P3 + P2 + P1,
where P4 = x2x2

2 + x4
1 + 2xx2

1x2, P3 = 4xx1x2 + 4x3
1, P2 =

4x2
1 − xx1 + 3x1x2 + xx3, P1 = 2x2 − 2x.
S2. From P1 = 2(x2 − x) = R1 ◦ H1 and by Lemma 7,

we choose R1 to be one of x2 − x, x1 + x, x1 − x. Since
tdeg(p) = 4, tdeg(H) = 2, we have S = {(x2 − x, 2), (x2 −
x, 4), (x1 + x, 2), (x1 + x, 4), (x1 − x, 2), (x1 − x, 4)}.

S3. For R1 = x2 − x, d2 = 2, H1 = 2x, d1 = d/d2 = 2.
Substituting these into (11), we have:

P2 = (x2 − x) ◦ H2 + R2 ◦ 2x (14)

P3 = R2 ◦ (H1 + H2)
3

(15)

P4 = R2 ◦ H2 (16)



S4. Since oR2 < 2, oH2 ≤ of −oR1 = 3−2 = 1 and R2, H2

are 2−total degree homogeneous, so we can assume

R2 = a1x
2 + a2xx1 + a3x

2
1, H2 = b1x

2 + b2xx1 + b3x
2
1

Substitute them in (14), we have: 2b1xx2 +(2b1 − b3 +4a3 −
4)x2

1 +(b2−1)xx3+(3b2−3)x1x2 +2b3x1x3 +2b3x
2
2+(4a2−

b2 + 1)xx1 + 4a1x
2 = 0. We obtain the equations for the

coefficients of R2, H2:{
2b1 = 2b3 = a1 = 0, 2b1 − b3 + 4a3 − 4 = 0
b2 − 1 = 0, 3b2 − 3 = 0, 4a2 − b2 + 1 = 0

The unique solution is: a1 = 0, a2 = 0, a3 = 1; b1 = 0, b2 =
1, b3 = 0. So we obtain R2 = x2

1, H2 = xx1. Now we substi-
tute R1, R2, H1, H2 in (15) and (16), we find that they really
hold. So we have the decomposition for p:

p = (R1 + R2) ◦ (H1 + H2) = (x2
1 + x2 − x) ◦ (xx1 + 2x).

When we choose the other elements of S, we do not obtain
solutions for R2, H2. Here we omit the calculation.

6. THE GENERAL CASE AND EXPERIMEN-
TAL RESULTS

Algorithm 7. Input: a f in Q{x}.
Output: a non-trivial decomposition f = g ◦h, if such g, h

exist.

S1 Find a pol g ∈ Q[x] and an h ∈ Q{x} such that f = g ◦h
with Algorithm 3. If such g and h exist, output g, h.
Otherwise, go to next step.

S2 Let d = df , write f as the form fdxd
of

+ fd−1x
d−1
of

+

. . .+f1xof +f0, where fi denotes the coefficient of xi
of

(0 ≤ i ≤ d). Let T = {H : H = 1 or Hi is a factor
of fi(1 ≤ i ≤ d)}. To make the selection of factors
unique, we assume that H is with integer coefficients
and primitive.

S3 If T �= φ, choose H ∈ T , go to next step; otherwise,
terminate the algorithm and return “no non-trivial de-
composition exists”.

S4 By (8), H could be the separant of h. Execute Algorithm
4 with input f, H . There are three cases:

(1) We obtain a decomposition of f . Output the de-
composition and terminate the algorithm.

(2) We obtain a d-pol p such that if h is a right de-
composition factor of f with separant H , then h is a
right decomposition factor of p and the corresponding
left decomposition factor of p w.r.t.h is pseudo linear.
Go to next step.

(3) The output is the empty set. Let T := T−{H}, go
to S3;

S5 Execute Algorithm 6 with input f, p,H . If we get a de-
composition f = g ◦h, then output g and h; otherwise
T := T−{H}, go to S3.

Example 6. Let f = 2x1x3 + 4x2
1x

2
2 + 4x2

1x2 + 4x3
1x2 +

4x1x2x + x2
1 + 2x3

1 + 2x1x + x4
1 + 2x2

1x + x2 + 2x2
2 + x2 +

2x1x2 + x1.
S1. Execute Algorithm 3, we find that f does not have a

pol decomposition.

(of , tf , lf ) time(s) (of , tf , lf ) time(s)
(2,10,32) 0.237 (2, 20, 116) 1.174
(2,30,254) 4.200 (2, 40, 414) 12.938
(2,50,624) 35.021 (3, 10, 102) 2.365
( 3, 12,322) 14.078 (3, 15, 368) 11.167
( 4, 8,415) 19.786 (4, 10, 555) 32.171
( 5, 8,1084) 55.986 (6, 6,596) 68.843
(7, 6,1308) 164.44. (8, 5, 325) 14.266
(9, 4,415) 19.786 (10, 4, 677) 72.534

Table 1: Decomposing Randomly Generated Differ-
ential Polynomials

(oh, tg) (oh, th) (of , tf , lf ) time(s)
(0,8) (1,8) (1,64,639) 10.079
(1,6) (1,8) (2,48,1174) 85.640
(1,4) (2,4) (3,16,458) 38.672
(1,4) (3,2) (4,8,994) 95.063
(1,4) (3,4) (4,16,970) 144.467
(2,4) (1,4) (3,16,1229) 189.109
(2,3) (2,4) (4,12,1360) 120.093
(2,3) (3,2) (5,6,709) 90.405
(3,2) (1,4) (4,8,231) 15.562
(3,2) (2,4) (5,8,535) 32.891

Table 2: Decomposing Differential Polynomials
Composed Randomly

S2. d = df = 1, f1 = 2x1, T = {1, x1}.
S3. Select H = 1.
S4. Execute Algorithm 4, we obtain p = x1.
S5. By Algorithm 6, we get no decomposition for f .
Now, return to S3. Select H = x1.
S4. Execute Algorithm 4, we obtain p = 2x1x3 + 4x2

1x
2
2 +

4x2
1x2 + 4x3

1x2 + 4x1x2x + x2
1 + 2x3

1 + 2x1x + x4
1 + 2x2

1x +
x2 + 2x2

2 + x2 + 2x1x2 + x1.
S5. By Algorithm 6, we have g = x1 + x2, h = 2x1x2 +

x1 + x2
1 + x. So we obtain a decomposition f = g ◦ h.

We may use Algorithm 7 recursively to find an irreducible
decomposition f = (x1 + x2) ◦ (x1 + x) ◦ (x2

1 + x). So the
solution of f = 0 is reduced to the solving of three first order
ODEs.

6.1 Experimental Results
We implement Algorithm 7 in Maple. In Table 1, we

generate a d-pol randomly and decompose it. All the d-pols
in Table 1 are indecomposable. In Table 2, we generate
two d-pols g and h randomly and decompose f = g ◦ h.
These g and h could be found in [8]. The running times
are collected on a PC with a 1.6G CPU and 128M memory
and are given in seconds. In the table, tf means the total
degree of f and lf means the number of terms in f . From
these results, we may conclude that our algorithm is quite
efficient in handling large d-pols with hundreds of terms.

6.2 Rational Function Coefficient Case
If the coefficient field is Q(t), Algorithm 3, Lemma 7, and

Algorithm 5 are not correct anymore. For the pol decom-
position of d-pols, we have given an algorithm [8]. Corre-
sponding to Lemma 7, we need to decompose linear d-pols



in Q(t){x}, which is much more difficult than the constant
coefficient case and has been solved in [4, 26, 18, 23]. Cor-
responding to Algorithm 5, to find linear left decomposition
factors of a total degree homogeneous d-pol with coefficients
in Q(t), we need to solve high degree and high order dif-
ferential equations. How to give an efficient algorithm to
find such a left decomposition factor needs further research.
While the uniqueness in Theorem 1 and Theorem 2 is still
correct, which implies that the method in this paper is also
valid in many cases for the decomposition of f in Q(t){x} ,
such as when the given d-pol f is pseudo linear.

7. CONCLUSION
We give an efficient algorithm for decomposing d-pols in

one variable and with constant coefficients. Besides arith-
metic operations, the algorithm needs only factorization of
multi-variable pols and solution of linear equation systems.
Experimental results show that this algorithm can be used
to decompose large d-pols.

Many problems on the decomposition of d-pols are still
open. The decomposition of pols is unique in certain sense
[17]. Similar results were proved for Ore polynomials and
hence for LODEs [20]. It is interesting to see whether this
property is correct for d-pol decomposition. Whether we can
extend the methods in [16, 9] to give a pol time decomposi-
tion algorithm for d-pols is also interesting. Finally, to give
an efficient algorithm to decompose d-pols with coefficients
of rational functions is also desirable.
Acknowledgment. We would like to thank the anonymous
referees for providing valuable suggestions on this paper.

8. REFERENCES
[1] V.S. Alagar and M. Thanh. Fast decomposition

algorithms. In Proc. EUROCAL 85, vol 2, 150-153,
Springer, 1985.

[2] M.A. Barkatou and E. Pflügel. On the equivalence
problem of linear differential systems and its
application for factoring completely reducible systems.
In Proc. of ISSAC’98, 268-275, ACM Press, 1998.

[3] D.R. Barton and R.E. Zippel. Polynomial
decomposition algorithms. J. of Symbolic
Computation, 1(2), 159-168, 1985.

[4] M. Bronstein. An improved algorithm for factorizing
linear ordinary differential operators. In Proc. of
ISSAC’94, ACM Press, 336-340, 1994.

[5] M. Bronstein and M. Petkovšek. On Ore rings, linear
operators and factorization. Programming &
Computer Software 20, 1, 27-44, 1994.

[6] T. Cluzeau. Factorization of differential systems in
characteristic p. In Proc. ISSAC’03, 58-65, ACM
Press, 2003.

[7] A. Fredet. Factorization of linear differential operators
in exponential extensions. In Proc. of ISSAC03,
103-110, ACM Press, 2003.

[8] X.S. Gao and M. Zhang. Decomposition of differential
polynomials. In MM Res. Preprints, No. 22, 163-185,
2003. http://www.mmrc.iss.ac.cn/pub/mm-pre.html

[9] J.von zur Gathen. Functional decomposition of
polynomials: the wild case. J. of Symbolic
Computation, 9, 437-452, 1990; the tame case. J. of
Symbolic Computation, 9, 281-299, 1990.

[10] M. Giesbrecht and Y. Zhang. Factoring and
decomposing Ore polynomials over Fq(t). In Proc. of
ISSAC03, 127-135, ACM Press, 2003.

[11] D.Y. Grigor’ev. Complexity of factoring and
calculating the GCD of linear ordinary differential
operators. J. of Symbolic Computation, 10, 7-37, 1990.

[12] J. Gutierrez, T. Recio and C.R. de Velasco.
Polynomial decomposition of almost quadratic
complexity. In Proc. AAECC 6, Springer, 1989.

[13] Z. Li, F. Schwarz and S.P. Tsarev. Factoring systems
of linear PDEs with finite-dimensional solution spaces.
J. Symbolic Computation 36(3-4), 443-471, 2003.

[14] E.R. Kolchin. Differential Algebra and Algebraic
Groups, Academic Press, London, 1973.

[15] L. Königsberger. Allgemeine Untersuchungen aus der
Theorie der Differentialgleichungen, Teubner, Leipzig,
1882.

[16] D. Kozen and S. Landau. Polynomial decomposition
algorithms. J. of Symbolic computation 7, 445-456,
1989.

[17] J.F. Ritt. Prime and composite pols. Trans. AMS, 23,
51-66, 1922.

[18] F. Schwarz. A factoring algorithm for linear ordinary
differential equations. In Proc. of ISSAC 89, ACM
Press, 17-25, 1989.

[19] M.F. Singer. Liouillian solutions of nth order
homogeneous linear differential equations. Amer. J. of
Math., 103(4), 661-682, 1981.

[20] O. Ore. Theory of non-commutative polynomials. The
Annals of Mathematics, 34(3), 480-508, 1933.

[21] M.F. Singer and F. Ulmer. Galois groups of second
and third order linear differential equations. J. of
Symbolic Computation 16, 9-36, 1993.

[22] M. Sosnin. Decomposition of polynomial ordinary
differential equations. Krasnoyarsk, to be published,
1999.

[23] S.P. Tsarev. An algorithm for complete enumeration
of all factorizations of a linear ordinary differential
operator. In Proc. of ISSAC’96, 226-231, ACM Press,
1996.

[24] S.P. Tsarev. On factorization of non-linear ordinary
differential equations. In Proc. ISSAC 99, 159-164,
ACM Press, 1999.

[25] H. Umemura. On the irreducibility of the first
differential equation of Painleve. In Algebraic geometry
and commutative algebra in honor of Masayoshi
Nagata, Tokyo, 101-109, 1987.

[26] M. van Hoeij. Factorization of differential operators
with rational functions coefficients. J. Symbolic
Computation 24(5), 537-561, 1997.

[27] M. van Hoeij. Formal solutions and factorization of
differential operators with power series coefficients. J.
Symbolic Computation, 24, 1-30 1997.

[28] M. Van der Put and M.F. Singer. Galois theory of
linear differential equations, Springer, Berlin, 2003.

[29] R.E. Zippel. Rational function decomposition. In
Proc. of ISSAC’91, 1-6, ACM Press, 1991.


