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Milestones of the

Atiyah-Singer index theorem in 2004

Professor Sir Michael Atiyah turned 75

Professor Isadore Singer turned 80

were jointly awarded the Abel Prize in 2004, the

Mathematical equivalent of the Nobel Prize, (US$900,000)

presented by King Harald of Norway, ”for the Atiyah-

Singer index theorem in 1962, bringing together topol-

ogy, geometry and analysis, and their outstanding

role in building new bridges between mathematics

and theoretical physics.”
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Sir Michael’s Atiyah’s surprise birthday cake.



Index theorem for Dirac operators

In 1962, Atiyah and Singer defined an elliptic oper-

ator ð+ called the Dirac operator, on any compact

spin manifold M of even dimension, and computed

the analytic index,

Indexa(ð
+) =

∫

M
Â(M) ∈ Z

.

where Â(M) is the A-hat genus of the manifold M ,

which is expressed in terms of Pontrjagin classes.

The A-hat genus continues to make sense for

non-spin manifolds, but it was a long-standing mys-

tery as to what corresponded to the analytic index in

this situation, as the Dirac operator does not exist?!



The Chern character , which is a characteristic class

that was invented by the late Professor S.S. Chern,

forms an essential part of the statement of the Atiyah-

Singer index theorem for elliptic operators on com-

pact manifolds. For instance, if ð+
E denotes the Dirac

operator twisted by a connection on a vector bundle

E → M , on any compact spin manifold M of even

dimension, then the Atiyah-Singer index theorem is,

Indexa(ð
+
E ) =

∫

M
Â(M) ∧Ch(E) ∈ Z

where Ch(E) denotes the Chern character of the

vector bundle E, which is expressed in terms of

the Chern classes (which are the fundamental in-

tegral characteristic classes for vector bundles also

invented by Professor Chern).



Outline

• On any oriented even dimensional Riemannian

manifold, we construct a global distributional sec-

tion, supported on the diagonal, of the Clifford alge-

bra bundle on the product space, conormal wrt the

diagonal, and representing the projective spin

Dirac operator , thereby finally clarifying the mys-

tery concerning the analytic index for non-spin man-

ifolds, which corresponds to the topological index

given by the Â-genus.

• More generally, for a finite rank, projective vector

bundle E over a compact manifold Z, we similarly

define the (graded) ring of projective differential

operators , Diff
•(Z,E).



• Even more generally the corresponding space of

pseudodifferential operators Ψ•ǫ(Z,E) is defined,

with supports sufficiently close to the diagonal, i.e.

close to the identity relation. It is not an algebra or

a ring in general.

• For such pseudodifferential operators that are el-

liptic, we define the (numerical) analytic index , as

the trace of the commutator of the operator and a

parametrix.

• Using the residue trace and the regularized trace,

we show that analytic index is homotopy invariant .



• Using the heat kernel method , the analogue of

the McKean-Singer formula is established in this con-

text, expressing the analytic index as the small time

limit of the supertrace of a truncated heat kernel for

the twisted projective spin Dirac operator. Then us-

ing the local index theorem, we show that this index

is given by the usual formula, in terms of the twisted

Chern character of the symbol, which defines an

element of twisted K-theory, and the Todd class of

the manifold.

• Explicit calculations show that the analytic index

is only a rational number but in general it is not an

integer. Worked out examples and applications will

be given.



Projective vector bundles

Projective vector bundles are also known as gauge

bundles in physics and are a special case of bundle

gerbe modules.

It is not a global bundle on Z, but rather is a vec-

tor bundle E over Y satisfying some equivariance

properties, where φ : Y → Z is a principal PU(n)-

bundle. More precisely,

Lg ⊗Ey
∼= Eg.y, g ∈ PU(n), y ∈ Y (1)

where L = U(n)×U(1) C→ PU(n) is the canon-

ical primitive line bundle, i.e.

Lg1 ⊗Lg2
∼= Lg1.g2, gi ∈ PU(n)

The identification (1) gives a projective action of PU(n)

on E, i.e. an action of U(n) on E such that the cen-

ter U(1) acts as scalars.



The transition functions of the principal PU(n) bun-

dle Y over Z define a class in H1(Z,PU(n)). The

exact sequence of sheaves

0→ U(1)→ U(n)→ PU(n)→ 1

gives rise to a connecting homomorphism

δ : H1(Z,PU(n))→ H2(Z,U(1)) ∼= H3(Z,Z)

The Dixmier-Douady invariant of Y is,

DD(Y ) = δ(Y ) ∈ Torsion(H3(Z,Z))

The associated bundle of matrix algebras

A = Y ×PU(n) Mn(C) is called the associated

Azumaya bundle. The construction also works for

any principal G bundle P over Z, together with a

central extension of G.



Difficulties. Since a projective vector bundle E is

not global on Z, cannot make sense of sections of

E, let alone operators acting between sections of

projective vector bundles!

The goal of this talk is to make sense of differen-

tial and ΨDOs associated to projective vector bun-

dles, and moreover to prove an Index Theorem for

such elliptic operators, which reduces to the Atiyah-

Singer index theorem when the projective vector bun-

dles are ordinary vector bundles, i.e. when the Dixmier-

Douady invariant vanishes.

The motivation for studying this comes from natural

examples of projective vector bundles in mathemat-

ics, and also in string theory.



Projective vector bundle of spinors

Let E → Z be a real Riemannian vector bundle,

ψ : SO(E) → Z the principal bundle of oriented

orthonormal frames on E:

U(1)→ SpinC(n)→ SO(n)

the central extension associated to the group SpinC(n).

The Dixmier-Douady invariant of SO(E) can be iden-

tified with the 3rd integral Stieffel-Whitney class

W3(E) ∈ H3(Z,Z). It is the obstruction to writing

the complex bundle of Clifford algebras Cl(E)→ Z

as End(S), for some complex vector bundle S →

Z. S is generally called a bundle of spinors for E.

If W3(E) 6= 0, then there is no such vector bundle

S over Z.



However, it is easy to see that S exists as a

projective vector bundle , as follows.

The principal SO(n) bundle ψ∗SO(E) → SO(E)

has trivial W3 invariant, since

ψ∗SO(E) = SO(E)× SO(n)

is the trivial bundle.

The associated Clifford algebra bundle

Cl(ψ∗E) = ψ∗Cl(E)

can be written as End(S), for some complex vector

bundle S → SO(E), which is routine to verify is a

projective vector bundle.



Then the twisted K-theory K0(Z,A) is defined as

differences of projective vector bundles over Z, un-

der stable equivalence.

Since L⊗n is trivial, we see that

E⊗ny
∼= E⊗ng.y g ∈ PU(n), y ∈ Y

E⊗n = φ∗(ξ), where ξ → Z is a vector bundle.

So informally, a projective vector can be viewed

as an nth-root of a vector bundle.

Then the Chern character satisfies

Ch(E⊗n) = Ch(E)n = φ∗Ch(ξ)

An easy induction argument shows that

Ch(E) = φ∗(Λ) for some Λ ∈ Heven(Z,R).

Define the twisted Chern character as,

ChA(E) = Λ ∈ Heven(Z,R).

ChA : K0(Z,A)→ Heven(Z,R) is an isomorphism/⊗R.



Key idea
Recall that for a compact manifold, Z, and vector

bundles E and F over Z, the

Schwartz kernel theorem

gives a one-to-one correspondence between

{
continuous linear operators,

C∞(Z,E) −→ C−∞(Z,F)
}

y

x
{

distributional sections,

C−∞(Z2,Hom(E,F)⊗ΩR)
}

.

where Hom(E, F)(z,z′) = Fz ⊗ E∗z′ is the ‘big’ ho-

momorphism bundle over Z2 and ΩR the density

bundle from the right factor.



When restricted to pseudodifferential operators

Ψm(Z,E, F), get an isomorphism with the space

of conormal distributions with respect to the diag-

onal, Im(Z2,∆;Hom(E, F)). i.e.

Ψm(Z,E, F)←→ Im(Z2,∆;Hom(E,F))

When further restricted to differential operators

Diffm(Z,E, F) (which by definition have the prop-

erty of being local operators) this becomes an iso-

morphism with the space, Im∆(Z2,∆;Hom(E,F)),

of conormal distributions with respect to the diago-

nal, supported within the diagonal , ∆. i.e.

Diffm(Z,E, F)←→ Im∆(Z2,∆;Hom(E,F))



Projective differential operators/ ΨDOs

The previous facts motivates our definition of pro-

jective differential and pseudodifferential operators

when E and F are only projective vector bundles

associated to a fixed finite-dimensional Azumaya bun-

dleA.Hom(E,F) is then again a projective bundle

on Z2 associated to the tensor product AL×A
′
R of

the pull-back of A from the left and the conjugate

bundle from the right. In particular if E and F have

DD invariant τ ∈ H3(Z;Z) then Hom(E,F) has

DD invariant π∗Lτ − π
∗
Rτ ∈ H3(Z2;Z). Since this

class is trivial in a tubular neighborhood of the diag-

onal it is reasonable to expect that Hom(E, F) may

be realized as an ordinary vector bundle there.



In [MMS], it is shown that there is a canonical choice ,

HomA(E, F) of extension toNǫ, such that the com-

position properties also extend.

This allows us to identify the space of projective

pseudodifferential operators with kernels supported

in a sufficiently neighborhood Nǫ of the diagonal

Ψ•ǫ(Z;E,F), with the space of conormal distribu-

tions I•ǫ (Nǫ,Diag;HomA(E,F )). Despite not being a

space of operators, this has precisely the same lo-

cal structure as in the untwisted case and has simi-

lar composition properties provided supports are re-

stricted to appropriate neighbourhoods of the diago-

nal. The space of projective smoothing operators

Ψ−∞ǫ (Z;E,F) is therefore identified with the space

of smooth sections, C∞c (Nǫ; HomA(E,F)⊗π∗RΩ).



• As an example, surprisingly there is a

projective spin Dirac operator on every oriented

even-dimensional compact manifold!

• As discussed earlier, there is a projective bundle

of spinors on any oriented manifold Z which we de-

note by S; since Z is oriented it splits globally as the

direct sum of two projective bundles S±. There are

natural connections on Cl(Z) and S± arising from

the Levi-Civita connection on T ∗Z.

• Also as discussed earlier, hom(S, S) which can

be identified with the Clifford bundle Cl(Z), has an

extension to C̃l(Z) in a neighbourhood of the diag-

onal Diag, and this extended bundle also has an

induced connection∇.



Projective spin Dirac operator

Choose a projective spin structure. Then the pro-

jective spin Dirac operator is defined as the distribu-

tional section

6∂ = cl · ∇L(κId), κId = δ(z − z′)IdS.

Here κId is the Schwartz kernel of the identity op-

erator in Diff∗(Z;S) and ∇L is the connection ∇

restricted to the left variables with cl the contraction

given by the Clifford action cl of T ∗Z on the left.

As in the usual case, the projective spin Dirac oper-

ator 6∂ is elliptic (next slide) and odd with respect to

the Z2 grading of S and locally, this projective spin

Dirac operator can be identified with the usual spin

Dirac operator.



The principal symbol map is well defined for conor-

mal distributions, leading directly to the symbol map

on Ψm
ǫ (Z;E,F) with values in C∞(T ∗Z, π∗ hom(E,F ))

homogeneous of degree m; here hom(E, F), the

‘diagonal’ homomorphism bundle which is a vector

bundle with fibre, hom(E,F)z = Fz ⊗ E∗z .

Thus ellipticity is well defined, as the invertibility of

this symbol. In particular, if A ∈ Ψm
ǫ/2(Z;E,F)

is elliptic, then there is B ∈ Ψ−m
ǫ/2

(Z;F,E) and

smoothing operators QR ∈ Ψ−∞ǫ (Z;E,E), QL ∈

Ψ−∞ǫ (Z;F, F) satisfying

BA = IE −QR, AB = IF −QL



The trace functional is defined on smoothing oper-

ators Tr : Ψ−∞ǫ (Z;E)→ C as

Tr(Q) =

∫

Z
trQ(z, z),

vanishes on commutators Tr(QR − RQ) = 0, if

R,Q ∈ Ψ−∞
ǫ/2

(Z;E), as follows from Fubini’s theo-

rem.

The analytic index of the projective elliptic operator
A ∈ Ψ•ǫ(Z;E,F) is then defined as

Inda(A) = Tr(IE −BA)−Tr(IF − AB) = Tr([A,B])

where B is a parametrix for A. NB. The commuta-

tor [A,B] is a smoothing operator.



If B′ is any other parametrix for A, then B −B′ is a

smoothing operator. For any smoothing operator Q,

Tr([A,Q]) = 0.

This is proved using an approximation property of

ΨDOs by smoothing operators.

Therefore the analytic index

Inda(A) = Tr([A,B]) = Tr([A,B′])

is well defined , and is independent of the choice of

parametrix for A.



For A ∈ Ψm
ǫ/4(Z;E,F) of integral order, m, the

Guillemin-Wodzicki residue trace is

TrR(A) = lim
z→0

zTr(AD(z)) (1)

where Tr(AD(z)) is known to be meromorphic with

at most simple poles at z = −k−dimZ+{0,1,2, . . . },

andD(z) ∈ Ψz
ǫ/4(Z;E) is an entire family of ΨDOs

of complex order z which is elliptic and hasD(0) =

I. It is independent of the choice of such a family.

• The residue trace TrR vanishes on all ΨDOs of

sufficiently negative order.

• The residue trace TrR is also a trace functional,

that is,

TrR([A,B]) = 0,

for A ∈ Ψm
ǫ/4(Z;E,F), B ∈ Ψm′

ǫ/4(Z;F,E).



The regularized trace , is defined to be

TrD(A) = lim
z→0

1

z
(zTr(AD(z))−TrR(A)) .

For general A, it does depend on the regularizing

family, but for smoothing operators it coincides with

the standard trace, therefore

Inda(A) = TrD([A,B])

for an elliptic operator A, and B a parametrix. The

regularized trace TrD is not a trace function but

rather the ‘trace defect’ satisfies

TrD([A,B]) = TrR(BδDA)

where δD is a derivation acting on the full symbol

algebra and which also satisfies

TrR(δDa) = 0 ∀ a. (2)



Homotopy invariance of the index

Let At be a smooth 1-parameter family of projective

elliptic ΨDOs, and Bt a smooth 1-parameter family

of parametrizes for At. Then we have

d

dt
Inda(At) =

d

dt
TrD([At, Bt])

=TrD([Ȧt, Bt]) + TrD([At, Ḃt])

=TrR(a−1
t δDȧt) + TrR((

d

dt
a−1
t )δDat, )

=−TrR(ȧtδDa
−1
t )

−TrR(a−1
t ȧta

−1
t δDat)

=0

Here, at is the image of At in the full symbol algebra

such that the image of Bt is a−1
t .



Multiplicativity property of the index

If Ai for i = 1,2 are two elliptic projective oper-

ators with the image bundle of the first being the

same as the domain bundle of the second, they can

be composed if their supports are sufficiently small.

Let Bi be corresponding parametrices, again with

very small supports. Then B1B2 is a parametrix for

A2A1 and the index of the product is given in terms

of the ‘full symbols’ ai of the Ai

Inda(A2A1) = TrD([A2A1, B1B2])

= TrR(a−1
1 a−1

2 δD(a2a1))

= TrR(a−1
1 δDa1) + TrR(a−1

2 δDa2)

= Inda(A1) + Inda(A2).



Heat kernel method

The heat kernelHt that formally represents exp(−t6∂2
E),

is a well-defined smooth kernel near the submani-

fold {t = 0} ×Diag, with values in

HomCl⊗A(S ⊗ E) ⊗ ΩR. It follows that if χ is a

smooth function on [0,∞)×Z2, supported and χ ≡

1 near {t = 0} ×Diag, then H(t) = χ(exp(Ht))

is a globally defined, truncated heat kernel . Then

the analogue of the McKean-Singer formula holds

and

Inda(6∂
+
E ) = lim

t↓0
TrS(H(t)) (3)

where TrS is the supertrace, the difference of the

traces on S+⊗E and S−⊗E. The local index for-

mula, as a result of rescaling, asserts the existence

of this limit and its evaluation.



In the standard case the McKean-Singer formula for

the actual heat kernel, follows by comparison with

the limit as t → ∞, which explicitly gives the index.

Indeed then the function TrS(exp(−t6∂
2
E)) is con-

stant in t.

However in the projective case, since only an ap-

proximate heat kernel H(t) makes global sense,

the result only holds when t ↓ 0.

Now if B(z) =
∫∞
0 tzH(t)dt, then through analytic

continuation to z = 0, B(0) = 6∂−2
E .

Therefore B = B(0)6∂−E is a parametrix for the

projective Dirac operator 6∂+
E .



Inserting this as the parametrix in the definition of

the analytic index gives,

Inda(6∂
+
E ) =Tr([6∂+

E , B])

=Tr

(
[6∂+
E ,

∫ ∞

0
tzH(t)dt 6∂−E

∣∣∣
z=0

]

)

=−TrS

(∫ ∞

0

(
tz
d

dt
H(t)

)
dt

∣∣∣
z=0

)

= lim
z→0

z
∫ ∞

0
tz−1 TrS(H(t))dt.

(4)

Here in the passage from the second to the third

line, smoothing error term ( ddt+ 6∂
2
E)H(t) contributes

nothing to the trace. The residue in the last line is

just the value at z = 0 of the supertrace of the ap-

proximate heat kernel so we arrive at the

McKean-Singer formula

Inda(6∂
+
E ) = lim

t↓0
TrS(H(t)) (5)



Index of projective spin Dirac operators

The local index theorem can be applied, thanks to

the McKean-Singer formula, to obtain the index the-

orem for projective spin Dirac operators twisted by

projective vector bundles.

Theorem (MMS). The projective spin Dirac operator

twisted by a unitary projective vector bundle E, has

index

Inda(6∂
+
E ) =

∫

Z
Â(Z) ∧ChA(E) (6)

where ChA : K0(Z;A) −→ Heven(Z;Q) is the

Chern character in twisted K-theory.



Index of projective elliptic ΨDOs

The previous theorem together with the analogue of

Bott periodicity in this context yields,

Theorem (MMS). Given an Azumaya bundle,A, over

an even-dimensional compact manifold Z the ana-

lytic index defines a map

Inda : K0
c (T ∗Z;π∗A) −→ Q (7)

where Inda(A) = Inda(σ(A)) for elliptic elements

of Ψ•ǫ(Z;E,F) for projective vector bundles asso-

ciated to A and for all

b ∈ Kc(T ∗Z;π∗(A)), one has

Inda(b) =

∫

T ∗Z
Td(T ∗Z) ∧ChA(b) (8)



Fractions and the index formula

On an oriented even-dimensional manifold Z, the

vanishing of w2 is equivalent to the existence of

a Spin structure. Nevertheless, there is always a

projective spin Dirac operator . The previously dis-

cussed Index Theorem applied in this case case

gives the usual formula

Inda(6∂
+) =

∫

Z
Â(Z).

Recall that Z = CP2n is an oriented but non- spin

manifold and
∫
Z Â(Z) is a fraction , justifying the

title of the talk. e.g.

If Z = CP2, then Inda(6∂+) = −1
8.

If Z = CP4, then Inda(6∂+) = 3
128.

In fact, if Z = CP2n, then Inda(6∂+) /∈ Z.



Applications/observations

By the Atiyah-Singer index theorem, one easily sees

that the topological index of the Dirac operator on

a Spin manifold does not depend on the Spin struc-

ture. But is there a way to see this analytically?

Examples such as Riemann surfaces show that the

dimension of the nullspace of the Dirac operator

on a Spin manifold does in general depend on the

choice of Spin structure.

However, it is clear that the Schwartz kernel of the

Dirac operator on a Spin manifold does not depend

on the choice of Spin structure.



In the almost complex case with Hermitian metric,

we have the SpinC Dirac operator

∂ + ∂
∗
: Λ0,evenZ −→ Λ0,oddZ. (9)

Its index is
∫
Z Â(Z)∧e

1
2c1 where c1 = c1(Z) is the

Chern class of the canonical line bundle.

We can show that ∂ + ∂
∗ is actually equal to the

projective spin Dirac operator coupled to the square

root of the canonical bundle (which is not a line bun-

dle on Z, but rather, on the frame bundle of Z). Pre-

viously this interpretation was only possible when

Z was itself spin, when this square root bundle ex-

ists as an ordinary line bundle on Z. Applies also to

general SpinC Dirac operators.


