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Period solution of n-body problems

e n particles with masses m; > 0, position
g; € R

m’LQ’Lzaa 1= 17“'7”7 (1)
1
m;m.;
U(g) = ), — (2)
1<i<j<n lq; — QjH
e Euler-Lagrange equation of
T N MNa.: (¢t 2

Aa®) = [ 13
1=1

on WL2(R/TZ, X),

n
X :={q| Y miq =0, q; # qj, Vi F j}
i=1

e Find critical point of A(g(t)), minimizer
under topological constrain and symmetry
constrain.



Linear stability

e Corresponding Hamiltonian systems
OH

Pj g, (3)
OH

T— : yak

d; Op; (4)

H(p,q) =y, 2% _ 17(g)
) 1=1 sz q

e Sp(2n) = {M € GL(2n,R) | M1 JM = J},

(0 I
whereJ_<In O)'

2(t) = JH'(t, 2(t)) (5)
2(0) z(T) (6)



Its fundamental solution v = ~(¢t) is

v(t)
v(0)

JH"(t,2(t))v(t)
I,

(7)
(8)

Fundamental solution ~(t) € Sp(2n), t €

[0, T]

Spectral stability o(v(T)) € U

Linear stability ||v(T)¥|| is bounded for k €

N



Linear stability implies v(T") splits into two
dimensional rotations.

This from Y.Long, normal from, basic nor-
mal form analysis or paper of W. Ballman,
G. Thorbergsson and W.Ziller

Difference of Spectral and linear stability

First integral: Momentum, angle momen-
tum, energy

Reduction the system

Spectral stability is same, linear stability
from the essential part

Problem for the angle momentum?



The Figure-Eight orbit

e Fixed period T, the Klein group Z/27Z X
Z/27 with generators o and 7 actson R/TZ
and on R? as follows:
cot=t+5%, T-t=—t+5,

g - (33,’3/) — (_$7y)7 T - (xay) — (337 _y)

e (Chenciner and Montgomery) There exists
an '"eight’ -shaped planar loop q : (R/TZ,0) —
(R2,0) with the following properties:

(i) for each t,
q(t) +q(t+T/3) + q(t +27T/3) = 0;

(ii) ¢(t) is equivariant with respect to the ac-
tions of Z/2Z x Z/2Z on R/TZ and R
above:

q(o-t) =0-q(t) and q(7-t) =7-q(t);
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(iii)

The Figure-Eight orbit

the loop z : R/TZ — X defined by
z(t) = (¢(t +27/3),q9(t +T/3),q(?))

IS a zero angular momentum T-periodic so-

lution of the planar three-body problem with
equal masses.

Figure-Eight is minimizer in the Dg-invariant
loop space

linear stable by Kapela and Simo, also Roberts
use computer assisted proof

Can't understand why it is stable

Motivated by Maslov-type index. Y.Long,......
We study the linear stability from variation
property



Symmetry period orbits in n-body
problems

e Type I: (Cyclic Symmetry) Q,S € Sp(2n)N
O(2n), SJ =JS and S™ = Q.

E={zeWL2R/TZ,R?") | 2(t) = Qz(t+T)}.
Z,-group action with generator g € Zm:
g. b — FE,
T
z(t) — Sz2(t+ —),
™m

e hence ¢ = id.

e Hamiltonian function H(¢, z) € C2(RxR?™ R)
satisfies H(t—T/m,Sz) = H(t,z) (H(Sz) =
H(z) in autonomous case),

o f(z) = [FU=IEE,2(1)) — HE, =)t is
Z-invariant.




Symmetry period orbits in n-body
problems

Type II: (Brake Symmetry) Let S,N €
O(2n), and satisfy SJ = JS, N2 = ido,,
NJ=—-JN, N=NI NST =8N,

E = {z € WH2([0,T],R?") | 2(0) = S2(T)}
time-reversal Z>-group action given by then

g.E — E,
2(t) — Nz(T —1t),

H(t, z) satisfies H(T—t,Nz) = H(t,z) (H(Nz) =
H(z) in autonomous case).

functional f(z) is Zo-invariant. VE(SN)
and VE(N) are Lagrangian subspaces of
(R2", w)



Symmetry Hamiltonian systems

These two group actions are motivated by
the periodic solutions of the n-body prob-
lems appearing in recent literature A. Chenciner,
Chen, D. L. Ferrario, S. Terracini,..............

find critical point of f(z) in Z™ invariant
loop space by Palis principle

Hamiltonian equation on the fundamental
domain with corresponding boundary con-
dition.

Type I z(0) = Sz(T/m), Type II z(0) €
VT(SN), 2(T/2) € VT(N)

boundary condition given by (x(0),z(T)) €
A\, N\ is lagrangian subspace of
(R2n D R2n7 —w P w)



Maslov index

Maslov index of a path of Lagrangian sub-
spaces V(t) with respect to a fixed La-
grangian subspace A (Cappell, Lee, Miller)

S A = {V € Lag(2n)|dimV N A # 0}

Maslov index u(A, V (t)) is intersection num-
ber of e €V () with =5, 0<e < 1

Positive direction is given by e/t v (¢3)

V(t) = Gr(~v(t)) is Lagrangian subspace

n(z) = p(A\, V(%))
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Bott-type iteration formula

In 1956, Bott got his celebrated iteration
formula for the Morse index of closed geodesics,
and it was generalized by Ballmann, Thor-
bergsson, Ziller,.......

The precise iteration formula of general
Hamiltonian system was established by Long.

the iteration could be regarded as a special
group action (Typel) Q =S = I,.

brake symmetry iteration formula has stud-
ied by Long, Liu, Zhang, Zhu. It is special
case of Type Il
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Bott-type iteration formula

e Theorem 1. Let z be a solution funda-
mental solution ~(t). for type I symmetry

M(GT(QT),GT(’V(t)),t €[0,T]) =
> n(Gr(exp(—-2m/=1)s"), Gr(x(1)).
1=1
t €[0,T7/m]), (9)
Type I symmetry

w(Gr(sT, Gr(x(0), ¢ € [0,7]) =
p(VH), A OVFSN), £ € [0, 5])

_ _ T
+u(V—(N),v({)V~(SN),t € |0, 5])- (10)
e VWe have noticed that the k-th iteration for-

mula for brake symmetry is studied by Liu,
Zhang by a different way.
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Relation of Morse index and Maslov index

e n-body problem is also a second order sys-
tem. Its solution, as the critical point of
the action functional (on the symmetry loop
space), has also Morse index.

e [ he relation between Morse index of solu-
tion of Lagrangian system and Maslov in-
dex of corresponding solution in Hamilto-
nian is an intriguing problem, has studied
by many author, Duistermaat,...

e especially for the period case by An, Long,
Viterbo,...

e NO one is suitable for our use
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Relation of Morse index and Maslov index

e Boundary condition of type I

2(0) = Sx(T/m),S € O(n)
Type II

x(0) € V1,x2(T/2) € V>,

V1, Vo are subspace of R"

e Corresponding boundary condition in Hamil-
tonian systems, Typel

. . (S O
N = Gr(S), with § = (O §>

o Typell, let A;, =V;® V1 € R?", i =1,2,

LE(O) - /_\1,513‘(T) c /_\2
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Relation of Morse index and Maslov index

e Theorem 2. For a critical point = of la-
grangian function, with ~(¢) is the funda-
mental solution of the corresponding solu-
tion in Hamiltonian system

e under boundary condition Type I,

m ™ (z) + v1(5) = u(Gr(S"),Gr((1))),
where v1(S) = dimker(S — I,).

e Under boundary condition Type II,

m” () +dim Vi NV = p(Ag, 7 (A1)
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Relation with the Maslov-type index

Masov-type index (Conley, Ekeland, Long,
Zehnder,..... ) for symplectic matrix path
IS a successful theory in study the stability
of period solution in Hamiltonian systems

Sp(2n)d = {M € Sp(2n)|det(M — Ip,) =
O}, weU

~v(t) € Sp(2n), iw () is the intersection num-
ber of e €/y(t) with Sp(2n)Y (minus n if
w=1)

Let 7(t) = Sv(t), &) € Sp(2n) be any
path connected I, to S

p(Gr(wS™), Gr(7)) = iw(y * &) — iw(E)
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stability criteria

e Let e(M) the total algebraic multiplicity of
all eigenvalues of M on U.

e M € Sp(2n), for any symplectic path 7§
from I, to M, define Dy,(M) for w € U

by
Du(M) = iw(n) —i1(n). (11)

Following book of Long, this definition is
independent of the choice of n

e For function g(w) on [a,b], define its vari-
ation by

var(g(w), [a,b]) =
k—1
max{ Y lg(w;4+1) — g(w;)|,
7=0
a=wg<- - <w=~> is any partition}.
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stability criteria

€(M>/2 > Uar(Dexp(\/_—]_Q)(M)ae S [077T])7
by book of Long

For period solution with type I symmetry,

v(T) = (Sy(T/m))™

let

£(0) = p(Gr(exp(v=10)ST), Gr(y:(t)),
t € [0,T/m]) + Dgyp /=10y (5);

Theorem 3.
e(v2(T))/2 > var(f(0),0 € [O,7]). (12)
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linear instability criteria

Observation: M € Sp(2n) is linearly stable,
then

det(e /M — I»,) > 0. (13)

Theorem 4. For period solution with Type
I symmetry, then the solution is linearly un-
stable if u(Gr(S1),Gr(v.(t)),t € [0,T/m])
iIs odd.

we need to consider the affect of first in-
tegral if it has

a simple criteria could given to judge the
linear instability of closed geodesics
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Application to Figure-Eight orbits

—1
D6 =< 91,92 ’ g? — 167 g% — 167 gi192 — 9291 > .
g1 generator Z6 group IS type I, go type II

fact 1. Figure-Eight nondegenerate and is
local minimizer in the Zo, Z3 invariant loop
space

fact 2. the symplectic Jordan form corre-
sponding to the angular momentum of the

o 1 1
monodromy matrix is (O 1)

Theorem 5. The Figure-Eight is linear
stable under the condition of the above
fact.
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The Figure-Eight orbits

We had verified the fact by matlab

some question proposed by Chenciner:
1. Prove the Figure-Eight is the Z3 mini-
mizer with a topology constrain

2. Figure-Eight is minimizer on the Zg in-
variant loop space

3. Figure-Eight is minimizer on D3(Z3 with
the brake symmetry) invariant loop space

the symplectic Jordan form corresponding
to the angular momentum also studied by
Chenciner, Féjoz, and Montgomery (nu-
merical for detail form)
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Idea of Prof Theorem 5.

Configuration space

X = {z = (z1,72,23) € (R?)> | z1+22+x3 = 0},

Zc group generator g; on X is

(Grouw)(t) = Su(t+7T/6) (14)

[ 1/2 0 V3/2 0 )
0 —1/2 0 —3/2

—/3/2 0 1/2 0 !

\ 0O v3/2 0 -1/2)

S 0
SetS—<O S‘)

Set M = S~(T/6), v(T) = M°

)
|
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Symplectic normal form
Configuration space

x(t) is a period T solution of the Newton
system, then h=2/3z(ht) is also a solution
with period T'/h

energy is negative, differential with h get

the corresponding normal form ((1) 1)

normal form for angle momentum of M is

—1 b
() =110

b= —1 by fact 2. the essential matrix M>
IS 2 X 2
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idea of proof

Yw € U define

p(w) 1= u(Gr(wS"),Gr((1)),t € [0,T/6)),

By Theorem 1. and 2., fact 1, u(w) > O,
p(l) = pu(=1) =0, p(exp(2rv/-1/3)) =1

Dw(S) = 0,w € UT\{exp(mv/—1/3), exp(2nv/—1/:
and

Dexp(w\/——1/3)(s) — Dexp(27r\/——1/3)(s) = -1

detail analysis could get Theorem 5.
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Lagrangian solutions

(1772 Lagrange) three bodies form an equi-
lateral triangle, each body travels along a
specific Keplerian orbit

Sun-Jupiter-Trojan asteroids system

T he stability had studied by many authors:
Gascheau, Routh, Danby, Roberts, Meyer,
Schmidt, Martinez, Sama, Simo......

3= 27(mimo+mima+mom3)
(my+mo+m3)?

Linear stable if 8 < 1, eccentricity e = 0.
Numerical for general

minimizer under topology constrain

Morse index is zero
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Main T heorems

e ¢, Morse index of k-th iteration of the La-
grangian solution in the variational problem

e Theorem A(Hu-Sun) For the elliptic La-
grangian solution z(t),

2 < ¢o<4 (15)

¢2 < e(1(T))/2. (16)

e 9o = 4, spectrally stable;

e 9o = 3, linear unstable;

e oo = 2, spectrally stable if dk > 3, such
that ¢ > 2(k —1).

e ¢ =2(k—1), for all kK € N, linear unstable.
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Affect of First integral

Theorem(Meyer and Schmidt)

Y(t) = 71(¢) o v2(2),
~v1(t) is basic solution of Kepler solution,
~v>(t) is the essential part.

Solution is linear stable if 45 (t) is linear sta-
ble

First integral of energy is clear

1 (T) = P~Y(N1(1,1) o Io) P.

1 1

where N1(1,1) = (O 1

), P € Sp(2n)

Fixed energy, all solution is periodic with
same period
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Theorem(Gordon) The planar Kepler prob-
lem with prime period T is the minimizer
of the action functional on the subspace of
WL2(R/TZ,R?)-loops with winding num-
ber £1 with respect to the origin.

Local minimizer, Morse index is zero

i1(71) =0

For the Keplerian solution

v1(T) = P71(N1(1,1) o I)P.
iw(vyy) =2, forwelU, w1

Iteration formula is clear
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Stability of Lagrangian solution

Theorem (Venturelli, also Long, Zhang

and Zhou) fix an element (kq1, ko, k3) € H1(X) =
Z3. If (k1,ko,k3) = (1,1,1) or (—1,—-1,-1),
the minimizers among the loops in this ho-
mology class are the elliptic Lagrangian so-
lutions with prime period T'.

The important of prime period is pointed
by Long

»1 =0
11(72) =0, i_1(y2) <2

¢ = i_1(v2) + 2

Prof of Theorem A
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e I II are linear stable, IIl is hyperbolic-elliptic,
IV is hyperbolic with real eigenvalue, V is
hyperbolic with complex eigenvalues.

1.0

0.59! 1l

0.0 +—rrrrrrereee
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e The region for v»(2T') to be degenerate on
boundary III

e )por=4o0onll ¢po=3 0onlll ¢po=2o0n1 V,
and IV

e oo = 3 on left boundary of IIl, ¢o = 2 on
right boundary of III.

e ¢ = 2(k— 1) on boundary of V, IV

e Normal formal or basic normal form is clear
on each region
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