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Abstract Let $\sg(k,n)$ be the smallest even integer such that each $n$-term positive graphic sequence with term sum at
least $\sg(k,n)$ can be realized by a graph containing a clique of $k+1$ vertices. Erd\H{ o} s et al. (Graph Theory, 1991,
439--449) conjectured that $\sigma(k,n)=(k-1)(2n-k)+2$. Li et al. (Science in China, 1998, 510--520) proved that the
conjecture is true for $k\geg 5% and $n\geq { k\choose 2} +3$, and raised the problem of determining the smallest integer $N
(k)$ such that the conjecture holds for $n\ge N(k)$. They also determined the values of $N(k)$ for $2\le k\le 7$, and proved
that $\lceil\frac{ 5k-1}{ 2} \rceil \le N(k) \le { k\choose 2} +3% for $k\ge 8%. In this paper, we determine the exact values of
B\sg(k,n)$ for $n\ge 2k+3$ and $k\ge 6$. Therefore, the problem of determining $\sg(k,n)$ is completely solved. In addition,
we prove as acorollary that $N(K)=\lceil\frac{ 5k-1} { 2} \rceil$ for $k\ge 63.
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