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1. Introduction

1.1. Motivation. In the original work of Katz on p-adic modular forms [Kz], a key insight is the use of
Lubin’s work on canonical subgroups in 1-parameter formal groups to define a relative theory of a “canonical
subgroup” in p-adic families of elliptic curves whose reduction types are good but not too supersingular. The
theory initiated by Katz has been refined in various directions (as in [AG], [AM], [Bu], [GK], [G], [KL]). The
philosophy emphasized in this paper and its sequel [C4] in the higher-dimensional case is that by making
fuller use of techniques in rigid geometry, the definitions and results in the theory can be made applicable
to families over rather general rigid-analytic spaces over arbitrary analytic extensions k/Qp (including base
fields such as Cp, for which Galois-theoretic techniques as in [AM] are not applicable).

The aim of this paper is to give a purely rigid-analytic development of the theory of canonical subgroups
with arbitrary torsion-level in generalized elliptic curves over rigid spaces over k (using Lubin’s p-torsion
theory only over valuation rings, which is to say on fibers), with an eye toward the development of a general
theory of canonical subgroups in p-adic analytic families of abelian varieties that we shall discuss in [C4]. An
essential feature is to work with rigid spaces and not with formal models in the fundamental definitions and
theorems, and to avoid unnecessary reliance on the fine structure of integral models of modular curves. The
1-dimensional case exhibits special features (such as moduli-theoretic compactification and formal groups in
one rather than several parameters) and it is technically simpler, so the results in this case are more precise
than seems possible in the higher-dimensional case. It is therefore worthwhile to give a separate treatement
in the case of relative dimension 1 as we do in the present paper.

1.2. Overview of results. The starting point for our work is [C3], where we develop a rigid-analytic theory
of relative ampleness for line bundles and a rigid-analytic theory of fpqc descent for both morphisms and
proper geometric objects equipped with a relatively ample line bundle. (For coherent sheaves, the theory of
fpqc descent was worked out by Bosch and Görtz [BG].) In §2.1–§2.2 we use [C3] to construct a global theory
of generalized elliptic curves over arbitrary rigid-analytic spaces. Without a doubt, the central difficulty is to
establish finiteness properties for torsion, such as finiteness of the morphism [d] : Esm → Esm when E → S is
a rigid-analytic generalized elliptic curve (with relative smooth locus Esm) such that the non-smooth fibers
are geometrically d-gons. Such finiteness properties are used as input in the proof of “algebraicity” locally on
the base for any rigid-analytic generalized elliptic curve E → S, as well as algebraicity for the action map on
E by the S-group Esm that is generally not quasi-compact over S. The main ingredient in these arguments
is the compatibility of representing objects for algebraic and rigid-analytic Hilbert and Hom functors.

To illustrate the general theory, in §3.1 we discuss relative Tate curves from a viewpoint that applies to
higher-dimensional moduli spaces for which reasonable proper integral models are available. In §3.2 we prove
rigid-analytic universality of analytified algebraic modular curves (the point being to include the cusps on an
equal footing). Our arguments are applied in the higher-dimensional setting in [C4], and so we use methods
that may appear to be more abstract than necessary for the case of relative dimension 1.

In §4.1 these results are applied over general analytic extension fields k/Qp to develop a relative rigid-
analytic theory of the canonical subgroup of Katz and Lubin. The fine structure of modular curves does
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not play as dominant a role as in other treatments of the theory, and the key to our method is a fibral
criterion (Theorem A.1.2) for a quasi-compact, flat, and separated map of rigid spaces to be finite. Canonical
subgroups with higher torsion level are treated in §4.2, where we show that our non-inductive definition for
canonical subgroups is equivalent to the inductive one used in [Bu]; in particular, an ad hoc hypothesis on
Hasse invariants in the inductive definition in [Bu] is proved to be necessary and sufficient for existence under
the non-inductive definition. We conclude in §4.3 by relating level-n canonical subgroups to characteristic-0
lifts of the kernel of the n-fold relative Frobenius map modulo p1−ε for arbitrarily small ε > 0.

In Appendix A we review some background results in rigid geometry for which we do not know references.
In Appendix B we review results of Deligne–Rapoport and Lubin that are used in our work with generalized
elliptic curves in the rigid-analytic case.

We suggest that the reader look at the definitions in §2.1 and then immediately skip ahead to §4, only
going back to the foundational §2–§3 as the need arises (in proofs, examples, and so on).

1.3. Notation and terminology. If S is a scheme, we sometimes write X/S to denote an S-scheme and
X/S′ to denote the base change X ×S S′ over an S-scheme S′. If X → S is a flat morphism locally of finite
presentation, we denote by Xsm the (Zariski-open) relative smooth locus on X. We use the same notation
in the rigid-analytic category.

A non-archimedean field is a field k equipped with a non-trivial non-archimedean absolute value with
respect to which k is complete. An analytic extension field k′/k is an extension k′ of k endowed with a
structure of non-archimedean field such that its absolute value extends the one on k. All rigid spaces will
tacitly be assumed to be over a fixed non-archimedean ground field k unless we say otherwise. We write√
|k×| ⊆ (0,∞) to denote the divisible subgroup of (0,∞) “generated” by the value group of the absolute

value on k×.
When we say GAGA over fields we mean that the analytification functor from proper k-schemes to

proper rigid-analytic spaces over k is fully faithful, together with the compatibility of analytification with
fiber products and the fact that various properties of a map between finite type k-schemes (such as being
finite, flat, smooth, an isomorphism, or a closed immersion) hold on the algebraic side if and only if they
hold on the analytic side. As a special case, if A is a finite k-algebra then a proper A-scheme (resp. proper
rigid space over Sp(A)) can be viewed as a proper k-scheme (resp. proper rigid space over k), so when
we are restricting attention to the subcategories of objects and morphisms over such an A, we shall say
GAGA over artin rings. The two other aspects of the GAGA principle that we shall frequently invoke are
(i) the elementary fact that Xan(Sp(A)) = X(Spec A) for any finite k-algebra A and any locally finite type
k-scheme X, and (ii) the less trivial fact that 1-dimensional proper rigid-analytic spaces over k are algebraic
(this applies to a proper flat rigid-analytic curve over Sp(A) for a finite k-algebra A), the proof of which
goes exactly as in the complex-analytic case.

The analytification of a map between locally finite type k-schemes is quasi-separated if and only if the
scheme map is separated, so to avoid unnecessary separatedness restrictions on the algebraic side when
we consider change of the base field on the rigid-analytic side it is convenient to introduce a variant on
quasi-separatedness, as follows. A map of rigid spaces f : X → Y is pseudo-separated if the diagonal
∆f : X → X ×Y X factors as X → Z → X ×Y X where the first step is a Zariski-open immersion and the
second is a closed immersion. A rigid space X is pseudo-separated if its structure map to Sp(k) is pseudo-
separated. If X and Y are pseudo-separated over Z then any Z-map X → Y is pseudo-separated, and a
map of rigid spaces is pseudo-separated and quasi-separated if and only if it is separated. The reasons for
introducing this notion are twofold: (i) analytifications of maps of locally finite type k-schemes are always
pseudo-separated, and (ii) on the full subcategory of rigid spaces X whose structure morphism to Sp(k) is
a composite of finitely many pseudo-separated maps there is a good “change of analytic base field” functor.
Pseudo-separatedness is discussed in detail in [C3, §A.2].

The closed unit ball Sp(k〈〈t1, . . . , tn〉〉) over k is denoted Bn
k , and rigid-analytic affine and projective n-

spaces over k are denoted An
k and Pn

k respectively; the scheme-theoretic counterparts are denoted An
Spec(k),

Pn
Spec(k) on the rare occasions when they arise. For a coherent sheaf E on a rigid space S, we use the
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Grothendieck convention P(E ) = Projan(Sym E ) (with Projan as in [C3, 2.3]), and likewise for quasi-coherent
sheaves on schemes.

We freely use the rigid-analytic notions of global irreducible component, geometric irreducibility, geomet-
ric reducedness, and geometric connectedness. The reader is referred to [C1] for a systematic development
of these notions and proofs of more precise results (e.g., compatibility of the notions of irreducibility and
connectedness with respect to analytification of locally finite type k-schemes). A rigid space X is equidi-
mensional of dimension d if dim Xi = d for each irreducible component Xi of X, and it is equivalent to say
dim U = d for every non-empty admissible open U in X (or for only U that are irreducible and affinoid);
for quasi-separated or pseudo-separated X, and an analytic extension field k′/k, X is equidimensional with
dimension d if and only if k′⊗̂kX is equidimensional with dimension d.
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2. Analytic generalized elliptic curves

The rigid-analytic theory of ampleness [C3] shall be used to develop the theory of generalized elliptic
curves over rigid spaces. The basic algebro-geometric theory of generalized elliptic curves is worked out in
[DR], and some aspects are briefly reviewed in Appendix B; the reader may wish to skim this appendix
before reading this section.

2.1. Basic definitions over a rigid-analytic space. We refer the reader to §B.1 for a discussion of the
algebraic theory of standard Néron polygons over a base scheme. For n ≥ 1, the standard (Néron) n-gon
over a rigid space S is S × Can

n/k where Cn/k is the standard Néron n-gon over Spec k.

Definition 2.1.1. A Deligne–Rapoport (DR) semistable genus-1 curve over a rigid space S is a proper flat
morphism f : C → S such that for all s ∈ S the fiber Cs is either a smooth and geometrically-connected
curve of genus 1 or becomes isomorphic to standard polygon over a finite extension of k(s).
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Remark 2.1.2. Since proper 1-dimensional rigid-analytic spaces are algebraic, it follows from GAGA over
fields and standard considerations with direct limits of base rings on the algebraic side that if C and C ′ are
two proper 1-dimensional rigid-analytic spaces over k that become isomorphic over some analytic extension
K/k then they become isomorphic over a finite extension of k. Hence, using a finite extension of k(s) in
Definition 2.1.1 is no different than using an arbitrary algebraically closed analytic extension field of k(s).

Example 2.1.3. Let C → S be a DR semistable genus-1 curve over a locally finite type k-scheme S . This
map is projective Zariski-locally over S , so by admissibility of Zariski-open set-theoretic covers of S an it
follows by elementary arguments that the analytification C an → S an is proper. This map is a DR semistable
genus-1 curve over the rigid space S an.

Definition 2.1.1 is obviously preserved by base change, and it is trivial to check that Theorem B.1.2
carries over to the rigid-analytic case. Somewhat less trivial is the fact that Definition 2.1.1 is preserved
under arbitrary change of the base field (which may introduce points that are transcendental with respect
to the initial base field). To settle this (see Theorem 2.1.5), we first require the fact that any proper flat
rigid-analytic curve over a rigid-analytic space admits a relatively ample line bundle étale-locally on the base:

Theorem 2.1.4. Let f : C → S be a proper flat morphism of rigid spaces, and assume that the fibers of f
have dimension at most 1. There exists an admissible covering {Si} of S such that fi : C/Si

→ Si becomes
projective after a quasi-compact étale surjective base change on Si.

Proof. Without loss of generality S is affinoid, so C and S are quasi-compact and separated. By [BL2, 5.10],
there is a formal flat model f : C → S of f with f having all fibers of dimension at most 1, and by [L, 2.5, 2.6]
f is automatically proper since f = frig is proper. For each n ≥ 0, let fn : Cn → Sn denote the induced
proper, flat, finitely presented morphism over Spec(R/In+1), where R is the valuation ring of k and I is
an ideal of definition of R. Note that we may work Zariski-locally on S, since Zariski-covers of S induce
admissible open covers of S.

Quite generally, if F : X → Y is a proper and finitely presented morphism of schemes and all fibers of
F have dimension at most 1, then we claim that there exists a Zariski-open covering {Yi} of Y and quasi-
compact étale surjections Y ′

i → Yi such that X ×Y Y ′
i admits a Y ′

i -ample invertible sheaf for all i. In other
words, proper curves are projective étale-locally on the base. By standard limit arguments, it suffices to
prove that if Y is henselian local then F is projective. Let us grant this for a moment and use it to complete
the proof.

Taking F : X → Y to be f0 : C0 → S0, by passing to small opens in S0 (or S) we may suppose that there
exists a quasi-compact étale surjection S′

0 → S0 and an f′0-ample invertible sheaf L0 on C′0, with S0 affine.
Let S′

n → Sn be the unique étale lifting of S′
0 → S0, so the S′

n’s define a flat formal scheme morphism
S′ → S with S′ topologically finitely presented over R. Let S′ → S be the corresponding flat morphism of
quasi-compact rigid spaces. The surjectivity and flatness of the formal scheme morphism S′ → S forces the
flat rigid-analytic morphism S′ → S to be surjective (by Lemma A.1.5).

The coherent OS′ -module Ω̂1
S′/S vanishes and induces Ω1

S′/S on S′, so the quasi-compact flat surjection
S′ → S is étale. Replacing S with S′, we may assume that an f0-ample L0 exists on C0. Since f0 is proper,
flat, and finitely presented, by cohomology and base change we can replace L0 with a large tensor power
so that L0 has vanishing degree-1 cohomology on fibers and L0 is very ample. Working locally on S, we
can assume that S is affine. Since the fn’s are proper of finite presentation with fibers of dimension at most
1, and the Sn’s are affine, H2(Cn,F ) = 0 for any quasi-coherent sheaf F on Cn for any n ≥ 0 (use direct
limits and the theorem on formal functions). Thus, there exist compatible invertible sheaves Ln on all Cn’s.
Since each fn is proper, flat, and finitely presented, by cohomology and base change (and the cohomological
vanishing hypothesis for L0) it follows that the Ln’s define a closed immersion of the proper C into a formal
projective space over S. Now apply (·)rig to get a closed immersion of C into a projective space over S.

It remains to prove the above general assertion concerning projectivity of proper finitely presented mor-
phisms F : X → Spec A with fibers of dimension at most 1 over a henselian local base Spec A. Using
standard direct limit arguments [EGA, IV3, §8ff.], we reduce to the case when A is also noetherian. We
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need to construct an ample invertible sheaf L on X. By [EGA, IV3, 9.6.4], it is necessary and sufficient to
construct an invertible sheaf on X that is ample on the closed fiber.

There is a quick construction of such an L using the Artin approximation theorem and the Grothendieck
Existence Theorem, but here is a more elementary construction suggested by J. Starr. We can assume that
X is connected, so by the henselian property of A it follows that the closed fiber X0 is connected. If the
closed fiber is 0-dimensional then the open quasi-finite locus [EGA, IV3, 13.1.4] must fill up all of the proper
X and hence X is A-finite, so OX is relatively ample. Thus, we may suppose that X0 has pure dimension
1. For each irreducible component of the fiber X0 over the reduced closed point, choose a closed point xi

on this component such that xi is not on any other irreducible component of X0. Also make sure that each
xi is not one of the finitely many associated points of X or of X0. Finally, we may suppose that if xi lies in
the closure of an associated point ηj of X then the closure of ηj contains the entire irreducible component
of X0 on which xi lives. In the local ring Bi = OX,xi

at xi, let Ii denote the stalk of the ideal sheaf of X0,
so the associated primes pj of Bi all contain Ii but lie strictly inside of the maximal ideal mi. Thus, the
prime ideals pj/Ii in Bi/Ii and the associated primes of Bi/Ii are all strictly contained inside of the maximal
ideal. By prime avoidance, we may select a non-unit gi in Bi whose image in Bi/Ii lies outside of all of these
primes. Thus, on both X and X0 the germ gi is not a zero divisor at xi.

Smearing out gi over a neighborhood of xi, its zero-scheme defines a subscheme Zi of X passing through
xi that is quasi-finite (over the henselian local base) at xi. Since Zi is separated over a henselian local ring,
it follows from Zariski’s Main Theorem that the connected component Z ′

i of xi in Zi is finite over the base.
The scheme Z ′

i is then clearly a local closed subscheme of X whose ideal sheaf is invertible, so the ideal sheaf
on X of the disjoint union D of the Z ′

i’s is invertible and (by the way we selected the gi’s) restricts to the
invertible ideal sheaf of D0 = D ∩X0 in X0. Thus, the inverse L of the ideal sheaf of D is ample. �

Theorem 2.1.5. Let f : C → S be a DR semistable genus-1 curve over a quasi-separated or pseudo-separated
rigid space S. Let k′/k be an analytic extension field, and let f ′ : C ′ → S′ be the relative rigid-analytic curve
obtained by extension of the base field from k to k′. The map C ′ → S′ is a DR semistable genus-1 curve
over the rigid space S′ over k′.

See §1.3 for the definition of pseudo-separatedness.

Proof. The problem is local on S, and clearly a proper rigid space over S′ is a DR semistable genus-1 curve
over S′ if and only if it is one after a quasi-compact étale surjective base change on S′. Moreover, by Theorem
A.2.4(d),(k),(n), for any quasi-compact étale surjection T → S the map T ′ → S′ of rigid spaces over k′ is
also quasi-compact, étale, and surjective. Thus, by Theorem 2.1.4 we may assume that there exists a closed
S-immersion C ↪→ Pn

k × S. By the rigid-analytic representability properties of the Hilbert functor [C3,
Thm. 4.1.3] (especially compatibility with analytification), there exists a proper flat curve C → S over a
locally finite type k-scheme S and a map α : S → S an that pulls C an back to C. The composite map
S → S must land inside of the locus over which the fibers of C → S are DR semistable genus-1 curves. By
Lemma B.1.3, this locus is an open subscheme U ⊆ S .

Let Z be a closed subscheme structure on the complement of U in S , and let S ′ = k′ ⊗k S . The rigid
space S an is pseudo-separated and there is a natural isomorphism k′⊗̂k(S an) ' S ′an. Under the map

α′ : S′ → k′⊗̂k(S an) ' S ′an,

the pullback of k′⊗̂k(Z an) ' Z ′an is empty. Zariski-openness in rigid geometry is compatible with change
of the base field [C1, 3.1.1], so the map α′ factors through the Zariski-open locus k′⊗̂k(U an) ' U ′an. Since
C ′ → U ′ is a DM semistable genus-1 curve, the pullback of C ′an → U ′an along α′ : S′ → U ′an is a DR
semistable genus-1 curve over S′. This pullback is exactly C ′ → S′. �

Using properties of the rigid-analytic Proj and Hilbert functors as in [C3, Thm. 2.3.8, Thm. 4.1.3],
particularly the good behavior of rigid-analytic Proj with respect to flatness and change of the ground field,
one can carry over (essentially verbatim) the scheme-theoretic methods used to construct contractions as in
(B.1.1); see Remark B.1.4. More precisely:
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Theorem 2.1.6. Let f : C → S be a DR semistable genus-1 curve over a rigid space S and let D ↪→ C be a
relative effective Cartier divisor that is finite flat over S and lies in Csm. Assume that D → S is surjective.

There exists a unique map u : C → C, where C/S is a DR semistable genus-1 curve and on geometric
fibers over S the map u is the contraction of precisely the irreducible components not meeting the fiber of D.
The map u is unique up to unique isomorphism and it is functorial with respect to isomorphisms in the pair
(C,D).

The contraction map u : C → C is compatible with base change on S, with analytification from the scheme
case, and with change of the base field when S is quasi-separated or pseudo-separated.

Remark 2.1.7. By geometric-fiber considerations, u−1(C
sm

) is contained in Csm and the restriction

u′ : u−1(C
sm

) → C
sm

of u is quasi-compact (even proper) and an isomorphism on fibers over S, so u′ is an isomorphism by Corollary
A.2.6(1). That is, u identifies C

sm
with an admissible open in Csm.

Definition 2.1.8. A generalized elliptic curve over a rigid space S is a triple (E,+, e) where f : E → S is
a DR semistable genus-1 curve over S and the data + : Esm ×S E → E and e ∈ Esm(S) satisfy the two
properties:

• + restricts to a commutative S-group structure on Esm with identity section e,
• + is an action of Esm on E such that for each non-smooth fiber Es and algebraically closed extension

s : k(s) → K, the translation action by any element of Esm
s (s) induces a rotation on the graph of

irreducible components of Es.

Remark 2.1.9. By GAGA over fields and the theory of geometric irreducibility and geometric connectivity
in [C1], each Esm

s has only finitely many irreducible components and hence there exists a finite extension
k′/k(s) such that the irreducible components over k′ are geometrically irreducible (and correspond to the
irreducible components of Es/k′). In the second axiom for + in Definition 2.1.8, it suffices to replace the
arbitrary K with a finite extension k′/k(s) such that each irreducible component of Esm

s/k′ has a k′-rational
point.

Example 2.1.10. Let (E → S ,+, e) be a generalized elliptic curve over a locally finite type k-scheme. By
Example 2.1.3, E an → S an is a DR semistable genus-1 curve over the rigid space S an. Equipped with +an

and ean, it is a generalized elliptic curve over S an.

The relative smooth locus Esm in Definition 2.1.8 is the Zariski-open locus where the coherent Ω1
E/S on

E is locally free of rank 1. The formation of the locus where a coherent sheaf on a rigid space is locally
free with a specified rank is compatible with change of the base field [C3, Cor. A.2.7], so the formation
of Esm is compatible with change of the base field. In view of Theorem 2.1.5, the only obstruction to
deducing immediately that (for quasi-separated or pseudo-separated S) arbitrary analytic extension of the
base field carries generalized elliptic curves to generalized elliptic curves is the issue of the rotation condition
on geometric fibers. This seems to be a rather hard problem to treat at the outset, except when the base
S is 0-dimensional, and we will settle it affirmatively after we have done some work on the global structure
of rigid-analytic families of generalized elliptic curves. Thus, results concerning behavior with respect to
arbitrary change in the ground field are postponed until the end of §2.2.

When S = Sp(k), the identity component of Esm has a rational point and hence it is geometrically
connected [C1, 3.2.1]. Thus, for any S and s ∈ S the notion of “identity component” of a fiber Esm

s is
well-behaved with respect to base change on S and arbitrary analytic extension on k(s) for s ∈ S. We begin
our study of rigid-analytic generalized elliptic curves with an analogue of [DR, II, 2.7].

Theorem 2.1.11. Let f : E → S be a DR semistable genus-1 curve over a rigid space S, and assume that f
has geometrically irreducible fibers. Let e ∈ Esm(S) be a section. There is a unique structure of generalized
elliptic curve on E → S with identity section e.

Proof. The uniqueness assertion and fpqc-descent for morphisms [C3, Thm. 4.2.3] permit us to work fpqc-
locally on S for existence. Thus, by using the argument with Hilbert functors in the proof of Theorem 2.1.5,
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we may suppose that the marked curve (E, e) is the pullback of a DR semistable marked genus-1 curve
E → S over a locally finite type k-scheme S (the marking being a choice of section in E sm(S )). The locus
U ⊆ S of geometrically integral fibers for E is Zariski-open [EGA, IV3, 12.2.4] and the map S → S an

must land inside of U an. By the algebraic analogue [DR, II, 2.7] of the present theorem, E |U → U with
its marked section admits a unique structure of generalized elliptic curve, so we get existence fpqc-locally on
the original S.

The remaining issue is to prove uniqueness. We use Corollary A.2.6(3) to reduce to the case of an artin local
base S = Sp(A0), so E is a proper 1-dimensional rigid space over k. Let Ealg be the unique corresponding
proper A0-scheme under GAGA over artin rings, so Ealg is naturally a DR semistable genus-1 curve over
Spec(A0). Clearly Ealg → Spec(A0) has geometrically integral fibers. Let ealg ∈ (Ealg)(Spec(A0)) =
E(Sp(A0)) be the unique section whose analytification is e under the GAGA correspondence over artin
rings. We are trying to compare two maps

(2.1.1) +′,+an : Esm ×S E ⇒ E,

where +′ is an abstract rigid-analytic generalized elliptic curve structure with identity section e and +an

is the analytification of the unique such structure + on (Ealg, ealg). When Esm = E is proper we may use
GAGA over artin rings to reduce to the known algebraic case. Thus, we now suppose that the irreducible
geometric fiber over the artin local base is a 1-gon.

Our comparison between +′ and +an rests on the following variant of Corollary A.2.6(3) that is an
immediate consequence of Krull’s intersection theorem:

Lemma 2.1.12. Let X, Y be rigid spaces over S. For two S-maps f, g : X ⇒ Y , f = g if and only if the
induced maps X(S0)⇒ Y (S0) coincide for all local artin objects S0 → S over S.

Rather than directly prove equality of the two maps in (2.1.1), let us first check the a priori weaker claim
that the two group laws +′,+an : Esm × Esm ⇒ Esm on the smooth locus are the same. To compare the
group laws +′ and +an on Esm over S = Sp(A0), by Lemma 2.1.12 it suffices to show (by allowing the artin
local A0 to vary) that for x ∈ Esm(S) the translation action x+′ on Esm over S is the same as x+an. But
Esm(A0) = (Ealg)sm(A0), so x = yan for a unique A0-section y of (Ealg)sm. It follows that x+an = (y+)an

on E. Thus, we need to prove that the automorphism x+′ of E = (Ealg)an algebraizes (under GAGA over
artin rings) to the translation action y+ on Ealg. If x+′ merely algebraizes to some translation z+ with
z ∈ (Ealg)sm(A0) then acting on the algebraization ealg of e forces zan = x +′ e = x = yan, so z = y. Thus,
to compare +′ and +an as groups laws on Esm with identity e, we just need to prove that the algebraization
of x+′ to an automorphism of Ealg is a +-translation.

Since the geometric fiber of Ealg is a 1-gon, Theorem B.2.5 applied to Ealg → Spec A0 with G = {ealg}
ensures that every automorphism of Ealg over Spec A0 is a +-translation. This completes the proof of the
weaker claim that +′ = +an as group laws on Esm over Sp(A0).

We conclude that for x ∈ Esm(S) the translation maps x+′, x+an : E ⇒ E over S coincide on Esm, and
so they coincide on E because it suffices to compare the algebraizations Ealg ⇒ Ealg of these two analytic
automorphisms E ⇒ E via GAGA over artin rings (equality holds on the algebraic side because (Ealg)sm is
relatively schematically dense in Ealg [EGA, IV3, 11.10.8ff.]). Thus, x+′ = x+an for any x ∈ Esm(S) when
S = Sp(A0) is artin local. �

The same arguments as in the scheme case show that for any generalized elliptic curve E/S and subgroup
object D ↪→ Esm that is finite flat over S, the contraction E of E away from D (in the sense of Theorem
2.1.6) admits a unique compatible structure of generalized elliptic curve. In particular, taking D to be the
identity section, we see that the contraction c(E) away from the identity section has a unique generalized
elliptic curve structure compatible with that on E. But c(E) has geometrically irreducible fibers, so its
generalized elliptic curve structure is uniquely determined by its identity section (without reference to E),
by Theorem 2.1.11. This allows us to prove:

Corollary 2.1.13. If k is algebraically closed then up to isomorphism the only rigid-analytic generalized
elliptic curves over Sp(k) are smooth elliptic curves and the analytifications of the standard polygons with
their standard algebraic generalized elliptic curve structure.
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In general, if E is a non-smooth rigid-analytic generalized elliptic curve over a non-archimedean field k
then it becomes isomorphic to a standard n-gon endowed with its standard generalized elliptic curve structure
over a finite extension of k (that may be chosen to be separable over k if char(k) - n).

Proof. The smooth case is trivial, by GAGA over fields, so we may restrict attention to the non-smooth
case. Also, if E is a rigid-analytic generalized elliptic curve over an arbitrary non-archimedean field k and E
is non-smooth, then under the GAGA correspondence over fields the algebraization of E is a DR semistable
genus-1 curve over the field k. By the algebraic theory of such curves, in such cases we can find a finite
separable extension of k over which the curve becomes isomorphic to a standard polygon Cn. Thus, it suffices
to consider the case of an arbitrary k and a generalized elliptic curve structure +′ on a standard polygon
over Sp(k) with the identity point e lying on the component labelled by 0 ∈ Z/nZ. Using a k×-multiplier
on the entire polygon, we can assume e = 1 on this component of the standard polygon. We want to prove
that, at least over a finite extension of k (separable if char(k) - n) there is an analytic (and so necessarily
algebraic) automorphism of the rigid-analytic marked curve (Cn, e) carrying the structure +′ to the standard
generalized elliptic curve structure +.

By Theorem 2.1.11, the case of 1-gons is settled. Thus, consider the standard n-gon Cn with n ≥ 2. Let
E denote Cn endowed with the structure +′. The contraction c(E) away from the identity component is a
standard 1-gon with generalized elliptic curve structure having 1 as the identity, so by Theorem 2.1.11 we
know c(E)sm = Gan

m as an analytic group (compatibly with the canonical identification of the marked curve
(c(E), c(e)) with the standard 1-gon with marking at the point 1). The contraction map identifies c(E)sm,
as an analytic group, with the identity component of the group object Esm (see Remark 2.1.7). Hence, the
group structure on the identity component is uniquely determined.

The “rotation” hypothesis in the definition of generalized elliptic curve implies that the finite constant
component group is cyclic with a generating component given by either component adjacent to the identity
component. Let C be the irreducible component labelled by 1 ∈ Z/nZ, so abstractly C is a rigid-analytic
projective line over k. Pick a k-rational point x ∈ C avoiding the two points in C that are not in Esm.
By replacing k with a finite extension generated by an nth root of [n]x ∈ Gan

m (k) = k×, we can assume
that [n]x ∈ Gan

m (k) is equal to [n]y for some y ∈ Gan
m (k) = c(E)sm(k). Under the canonical identification of

c(E)sm with the identity component of Esm we may view y as a rational point on this identity component.
Replacing x with xy−1 brings us to the case [n]x = e, so we get a unique isomorphism of analytic groups
ϕ : Esm ' Csm

n = Gan
m × Z/nZ via c(E)sm = Gan

m and x 7→ (1, 1). This isomorphism is algebraic by
construction (since the abstract analytic automorphism x+′ of E is algebraic by GAGA over fields), so it
uniquely extends to an analytic isomorphism E ' Cn that, for density reasons, carries +′ to +. �

Corollary 2.1.14. Let E be a rigid-analytic generalized elliptic curve over k and let Ealg be the associated
DR semistable genus-1 curve over Spec(k). The generalized elliptic curve structure on E uniquely algebraizes
to a generalized elliptic curve structure on Ealg.

Proof. The uniqueness follows from the faithfulness of the analytification functor. Since the smooth locus on
Ealg analytifies to the smooth locus on E, the only problem is to prove that the morphism + : Esm×E → E
is algebraic (as then e ∈ E(k) = Ealg(k) provides the identity point on the algebraic side, and preservation
of irreducible component decomposition under analytification takes care of the rotation requirement in the
non-smooth case). The algebraicity in the smooth case follows from GAGA over fields, so we may assume
E is not smooth. By fpqc descent theory for morphisms on the rigid-analytic and scheme-theoretic sides, it
suffices to check the algebraicity after a finite extension of the base field. Thus, the final part of Corollary
2.1.13 solves the problem (since a rigid-analytic isomorphism from E to a standard polygon is necessarily
algebraic, by GAGA over fields). �

2.2. Global structure of generalized elliptic curves over rigid spaces. The starting point for the
global theory is the fact that Theorem B.2.6 carries over to the rigid-analytic case:

Theorem 2.2.1. Let C → S be a DR semistable genus-1 curve over a rigid space S and let D ↪→ C be an
S-ample relative effective Cartier divisor supported in Csm. Assume that the finite flat D/S is endowed with
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a structure of commutative group object and that there is given an action ρ : D × C → C that restricts to
the group law on D.

This data extends to a generalized elliptic curve structure on C if and only if it does so on fibers, in which
case such a structure is unique.

Since the fibers of C → S have unique projective algebraic structure, by Corollary 2.1.14 and GAGA
(over fields) applied to ρ on the fibers it follows that the Pic0-criterion in Theorem B.2.6 gives a necessary
and sufficient condition for the verification of the criterion in Theorem 2.2.1 that there exists a generalized
elliptic curve structure (compatible with ρ) on the fibers. Likewise, it suffices to have the existence of such
a structure on each geometric fiber.

Proof. We first prove uniqueness, and for this purpose it is sufficient to work on infinitesimal fibers (cf. proof
of Lemma 2.1.12). Thus, we may and do now assume S = Sp(A0) with a finite local k-algebra A0, so the rigid
space C has dimension 1. The idea is to imitate the proof of uniqueness in Theorem 2.1.11, so we have to
first establish an algebraic existence result over Spec(A0). Since proper rigid-analytic spaces with dimension
≤ 1 are algebraic, we let Dalg and Calg be the associated algebraizations of D and C. By GAGA over artin
rings, Calg is a DR semistable genus-1 curve over Spec(A0) and Dalg is a Spec(A0)-ample relative effective
Cartier divisor supported in its smooth locus such that the S-group structure on D uniquely algebraizes to a
commutative A0-group scheme structure on Dalg and ρ uniquely algebraizes to an action ρalg of Dalg on Calg

over Spec(A0) extending the group scheme structure on Dalg. By the existence and uniqueness results in the
algebraic case (Theorem B.2.6), ρalg has at most one extension to a structure of generalized elliptic curve on
Calg over Spec(A0) and it admits one if and only if ρalg ⊗A0 k0 does so for Calg ⊗A0 k0 over Spec(k0). Over
k0 the algebraic existence follows from Corollary 2.1.14 and the assumption that ρ0 = ρ⊗A0 k0 extends to a
generalized elliptic curve structure on C0 = C ⊗A0 k0.

Note that there can be at most one generalized elliptic curve structure on C0 compatible with ρ0 because
Corollary 2.1.14 ensures that any such structure is automatically algebraic and the resulting algebraization
is necessarily compatible with ρalg

0 (so the uniqueness aspect in Theorem B.2.6 gives uniqueness for this
algebraized structure). We conclude that the generalized elliptic curve structure that is assumed to exist on
C0 compatibly with ρ0 is unique and its algebraization to a generalized elliptic curve structure on Calg

0 over
Spec(k0) uniquely deforms to a ρalg-compatible generalized elliptic curve structure + on Calg over Spec(A0).
In particular, +an gives a solution to the existence problem over Sp(A0), so the original uniqueness problem
is equivalent to the assertion that any solution +′ to the existence problem must be equal to the analytified
structure +an over Sp(A0). Compatibility with ρ forces any such +′ to have identity section given by that of
D (and so this identity section algebraizes to the identity section of the unique solution + to the algebraic
existence problem on Calg).

Since we have agreement of identity sections for +′ and +an, we are now in exactly the same situation as
(2.1.1), except that the fiber C0 may not be geometrically irreducible. The only purpose of the geometric
irreducibility condition in the analysis of (2.1.1) is to use G = {ealg} in the confirmation that for any
x ∈ Csm(S) the algebraization of the automorphism x+′ of C is a +-translation on (Calg,+). By the
uniqueness in Theorem B.2.6, we may apply Theorem B.2.5 with G = Dalg and ρ = ρalg to complete the
general uniqueness proof in the rigid-analytic case.

The problem is now one of global existence when existence is given on fibers, so we may work locally
on S. Thus, we may assume the finite flat covering D → S has constant rank d > 0. The rigid-analytic
version of Theorem B.1.2 and the compatibility of representing objects for the analytic and algebraic Hilbert
functors for projective space [C3, Thm. 4.1.3] allow us to suppose (by further localization on S) that C is
the pullback of a universal curve C over a suitable Hilbert scheme H over Spec(k). There is a scheme H (d)

of finite type over H such that H (d) is universal for the specification of a degree-d relative effective Cartier
divisor D in C equipped with a structure of commutative group object. By [EGA, IV3, 9.6.4], there is an
open subscheme U ⊆ H (d) that is universal for the conditions that D is relatively ample and supported in
C sm.

Over U we may consider the Hom-scheme Hom(D ×C ,C ) and form several fiber products with it so as
to universally make an action α : D × C → C of the group scheme D on the curve C extending the group
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law on D over a universal base S that is locally of finite type over k. The analytification compatibilities for
Spec, Hilbert, and Hom functors [C3, Thm. 2.2.5(3), Thm. 4.1.3, Cor. 4.1.5] ensure that the analytification
of the universal structure α over S in the category of k-schemes is likewise universal in the rigid-analytic
category over k. Put another way, the data consisting of

• the DR semistable genus 1 curve C/S ,
• the relatively ample degree-d relative effective Cartier divisor D ↪→ C supported in the smooth locus

and endowed with a commutative group structure,
• the action map ρ : D × C → C extending the group structure

is the pullback to S of the set of data (C an,Dan, αan) over S an. We can apply Lemma B.1.3 and Theorem
B.2.6 to the universal structure (C ,D , α) over S in order to find a Zariski-open V ⊆ S that is the universal
S -scheme over which α : D × C → C extends to a generalized elliptic curve structure C sm×S C → C .
The initial hypothesis of fibral existence implies (by Corollary 2.1.14) that S → S an lands inside of V an, so
analytification of the generalized elliptic curve structure over V gives a generalized elliptic curve over V an

that pulls back to the desired generalized elliptic curve structure on C/S since αan pulls back to ρ. �

The significance of Theorem 2.2.1 (along with Corollary 2.1.14 and Theorem B.2.6 on fibers) is that
for any DR semistable genus-1 curve C over a rigid space S, a generalized elliptic curve structure on C/S

may be uniquely constructed in accordance with the following data: a relatively ample relative effective
Cartier divisor D ↪→ C (supported in Csm), a commutative S-group structure on D, and an action map
ρ : D×C → C such that for all s ∈ S the algebraized action map ρalg

s : Dalg
s ×Calg

s → Calg
s under GAGA over

fields makes Dalg
s act trivially on Pic0

Calg
s /k(s)

for all s ∈ S. This procedure avoids any mention of non-proper
loci in C, and it will enable us to use GAGA over artin rings to study relative rigid-analytic generalized
elliptic curves. However, this viewpoint is of limited use at present because we do not (yet) know that an
arbitrary generalized elliptic curve E → S over an arbitrary rigid space S must, locally on S, admit a divisor
D as in Theorem 2.2.1! In the scheme case f : E → S over a base scheme S , we can take D in Theorem
B.2.6 (the algebraic version of Theorem 2.2.1) to be a suitable torsion subscheme, with the torsion-level
governed by the structure of the locus of non-smoothness S∞,f as in Lemma B.2.2. Let us review how
this works, as it will motivate our construction of D in the rigid-analytic case (though we shall encounter
non-trivial finiteness problems in the rigid-analytic case that do not arise in the algebraic case).

Let f : E → S be a generalized elliptic curve over a scheme. By the structure of S∞,f in Lemma B.2.2,
we may cover S by Zariski-opens Sn so that all non-smooth geometric fibers of E over Sn are n-gons for
some n ≥ 1. Thus, upon pulling back to Sn and renaming the pullback as E → S the multiplication
map [n] : E sm → E sm is flat, separated, and finitely presented with all fibers of the same rank, namely n2.
It therefore follows from the valuative criterion for properness and the structure theorem for quasi-finite
separated maps that the multiplication map [n] on the smooth locus E sm is a proper and hence finite map
(see [DR, II, 1.19] for details in the locally noetherian case, which suffices to infer the general case). In this
situation D = E sm[n] is finite locally free over S and is a relatively ample relative effective Cartier divisor
in E over S .

In the rigid-analytic case we are confronted with a new difficulty: even after we prove the rigid-analytic
analogue of Lemma B.2.2 (see Theorem 2.2.3), if all non-smooth geometric fibers are n-gons for some n ≥ 1
then the rigid-analytic multiplication map [n] : Esm → Esm is a priori merely flat and separated with finite
fibers that all have rank n2. In the analogous scheme setting [n] is automatically quasi-compact, but in the
rigid-analytic setting it is not at all obvious from the definitions that [n] is quasi-compact, so we cannot
see without effort that Esm[n] is S-finite (and in fact quasi-compactness is the essential obstacle: a quasi-
compact separated flat map of rigid spaces is finite if and only if it has finite fibers and its fiber-rank is
locally constant on the base; see Theorem A.1.2). Thus, we will need to do some more work before we can
determine the structure of torsion subgroups in the rigid-analytic case and thereby make Theorem 2.2.1 be
useful.

The first step toward analyzing finiteness properties of [n] in the rigid-analytic case is to establish the
rigid analogue of Lemma B.2.2. Let f : E → S be a generalized elliptic curve over a rigid space S, and give
the Zariski-closed set Esing = E−Esm in E its canonical “Fitting ideal” rigid space structure inside of E (as
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in the scheme case). Since π : Esing → S is proper and quasi-finite, it is finite. In particular, the formation
of π∗OEsing commutes with arbitrary base change on S.

Definition 2.2.2. Let f : E → S be a generalized elliptic curve. The locus of non-smoothness for f is the
canonical closed immersion S∞,f ↪→ S defined by the coherent ideal sheaf ker(OS → π∗OEsing).

By fiber calculations we see that the support of the locus of non-smoothness is the set of s ∈ S such that
Es is not smooth. In the scheme case this construction recovers the locus of non-smoothness S∞,f as the
scheme-theoretic image of the non-smooth locus on the curve (see Definition B.1.5). It is obvious that the
formation of S∞,f in the rigid-analytic case is compatible with analytification from the scheme case. Here
is the global structure of S∞,f :

Theorem 2.2.3. The formation of S∞,f is compatible with base change on S. Moreover, the rigid space
S∞,f is a disjoint union of Zariski-opens S∞,f

n ⊆ S∞,f over which the geometric fibers of E/S∞,f are n-gons.

Proof. Let π : Esing → S denote the finite structure map. The Zariski-closed set S∞,f is defined by the
coherent kernel of OS → π∗OEsing , so its formation certainly commutes with finite extension on the ground
field. We must prove that formation of S∞,f commutes with base change on S. Since OS → π∗OEsing is a
map of coherent sheaves, by consideration of completions at stalks and [EGA, 0I, 7.2.9] we reduce to the case
of an artin local base S = Sp(B) and base change to an artin local S′ (necessarily finite) over S. We may
assume that E/S is non-smooth, so by Corollary 2.1.13 we may arrange (by replacing k with a sufficiently
large finite extension) that the closed fiber is isomorphic to an n-gon with its standard generalized elliptic
curve structure for some n ≥ 1. By increasing k some more, we can arrange that the finite local k-algebra
B has residue field k.

The map [n] : Esm → Esm is flat with finite fibers, due to Corollary A.2.6(1) and the identification of
the closed fiber with a standard n-gon (as a generalized elliptic curve). On the closed fiber over our artin
local base S = Sp(B) this flat map [n] becomes finite (of degree n2). By Theorem A.1.1, [n] must therefore
be a finite map, hence finite flat of degree n2. In particular, D = Esm[n] is a finite flat commutative group
object over S, and D is an S-ample relative effective Cartier divisor in E/S . By GAGA over artin rings, E

has a unique “algebraic” incarnation as a DR semistable genus-1 curve falg : Ealg → Spec(B) and there is
a unique relative effective Cartier divisor Dalg ↪→ Ealg that is finite flat over Spec(B) and induces D ↪→ E

upon analytification. Clearly Dalg is B-ample and is supported in the smooth locus of Ealg
/B , and there is a

unique compatible structure of commutative B-group scheme on Dalg.
By Theorem 2.2.1, the generalized elliptic curve structure on E/S is the unique one compatible with

the group structure on D. By GAGA over artin rings, the analytic action map ρan : D × E → E is the
analytification of an algebraic action map

(2.2.1) ρalg : Dalg × Ealg → Ealg.

The proof of uniqueness in Theorem 2.2.1 shows that there is a unique structure of generalized elliptic curve
on Ealg

/B compatible with ρalg, and that this generalized elliptic curve structure on Ealg
/B must analytify to the

given generalized elliptic curve structure on E/Sp(B). Likewise, Spec(B)∞,falg
must analytify to Sp(B)∞,f .

This is all valid over an arbitrary local artin object over Sp(k), so applying Theorem B.2.4 for base change
between artin local base schemes completes the proof of base change compatibility of S∞,f .

With base change compatibility for S∞,f now settled in general, we may assume S = S∞,f and we first
want to show that if the geometric fiber over some s ∈ S is an n-gon then the same is true for geometric fibers
over a Zariski-open neighborhood of s. We will adapt some ideas in the proof of [DR, II, 1.16]. Recall that
the formation of Esing is compatible with base change on S. We claim that the formation of the rigid-analytic
blow-up

(2.2.2) Ẽ = BlEsing(E)

(see [C3, §4.1] for blow-ups in the rigid-analytic case) is compatible with base change on S via the natural
map. By the definition of blow-ups, it suffices to check that the infinitesimal neighborhoods of Esing in E are
S-flat; to verify such flatness it suffices (by the local flatness criterion [Mat, 22.3]) to work on infinitesimal
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fibers, so we may suppose that the base is an artin local object S = Sp(B). By GAGA over artin rings, it
suffices to prove B-flatness of the infinitesimal neighborhoods of (Ealg)sing in Ealg, with falg : Ealg → Spec(B)
a generalized elliptic curve over the local artin scheme Spec(B) such that Spec(B) = Spec(B)∞,falg

(since we
are in the case S = S∞,f ). As is explained in the proof of [DR, II, 1.16], the equality Spec(B) = Spec(B)∞,falg

ensures that fppf-locally on the generalized elliptic curve Ealg, the closed immersion

(2.2.3) (Ealg)sing ↪→ Ealg

looks like Spec(B) ↪→ Spec(B[x, y]/(xy)). Thus, the B-flatness of the infinitesimal neighborhoods of the
closed subscheme (2.2.3) is seen by explicit calculation. We may now compute fibers of the blow-up (2.2.2)
by blowing up the fibers.

Using Corollary 2.1.13 and analytification of blow-ups of infinitesimal algebraic fibers, we conclude that
• the fiber of f̃ : Ẽ = BlEsing(E) → S over each s ∈ S becomes isomorphic to a finite disjoint union of

projective lines after passing to a finite extension of k(s),
• the infinitesimal fibers of f̃ are S-flat (so f̃ is flat).

It follows that H1(Ẽs,O eEs
) = 0 for the fibers Ẽs of f̃ , and by S-flatness of f̃ we may use cohomology and

base change to conclude that the direct image f̃∗O eE is finite flat with formation that is compatible with
base change on S. Working on fibers shows that the finite flat OS-algebra f̃∗(O eE) is étale and that its rank
counts the number of sides on a geometric-fiber polygon for fibers of f , so this number is locally constant
for the Zariski topology on S = S∞,f . Thus, upon returning to the case of a general base S (where perhaps
S∞,f 6= S), we conclude that S∞,f is a disjoint union of Zariski-open loci S∞,f

n over which the geometric
fibers of E are n-gons. The formation of these S∞,f

n clearly commutes with base change on S. �

We are now ready to prove the desired finiteness property concerning the flat map [d] : Esm → Esm.

Theorem 2.2.4. Let E/S be a generalized elliptic curve over a rigid space S and assume that the number of
geometric irreducible components in every non-smooth fiber is divisible by d ≥ 1. The map [d] : Esm → Esm

is finite flat of degree d2.

Proof. By Theorem 2.2.3, we may work locally on S so as to reduce to the case in which the number of
geometric irreducible components in each non-smooth fiber is a common value, say n. Since [n] = [n/d] ◦ [d]
and [n/d] is separated, if [n] is finite then [d] is finite. Thus, we may assume n = d. Finally, by fpqc-descent
for properties of rigid-analytic morphisms [C3, Thm. 4.2.7] we may make an fpqc base change on S. Hence,
by Theorem 2.1.4 we may assume that there exists a closed immersion E ↪→ PN

S . Also, by the Zariski-local
constancy of Euler characteristics in rigid-analytic proper flat families (proved by straightforward adaptation
of the algebraic methods in [Mum, §5]) we can suppose that the Hilbert polynomials of the fibers are all
equal to the same polynomial Φ = δt ∈ Q[t] (so Es ↪→ PN

s is a curve of degree δ for all s ∈ S). The idea
of the rest of the proof is to use Hilbert and Hom functors for both schemes and rigid spaces to show (via
Theorem 2.2.1) that E → S is étale-locally (on S) a pullback of the analytification of a generalized elliptic
curve E → S over a locally finite type k-scheme S whose non-smooth geometric fibers are all d-gons. The
quasi-compact multiplication map [d]E sm is necessarily finite [DR, II, 1.19], so by analytification and pullback
we would obtain the desired finiteness of the flat map [d]Esm . Inspecting fibers then ensures that this finite
flat map has constant degree d2.

The fiber of E over each s ∈ S∞,f becomes isomorphic to the standard d-gon over a finite extension of
k(s), by Corollary 2.1.13. We want to “interpolate” generators of geometric component groups of fibers of
Esm

/S . More precisely, we claim that there exists

• a Zariski-open covering {Si} of S,
• a finite étale cover S′i → Si,
• sections g′1,i, . . . , g

′
δ,i ∈ Esm(S′i)

such that on each fiber Es′ of E over s′ ∈ S′i at least one of the points g′j,i(s
′) induces a generator of the

geometric component group of the smooth locus Esm
s′ . Since we can take one of the Zariski-opens to be

S − S∞,f , over which the identity section e ∈ Esm(S) generates the geometric component group of every
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fiber, to carry out the construction we just have to find Si’s and S′i’s of the above type such that the
Zariski-open Si’s in S cover the Zariski-closed set S∞,f set-theoretically.

Let us begin the construction by choosing s ∈ S∞,f . We claim that there exists a Zariski-open V around
s in S and a relative hyperplane H ↪→ PN

V such that the map H ∩ EV → V is finite étale surjective and is
supported in Esm

V . Once such V and H are constructed, a standard fiber product construction yields a finite
étale cover V ′ → V that splits the degree-δ finite étale cover H∩EV → V , and so if g1, . . . , gδ ∈ (H∩EV )(V ′)
are pairwise disjoint sections that define a splitting then by ampleness of hyperplane sections over fields it
would follow that for each fiber Esm

v′ of Esm over V ′ at least one gj(v′) is a generator of the geometric
component group of Esm

v′ .
We now construct such V and H. By Lemma B.1.3 and the compatibility of representing objects for

the algebraic and rigid-analytic Hilbert functors [C3, Thm. 4.1.3], the closed immersion E ↪→ PN
S is the

pullback of a DR semistable genus-1 curve C ↪→ PN
S with fibral degree δ over a locally finite type k-scheme

S . Thus, it suffices to solve a universal algebraic problem: if C ↪→ PN
S is a closed immersion with C a

DR semistable genus-1 curve over a scheme S , and s ∈ S is a point with infinite residue field, we seek a
Zariski-open neighborhood V of s and a relative hyperplane H ↪→ PN

V such that H ∩ C V is finite étale
over V and is supported in C sm. We can assume S is local noetherian with s the closed point. By Bertini’s
theorem, the scheme U of hyperplanes in PN

Spec k(s) whose intersection with C s is étale and disjoint from the
finite C s−C sm

s is a dense open in the dual projective space. Since k(s) is assumed to be infinite, the set
U(k(s)) is non-empty. Let H ⊆ PN

Spec k(s) be a hyperplane corresponding to a point in U(k(s)). By lifting
the coefficients of a defining equation, we get a relative hyperplane H in PN

S over the local scheme S and
we claim that this has the desired properties.

Certainly H ∩C ⊆ C sm, since the non-smooth locus of C is proper over the local S and its closed fiber
is disjoint from H (by the choice of Hs = H ⊆ PN

Spec k(s)). Also, the proper map H ∩ C → S to the
local base S has finite closed fiber, so it must be quasi-finite (by openness of the quasi-finite locus [EGA,
IV3, 13.1.4]) and hence finite. Since S is local noetherian, to verify that the S -finite H ∩ C is étale over
S it suffices to treat the case when the local S is artin local.

Now assume S is artin local. Choose one of the finitely many points x in H ∩ C and let t ∈ OC ,x be
the pullback of a defining equation in OPN

s′ ,x
for the hyperplane H . We have to show that the finite map

Spec(OC ,x/(t)) → S is étale. Let U be an open neighborhood of x in C sm over which t smears out to an
S -map t : U → A1

S . This map physically sends x to the origin at the level of fibers over s. The map ts on
s-fibers is a map between smooth curves over k(s), so it is étale at x since Hs∩C s is étale at x. By shrinking
U , we can therefore assume that ts is étale, so t is flat (by the fiber-by-fiber criterion for flatness over the
artin local S ) and hence t is étale at x. The fiber t−1(0) over the zero-section of A1

S is then quasi-finite, flat,
and separated over S and étale at x. But S is artinian, so the connected component of t−1(0) through x is
finite étale over S . That is, the map Spec(OC ,x/(t)) → S is finite étale. This completes the construction
of the desired Zariski-opens Si in our original rigid space S, along with the finite étale covers S′i → Si and
sections g′ij ∈ Esm(S′i).

By the theory of fpqc descent for properties of rigid-analytic morphisms [C3, Thm. 4.2.7] we may rename
S′i as S, so we may assume that there exist sections g1, . . . , gδ ∈ Esm(S) such that on each fiber Esm

s at least
one of the gj(s)’s is a generator of the geometric component group. By the Zariski-openness of the locus Uj

of s ∈ S such that the d multiples {0(s), gj(s), . . . , ([d − 1](gj))(s)} of gj(s) are pairwise distinct, we may
finally assume that there exists g ∈ Esm(S) that induces a generator of every (geometric) fibral component
group. That is, the relative effective Cartier divisor

∑
0≤j≤d−1[j](g) is S-ample.

The fibral criterion for relative ampleness in the scheme case [EGA, IV4, 9.6.4] and the openness of the DR
semistable genus-1 locus for a proper relative curve over a scheme (Lemma B.1.3) enable us to use Hilbert
schemes and Hom-schemes to construct a DR semistable genus-1 curve C → S over a (locally finite type)
k-scheme S such that C → S is universal for being equipped with (i) a closed immersion into PN

S , (ii) a
section e ∈ C sm(S ), and (iii) an S -automorphism t : C → C such that

∑
0≤j<d tj(e) is relatively ample.

By the rigid-analytic theory of Hilbert and Hom functors [C3, Thm. 4.1.3, Cor. 4.1.5], the analytification
of this universal algebraic data over Spec k is universal in the category of rigid spaces over Sp(k). Thus,
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(E ↪→ PN , e, x 7→ g + x)/S is the pullback of the universal algebraic data (C ↪→ PN
S , e, t) by a unique

k-morphism ξ : S → S .
For each s ∈ S, consider the induced morphism tξ(s) : C ξ(s) → C ξ(s). By Theorem 2.2.1 and the GAGA

comparison over fields between k(s) ⊗k(ξ(s)) C ξ(s) and Es, the map tξ(s) acts transitively on the geometric
connected components of C sm

ξ(s) and (by Lemma B.2.7) there is a universal Zariski-open neighborhood of
ξ(s) in S over which t restricts to the identity on the semi-abelian algebraic space group Pic0

C /S . Thus, as
at the end of the proof of Theorem 2.2.1, it follows from Theorem B.2.5 (with the constant group scheme
G = Z, as opposed to the special case in Theorem B.2.6) and Lemma B.2.7 that after replacing S with a
canonical Zariski-open around the image of S there exists a unique structure of generalized elliptic curve on
C /S with identity section e such that t acts as translation by t(e) ∈ C sm(S ).

The pullback of this generalized elliptic curve structure to the bare curve E/S must be the initial gen-
eralized elliptic curve structure on E/S that we had at the outset! Indeed, by Lemma 2.1.12 and Theorem
2.2.1 this follows by applying GAGA over artin rings to infinitesimal fibers and applying the auxiliary fact
(Theorem B.2.5) that any S -automorphism of C commuting with t must be a translation. We have now
realized the generalized elliptic curve E over the rigid space S as the pullback of a generalized elliptic curve
E over a locally finite type k-scheme S . Since S → S must factor through the Zariski-open locus U ⊆ S
over which E has smooth or d-gon geometric fibers, the finiteness of [d] on Esm follows from the finiteness
of [d] on E sm|U . �

The étale-local nature of the construction of E → S in the preceding proof can now be improved:

Corollary 2.2.5. Let f : E → S be a generalized elliptic curve over a rigid space S over k. There exists
an admissible open covering {Si} of S and generalized elliptic curves Ei/Si

over locally finite type k-schemes
Si such that E/Si

is the pullback of Ei/Si
under a k-morphism Si → Si.

This corollary says that generalized elliptic curves over rigid spaces are always “locally algebraic”, includ-
ing their group laws.

Proof. Working Zariski-locally on S, we may assume (by Theorem 2.2.3) that all non-smooth geometric
fibers are d-gons for a fixed d ≥ 1. Thus, by Theorem 2.2.4, [d] : Esm → Esm is a finite flat map of degree
d2. Let D = Esm[d], so D is a finite flat commutative S-group of order d2. We may view D as an S-ample
relative effective Cartier divisor in E. By Theorem 2.2.1, the generalized elliptic curve structure on E/S is
the unique one compatible with the group structure on D/S and the action map ρ : D × E → E.

By the rigid-analytic version of Theorem B.1.2, we have a canonical closed immersion E ↪→ P(f∗O(3D))
into a P3d2−1-bundle (for the Tate topology) and the formation of this map is compatible with base change
on S. Working locally on S, we may assume that the coherent locally free OS-module f∗O(3D) is globally
free, so we have a closed immersion E ↪→ P3d2−1

S over S.
As in the proof of Theorem 2.2.1, there exists a locally finite type k-scheme S and a DM semistable

genus-1 curve C ↪→ P3d2−1
S and a degree-d2 relative effective Cartier divisor D ↪→ C supported in C sm such

that under a k-morphism ϕ : S → S the data D ↪→ C ↪→ P3d2−1
S pulls back to

D ↪→ E ↪→ P3d2−1
S .

Moreover, we can likewise arrange that D is endowed with a commutative S -group structure extending to
an action ρalg on C such that ϕ is compatible with the group structures on D and D as well as with the
action maps ρalg and ρ.

Choose s ∈ S and let s′ = ϕ(s) ∈ S be the closed-point image. By Corollary 2.1.13 and Theorem B.2.6,
Ds′ acts trivially on the semi-abelian variety Pic0

C s′ /s′ (as it suffices to check this on a geometric fiber over
s′). By Theorem B.2.6, there is a Zariski-open and Zariski-closed locus V in S that represents the condition
that D/S ′ acts trivially on Pic0

C ′ /S ′ (for variable S -schemes S ′). In particular, s′ ∈ V . Thus, S → S

factors through V ⊆ S . Replacing S with V , we may assume that D acts trivially on Pic0
C /S .

Now we can use Theorem B.2.6 to conclude that there is a unique structure of generalized elliptic curve
on C /S compatible with the group structure on D and the action of D on C . By analytifying this structure
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and using Theorem 2.2.1, it follows that the generalized elliptic curve structure on C /S pulls back to the
generalized elliptic curve structure on E/S . �

Corollary 2.2.6. Let E → S be a generalized elliptic curve over a rigid space. The inversion morphism on
the group object Esm uniquely extends to an S-morphism E → E, and this morphism is an involution of the
generalized elliptic curve E/S.

Proof. Granting existence, for the rest we can work on infinitesimal fibers and thereby use Theorem 2.2.1,
Theorem B.2.6, and GAGA over artin rings to deduce everything from the algebraic case [DR, II, 2.8]. In
particular, we have uniqueness in general and so may work locally for existence. Corollary 2.2.5 reduces
existence to the known algebraic case. �

Corollary 2.2.7. Let (E → S, +, e) be a generalized elliptic curve over a quasi-separated or pseudo-separated
rigid space over k. For any analytic extension field k′/k, (E′ → S′,+′, e′) is a generalized elliptic curve over
S′. Moreover, the closed immersions S∞,f ↪→ S and S′

∞,f ′
↪→ S′ defining the loci of non-smoothness satisfy

k′⊗̂kS∞,f = S′
∞,f ′

inside of S′; the same holds for the loci S∞,f
n and S′

∞,f ′

n of n-gon geometric fibers for each n ≥ 1.

Proof. We may work locally on S, so by Corollary 2.2.5 we can assume that (E,+, e) is the pullback of a
generalized elliptic curve E over a k-scheme S that is locally of finite type. By Theorem 2.2.3, the formation
of the rigid spaces S∞,f and S∞,f

n commutes with arbitrary rigid-analytic base change (for a fixed ground
field), so working with infinitesimal fibers shows that these rigid spaces inside S must be the pullbacks of the
corresponding closed subschemes of S associated to E . Hence, by the compatibility of the analytification
and change of base field functors, our analytic problems are reduced to the trivial algebraic case. �

3. Universal structures

3.1. Relative rigid Tate curves and a variant on Berthelot’s functor. For applications in the re-
mainder of this paper, we need to construct an important class of generalized elliptic curves over an open
unit disc over a non-archimedean field, the relative Tate curves. Our approach is based on a variant of
Berthelot’s general analytification functor from formal schemes to rigid spaces. (For applications to Tate
curves it is surely possible to proceed in a less abstract manner, but for the needs of [C4] we prefer to
use methods applicable in higher-dimensional cases.) The construction of Berthelot’s functor in [deJ, §7]
requires discreteness of the valuation, due to the use of noetherian hypotheses, so we will follow another
functorial technique (in the spirit of the initial discussion in [deJ, 7.1]) that allows us to avoid discreteness
restrictions on the absolute value. In practice the discretely-valued case is the most important case, but we
allow arbitrary k throughout.

We refer the reader to [C2, §2.5] for a self-contained discussion of the construction of Tate curves over Z
via formal schemes (done much more generally in [DR, VII]). To set notation that is used below, we now
quickly summarize the well-known conclusions of this algebraic construction. The proper flat formal n-gon
Tate curve T̂aten over Spf(Z[[q1/n]]) is constructed as a gluing of n formal annuli (with a self-gluing in the
case n = 1), and its reduction modulo q1/n = 0 is the standard n-gon over SpecZ. There is a canonical
closed immersion of the finite constant formal scheme Z/nZ over Spf(Z[[q1/n]]) into T̂aten lifting the canonical
closed immersion of Z/nZ into the smooth locus Gm × (Z/nZ) of the standard n-gon over SpecZ, and this
extends to a “formal rotation” action

(3.1.1) (Z/nZ)× T̂aten → T̂aten

over Spf(Z[[q1/n]]) that extends the formal group law on Z/nZ and lifts the standard rotation action given
by the standard generalized elliptic curve structure on the standard n-gon.

The algebraization of the formal rotation action (3.1.1) uniquely extends to a generalized elliptic curve
structure on the proper flat curve Taten that algebraizes T̂aten. This procedure also provides a canonical
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isomorphism of Z[[q1/n]]-groups

(3.1.2) Tatesm
n [n] ' µn × Z/nZ

lifting the canonical isomorphism on the standard n-gon fiber over q1/n = 0. For any adic noetherian ring A

and topologically nilpotent element a ∈ A, we write T̂aten(a) (with A understood from context) to denote
the base change by the map Z[[q1/n]] → A sending q1/n to a, and Taten(a) denotes its algebraization over
Spec A. This algebraization is the base change of Taten by Spec A → SpecZ[[q1/n]], and as over Z[[q1/n]]
this has a unique structure of generalized elliptic curve respecting the Z/nZ-action. We wish to functorially
“analytify” Taten, or rather T̂aten, over k to obtain a rigid analytic generalized elliptic curve Tatean

n over
the open unit disc ∆ = ∆/k = {|t| < 1} such that the fiber of Tatean

n over any q0 ∈ ∆(k)− {0} is Gan
m /qnZ

0 .
More generally, we want to define an analytification functor from the category of topologically finite type
formal Z[[q1/n]]-schemes to the category of rigid spaces over k. In fact, we wish to define such a functor on
a wider class of formal schemes:

Definition 3.1.1. Let C be an adic noetherian ring. The category FSC is the category of locally noetherian
formal schemes X over Spf(C) whose underlying reduced ordinary scheme is locally of finite type over the
quotient Cred of C by the ideal of topologically nilpotent elements.

Put another way, open affines in an object X of FSC have adic affine algebras that are quotients of rings of
the form (C[[q1, . . . , qn]]){{T1, . . . , Tm}} ' (C{{T1, . . . , Tm}})[[q1, . . . , qn]] with the (I, q)-adic topology, where
I is an ideal of definition for C and the ring C[[q]] is considered as an adic ring with the (I, q)-adic topology
when forming restricted power series in the Tj ’s over C[[q]]. In both the category FSC and the category
of rigid spaces over k we have a notion of “locally topologically nilpotent” section of the structure sheaf,
coinciding with “topologically nilpotent” for sections over open affines/affinoids. The case C = Z with the
discrete topology will be used for analytification of T̂aten’s.

We now suppose that there is given a continuous map of topological rings C → R, where R is the valuation
ring of k (so the ideals of definition of C map into ideals of definition of R since C is noetherian).

Example 3.1.2. If k is discretely valued, we can take C = R. In general, by separately treating the cases
when R has mixed characteristic and when R is equicharacteristic we may always find a complete discrete
valuation ring R0 ⊆ R such that R0 → R is local. We may then take C = R0 with the maximal-adic
topology. Note that we can also take C = Rdisc

0 to be the ring R0 considered with the discrete topology.

Example 3.1.3. The discrete ring C = Z equipped with its unique map to R is a valid choice.

Definition 3.1.4. For any X in FSC and any rigid space X over k, Homcont
C (X, X) is the set of morphisms

f : X → X of locally ringed Grothendieck-topologized spaces (in the sense of [C3, Def. 2.2.2]) such that
• f ] : OX → f∗OX is a map of sheaves of C-algebras (using C → R ⊆ k) and it factors through f∗Ob

X ,
where Ob

X ⊆ OX is the subsheaf of locally power-bounded sections,
• f ] : OX(U) → OX(f−1(U)) carries locally topologically nilpotent sections to locally topologically

nilpotent sections for all open U ⊆ X.

In an evident manner, Homcont
C (X, X) is functorial in both X and X.

Theorem 3.1.5. Fix an adic noetherian ring C and continuous map C → R to the valuation ring of k.
For any X in FSC , the functor Homcont

C (·,X) on rigid spaces over k is represented by a quasi-separated rigid
space Xrig, also denoted Xrig

/k .
The functor (·)rig takes open/closed immersions to open/closed immersions, open covers to admissible

open covers, and enjoys the following additional properties:
(a) (·)rig is compatible with the formation of fiber products,
(b) if k′/k is an analytic extension field, then there is a unique way to define isomorphisms

k′⊗̂kXrig
/k ' Xrig

/k′

that are functorial in X and recover the identification k′⊗̂kB1
k = B1

k′ for X = Spf C{{T}},
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(c) if C ′ is another such adic noetherian ring endowed with a continuous map C ′ → R and
there is given a continuous map C → C ′ compatible with the maps to R, then there are unique
functorial isomorphisms Xrig ' (Spf(C ′) ×Spf C X)rig of rigid spaces over k that recover the
standard isomorphism for X = Spf C{{T}},

(d) if f : X → Y is separated then so is frig,
(e) if f : X → Y is topologically of finite type then frig is quasi-compact.

In the special case that k is discretely-valued and C = R, this theorem and the next one recover [deJ,
7.2.4, 7.2.6] and also address additional properties concerning flatness, fiber dimension, and properness.

Proof. There is obviously a unique C-morphism (in the sense of Definition 3.1.4)

(3.1.3) ∆ → Spf(C[[q]])

that pulls q back to the coordinate function on ∆; on topological spaces this is the map ∆ → Spec(k) →
Spec(Cred). The map (3.1.3) serves as Spf(C[[q]])rig because (i) ∆ has an admissible covering given by the
discs ∆r = {|t| ≤ r} for r ∈ (0, 1) ∩

√
|k×|, and (ii) for any k-affinoid algebra A and any a ∈ A that is

topologically nilpotent, we must have |a|sup < 1 (i.e., a : Sp(A) → A1
k factors through some ∆r). It follows

in the general affine case that if X ' Spf(C[[q1, . . . , qn]]{{T1, . . . , Tm}}/J) then the zero-space in ∆n × Bm

defined by the coherent ideal sheaf generated by J serves as Xrig (here we are using the “power bounded”
condition in the definition of Homcont

C (·,X)).
From the construction, if X = Spf(A) is affine and a ∈ A, then Spf(A{a})rig → Xrig is an isomorphism

onto the admissible open U ⊆ X where a is a unit with power-bounded inverse, due to the isomorphism
A{a} ' A{{T}}/(1 − aT ). It follows that open/closed immersions of formal affines are taken under (·)rig
to quasi-compact open/closed immersions of rigid spaces. It is therefore clear that for formal affines all of
the desired properties hold. In particular, from fiber-product compatibility we see that (·)rig is compatible
with the formation of overlaps of open affnes within a formal affine X. Consequently we can construct Xrig

first for separated X, and then for general X, such that it represents the desired functor and such that the
formation of Xrig is well-behaved with respect to open immersions, closed immersions, and open covers.

Properties (a), (b), and (c) in general follow from the construction, with the uniqueness characterizations
in (b) and (c) deduced from the compatibility with localization, closed immersions, and fiber products. The
compatibility with separatedness follows from compatibility with fiber products and closed immersions, and
by construction we see that if f is topologically of finite type then frig is quasi-compact. �

Theorem 3.1.6. With notation as in Theorem 3.1.5, the functor (·)rig satisfies the following properties for
maps f : X → Y that are locally topologically of finite type:

(a) if f is finite then so is frig,
(b) if f : X → Y is formally smooth (in the category of formal schemes over Y) with pure
relative dimension d, then frig is smooth with pure relative dimension d; in particular, if f is
formally étale then frig is étale,

(c) if f is finite flat of constant rank d then so is frig,
(d) if f is proper then so is frig,
(e) if f is flat then frig is flat; the same holds with “flat” replaced by “faithfully flat”,
(f) if all fibers of f have dimension ≤ d then the same holds for frig,
(g) if f is flat with geometrically reduced fibers of pure dimension d then the same holds for
frig.

Remark 3.1.7. Formal smoothness is defined via the usual lifting property with respect to infinitesimal
thickenings in the category of locally noetherian formal schemes over Y.

Proof. For a map f in FSC that is locally topologically of finite type, f is formally smooth if and only if it can
locally be expressed as formally étale (of topologically finite type) over a formal affine space Y{{T1, . . . , Td}},
in which case d is the rank of the coherent locally free OX-module Ω̂1

X/Y. This description is established by
using the structure theorems for smooth and étale maps, as well as the insensitivity of the étale site with
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respect to nilpotent thickenings [EGA, IV4, 17.11.4, 18.4.5(ii), 18.1.2]. Since (·)rig behaves well with respect
to open immersions, (b) is reduced to the trivial case X = Spf(B) and Y = Spf(A ) with

B = A {{T1, . . . , Td}}{{T,U}}/(h(T ), Uh′(T )− 1),

where h is a monic polynomial over A {{T1, . . . , Td}}.
Now consider the special case when Y is locally topologically finite type over Spf C. We may apply base

change by Spf R → Spf C and use Raynaud’s theory of formal models to reduce the remaining assertions to
the analogous claims for Raynaud’s functor from formal R-models to rigid spaces over k. These analogous
claims are obvious with two exceptions: (d) without discreteness conditions on |k×| is a theorem of Temkin
[Te, Cor. 4.4, Cor. 4.5], and for (f) and (g) we use Theorem A.2.1.

To reduce the general case to the case when Y is locally topologically of finite type over Spf C we may
suppose Y = Spf A is affine, so there is an isomorphism

A ' (C[[q1, . . . , qn]]){{T1, . . . , Tm}}/(h1, . . . , hr)

as topological C-algebras (where C[[q]] has the (I, q)-adic topology, with I any ideal of definition of C). We
may replace C with its image in R. If the restriction of the absolute value to C is trivial then the fraction
field of C is contained in R, and so upon choosing a nonzero π ∈ mR we get a subring C[[π]] ⊆ R that we
may rename as C to get to the case when the absolute value for k is non-trivial on the subring C.

Choose a nonzero c ∈ C that is topologically nilpotent, so 0 < |c| < 1. Let fc : Xc → Yc = Spf Ac denote
the base change of f by the map

A → Ac = C{{q1, . . . , qn, T1, . . . , Tm}}/(h1(cq1, . . . , cqn, T1, . . . , Tm), . . . , hr(cq1, . . . , cqn, T1, . . . , Tm))

defined by qj 7→ cqj , Ti 7→ Ti. Clearly Yrig
c ⊆ Yrig is the admissible open where the Zariski-closed locus

Yrig ↪→ ∆n ×Bm

meets {|q1|, . . . , |qn| ≤ |c|} ×Bm, and the restriction of frig over Yrig
c is identified with frigc .

For 0 < r < 1 with r ∈
√
|k×|, define the admissible open Yr = Yrig ∩ {|q1|, . . . , |qn| ≤ r}, so Yrig

c = Y|c|.
Since {Yr}r is an admissible open covering of Yrig, it suffices to verify the desired properties for each
restriction frig|Yr

. For any particular r it suffices to check the properties after finite extension on k (as
everything under consideration descends through such extensions), so upon replacing C and k with suitable
finite extensions (depending on r) it suffices to treat the case when r = |c| for some c ∈ C. We are now
done, because frig|Y|c| = frigc and we know the results for fc by the settled case when Y is topologically of
finite type over Spf C. �

We are now in position to construct the desired generalized elliptic curves over ∆. Using Theorem 3.1.6
with C = Z, we get a proper flat curve

Tatean
n

def= T̂ate
rig

n

over the open unit disc ∆ = (Spf Z[[q1/n]])rig, and there is a finite étale map Tatean
n → Tatean

m of degree n/m

whenever m|n (induced by a finite étale map of degree n/m between formal schemes T̂aten → T̂atem/Z[[q1/n]]).

For n > 1, the construction of T̂aten as a formal scheme via gluing formal annuli implies that the rigid
space Tatean

n is covered by n relative annuli ∆rig
i = {(xi, yi, q) | |xi|, |yi| ≤ 1, |q| < 1, xiyi = q} that are glued

exactly as in the construction of T̂aten for n > 1.
For n ≥ 1 it follows from the structure of the formal scheme T̂aten that Tatean

n has n-gon fiber over 0,
and by identifying a point q0 ∈ ∆(k)−{0} with the morphism Sp(k) → ∆ induced by the map Z[[q1/n]] → R
satisfying q1/n 7→ q0, the fiber Tatean

n over q0 is

(3.1.4) Tatean
n ×∆Sp(k) = (T̂aten ×Spf Z[[q1/n]] Spf(R))rig = Gan

m /qnZ
0 ,

where the final identification uses the construction of the formal scheme T̂aten in terms of gluing formal
annuli (and for n = 1 we must also use the finite étale degree-m covering T̂atem(q) → T̂ate1 over Z[[q]] for
any choice of m > 1). Since Tatean

n → ∆ is a proper flat curve and we have calculated that its fiber over the
origin is a standard n-gon whereas its fibers away from the origin are smooth and geometrically connected
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with genus 1 (by the Zariski-local constancy of Euler characteristics in rigid-analytic proper flat families),
we conclude that Tatean

n is a DR semistable genus-1 marked curve over ∆.
The relatively ample relative effective Cartier divisor Z/nZ ↪→ T̂aten over Spf(Z[[q1/n]]) is physically

supported in the smooth locus modulo q1/n = 0 and is endowed with a canonical action (3.1.1) on the total
formal curve. Thus, Theorem 2.2.1 and Lemma B.2.7 (applied to Pic0

Taten(q0)/R′ → Spec R′ for finite k′/k

and q0 ∈ mR′ − {0}) provide a unique structure of generalized elliptic curve on Tatean
n → ∆ that extends

the unique structure of elliptic curve on Tatean
n |∆−{0} (using the identity section induced from the identity

section of T̂aten).

3.2. Degenerate fibers and modular curves. We now formulate a structure theorem (to be proved later)
concerning generalized elliptic curves in rigid-analytic neighborhoods of the locus of degenerate fibers:

Theorem 3.2.1. Let d ≥ 1 be a fixed integer, and let f : E → S be a generalized elliptic curve over a rigid
space over a non-archimedean field k. In a quasi-finite fpqc neighborhood of the locus of d-gon geometric
fibers it is isomorphic to a pullback of Tatean

d → ∆. More precisely, if S∞,f
d ⊆ S denotes the Zariski-closed

locus of d-gon geometric fibers of E over S then there exists an admissible covering {Si} of an admissible
open U ⊆ S containing S∞,f

d such that for suitable quasi-finite fpqc maps S′i → Si and morphisms S′i → ∆
there are isomorphisms E/S′i

' Tatean
d ×∆S′i as generalized elliptic curves over S′i for all i.

If d ∈ k× then the quasi-finite fpqc maps S′i → Si can be chosen to be étale.

The idea of the proof is simple: we will verify it near the degenerate fibers on suitable modular curves,
and in general we will construct a quasi-finite fpqc-cover around S∞,f

d over which E → S acquires enough
level structure to be a pullback of the universal curve over a modular curve (and the covering will be able
to be chosen to be étale when d ∈ k×). The proof of Theorem 3.2.1 is given after we prove Theorem
3.2.8 below, and it requires a lot of preparations because we largely use arguments that are applicable in
higher-dimensional cases; in [C4] we will use some of the subsequent results and methods.

Let us first introduce the modular curves to be considered. For Γ = Γ(N) or Γ1(N), the notion of a
Drinfeld Γ-structure on a generalized elliptic curve E/S over a rigid space S is defined exactly as in the
algebraic case. (In particular, the inverse ideal sheaf of the relative effective Cartier divisor defined by the
level structure is required to be relatively ample over the base, in the sense of [C3, Def. 3.2.2].) These notions
are compatible with analytification and with change of the base field. There are many other level structures
that we could consider, but for simplicity of exposition and sufficiency for our purposes we shall restrict
attention to Γ(N) and Γ1(N). We shall need to consider possibly non-étale Drinfeld structures over schemes
in order to treat rigid-analytic generalized elliptic curves whose non-smooth geometric fibers are d-gons with
d a multiple of the residue characteristic of k.

It is a lengthy task to merge the work of Deligne–Rapoport on degenerations and the work of Katz–Mazur
on Drinfeld structures on smooth elliptic curves to show that for any Γ as above, the moduli stack of Drinfeld
Γ-structures on generalized elliptic curves over variable base schemes is a proper (regular) Deligne–Mumford
stack M Γ over Z. If S0 is a scheme and N has a factor d that is a unit on S0 such that d ≥ 5 (resp. d ≥ 3)
and Γ = Γ1(N) (resp. Γ = Γ(N)), then M Γ/S0 is a scheme. We have to use these “well-known” results
concerning moduli schemes in what follows, so we refer to [C2, Thm. 3.2.7, Thm. 4.2.1(2)] for proofs.

Lemma 3.2.2. Let (E, ι) be a generalized elliptic curve with Γ-structure over a rigid space S, where Γ =
Γ(N) or Γ1(N) for some N ≥ 1. There is an admissible open covering {Si} of S such that (E, ι)/Si

is the
pullback of a generalized elliptic curve with Γ-structure over a locally finite type k-scheme.

Proof. By Corollary 2.2.5 we may assume that there is a generalized elliptic curve E/S over a locally finite
type k-scheme S and a k-morphism S → S that pulls E/S back to E/S . Using the methods in [KM, Ch. 1],
many of which are applicable to the smooth loci on generalized elliptic curves (viewed as separated group
curves), the functor of Γ-structures on E is represented by a scheme SΓ that is of finite type over S (it
suffices to work locally on S , and so by Lemma B.2.2 we may suppose that the degenerate fibers have a
fixed number of geometric irreducible components). Using the compatibility of algebraic and analytic Hom
functors [C3, Cor. 4.1.5], as well as considerations with infinitesimal fibers, S an

Γ → S an has the analogous
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universal property for E an → S an in the rigid-analytic category. Thus, the Γ-structure ι on E/S gives rises
to a unique morphism of rigid spaces S → S an

Γ that pulls the universal Γ-structure on E an×S an S an
Γ back to

ι. Composing with S an
Γ → SΓ shows that (E/S , ι) is the pullback of the universal Γ-structure on E/SΓ . �

The universality of analytified algebraic modular curves is given by:

Theorem 3.2.3. Let M = M Γ/k for Γ = Γ1(N) or Γ = Γ(N). Assume that N has a factor d not divisible
by char(k) such that d ≥ 5 or d ≥ 3 respectively, so M is a proper k-scheme.

The analytification M an of M , equipped with its analytified universal object (E an, ιan), is a universal object
in the fibered category of generalized elliptic curves with Γ-structure over rigid spaces over k. In particular,
the formation of this universal object is compatible with arbitrary analytic change in the non-archimedean
base field.

Proof. Note that Γ-structures over rigid spaces over k admit no non-trivial automorphisms, due to the
hypotheses on N . Let (E, ι) be a Γ-structure over a rigid space S. We seek a unique map S → M an such
that the pullback of (E an, ιan) is (necessarily uniquely) isomorphic to (E, ι). By Lemma 2.1.12, uniqueness
(but not existence) is reduced to the case of artin local S = Sp(A0), where it follows from GAGA over
artin rings and the identification of rigid analytic maps S → M an with k-scheme maps Spec(A0) → M
(since A0 is artin local, Spec(A0)an = Sp(A0)). With uniqueness proved, we may work locally for existence.
Local existence follows from Lemma 3.2.2 and universality of the Γ-structure over M Γ/k in the category of
k-schemes. �

The first step in the proof of Theorem 3.2.1 is an application of Berthelot’s functor (as in Theorem 3.1.5)
to construct a class of (usually non-quasi-compact) admissible open covers that are well-behaved with respect
to arbitrary analytic extension of the non-archimedean base field. For applications to abelian varieties in
[C4], and to clarify the underlying structure that really matters in proofs, the subsequent discussion is given
in much more generality than we require for the proof of Theorem 3.2.1.

We begin with some notation. Let R0 be a complete discrete valuation ring with fraction field k0, X0 a
separated R0-scheme of finite type, and Y0 an R0-proper closed subscheme in X0. Let {Zα} be a finite set of
locally closed subsets of X0 whose union contains Y0.

Example 3.2.4. The example that we have in mind is to take X0 to be an open neighborhood of the boundary
Y0 on a proper moduli space, and the Zα’s to be locally closed sets in a Zariski-stratification of Y0.

Let X̂α be the formal completion of X0 along Zα. For all α we consider the formal completion X̂α as a
formal scheme over Spf(Rdisc

0 ) = Spec(R0), where Rdisc
0 is the ring R0 considered with the discrete topology.

The continuous map Rdisc
0 → R0 gives a natural k0-map

(3.2.1) X̂rig
α → X0/k0

to the generic fiber of the R0-scheme X0 (induced by the maps Spf Â → Spec A for open affines Spec A in
X0 that meet the locally closed Zα in a closed subset of X0, with Â denoting the formal completion of A
along the closed subset (Spec A) ∩ Zα). The universal property of analytification provides a unique map of
rigid spaces over k0

(3.2.2) X̂rig
α → Xan

0/k0

that is compatible with (3.2.1).

Example 3.2.5. If X0 = An
R0

and Zα = Y0 is the zero-section then (3.2.2) is the canonical map from the
closed unit n-ball into rigid-analytic affine n-space, and Y0

an
/k0

is the common origin in each.

Theorem 3.2.6. With notation and hypotheses as above, the natural maps in (3.2.2) are open immersions.
The union U0 = ∪αX̂rig

α in Xan
0/k0

is an admissible open that contains the analytic set Y an
0/k0

, and the X̂rig
α ’s

are an admissible cover of U0.
For any analytic extension field k/k0, the maps

k⊗̂k0X̂
rig
α → k⊗̂k0X

an
0/k0

' Xan
0/k, k⊗̂k0U0 → k⊗̂k0X

an
0/k0

' Xan
0/k
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are open immersions with k⊗̂k0U0 containing Y an
0/k, and the admissible opens k⊗̂k0X̂

rig
α are an admissible

cover of k⊗̂k0U0.

This is a mild strengthening of [deJ, 7.2.5], allowing extension of scalars k/k0 to a non-archimedean field
k that is not assumed to be discretely-valued; we need to give a proof for the preservation of admissibility
conditions with respect to such an extension of scalars because it is not known (and seems doubtful) in
general that the functor k⊗̂k0(·) carries open immersions to open immersions and admissible covers to
admissible covers when we allow open immersions that are not assumed to be quasi-compact. The case of
open immersions that are not quasi-compact arises in Example 3.2.5 and in §4 (as well as in the analogous
higher-dimensional setting in [C4]).

Proof. We proceed in several steps to ultimately reduce to a calculation with affinoid rigid spaces.
Step 1. We first reduce ourselves to a problem for formal schemes over Spf(R0). Let X̂ ′

α denote the
formal completion of X0 along the closed fiber of Zα over Spec(R0), so

(3.2.3) X̂ ′
α ' Spf(R0)×Spf(Rdisc

0 ) X̂α

where Rdisc
0 denotes the ring R0 with the discrete topology. By the compatibility with “change in C” in

Theorem 3.1.5, applied to Rdisc
0 → R0, it follows from (3.2.3) that each X̂rig

α is naturally identified with
a “Berthelot analytification” (X̂ ′

α)rig on the category FSR0 . We conclude that if X0 denotes the formal
completion of X0 along its closed fiber then (3.2.2) naturally factors through the canonical map

iX0 : Xrig
0 → X0

an
/k0

.

Since Berthelot’s functor coincides with Raynaud’s functor on the category of formal schemes that are
topologically of finite type over R0, the R0-separatedness of X0 implies that the map iX0 is a quasi-compact
open immersion [C1, 5.3.1]. The formal completion X0 of X0 makes sense even when R0 is just a complete
(rank 1) valuation ring, by using formal completion with respect to an ideal of definition of the valuation
ring (rather than the maximal ideal). In this sense, the formation of iX0 as a quasi-compact open immersion
is compatible with arbitrary extension on the analytic ground field ([C1, 5.3.1] is given over a general non-
archimedean base field). Thus, we are reduced to studying the maps X̂ ′

α → X0 of formal schemes over
Spf(R0). We have to prove three things:

(1) Working with Berthelot’s functor on the category FSR0 , the induced maps (X̂ ′
α)rig → Xrig

0 are open
immersions and remain open immersions after any analytic extension on the base field.

(2) The finitely many admissible opens (X̂ ′
α)rig in Xrig

0 are an admissible covering of their union U0, and
both this property and the formation of U0 are compatible with any analytic extension on the base
field.

(3) The locus U0 in Xan
0/k0

contains Y an
0/k0

.

Step 2. Let us address (3). Since (1) has not yet been proved, we will consider the alternative (but
equivalent, under (1)) assertion that the union of the images of the (X̂ ′

α)rig’s in Xrig
0 ⊆ Xan

0/k0
contains Y an

0/k0
.

Let Y0 denote the completion of Y0 along its closed fiber. Since Y0 is R0-proper, [C1, 5.3.1] implies that the
natural map iY0 : Yrig

0 → Y an
0/k0

is an isomorphism. By Lemma A.1.5, for any y ∈ Y an
0/k0

there exists a finite
flat (local) domain R′

0 over R0 and a map Spf(R′
0) → Y0 that induces y upon applying Berthelot’s functor

(since this functor coincides with Raynaud’s functor on the category of formal schemes that are topologically
of finite type over R0). The composite map

(3.2.4) Spf(R′
0) → Y0 → X0

has its closed point landing in the closed fiber of one of the Zα’s because the Zα’s cover Y0 set-theoretically.
Thus, the topology of Spf(R′

0) implies that the map (3.2.4) of formal schemes over Spf(R0) factors through
the formal completion X̂ ′

α of X0 along the closed fiber of some Zα. Applying Berthelot’s functor to this
factorization in FSR0 , we conclude that y ∈ Y an

0/k0
considered as a point of Xrig

0 ⊆ Xan
0/k0

lies in the image of

(X̂ ′
α)rig for some α. This concludes our treatment of (3).
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Step 3. For assertions (1) and (2), we can rephrase our problems as general problems concerning formal
schemes (that is, we can eliminate the intervention of ordinary schemes over R0 or k0), as follows. Let X
be an arbitrary object in the category FSR0 . Let {Zα} be a finite set of locally closed subschemes in the
ordinary scheme Xred over the residue field R0/mR0 , and let Zα denote the formal completion of X along Zα.
There are canonical maps Zα → X, and we wish to prove two assertions concerning rigid spaces:

(1) The induced maps Zrig
α → Xrig on Berthelot analytifications are open immersions and remain so after

arbitrary analytic extension on the base field.
(2) The union U of the admissible opens Zrig

α in Xrig is an admissible open such that the Zrig
α ’s are an

admissible covering of U . Also, these properties and the formation of U are all compatible with
arbitrary analytic extension of the base field.

These problems are local on X, so we may suppose that all Zα’s are closed in Xred. Thus, by [deJ, 7.2.5],
each map

(3.2.5) Zrig
α → Xrig

is an open immersion. To keep track of admissibility and the effect of change in the ground field we may
work locally on X, and so we may suppose that X = Spf(A ) is affine.

Step 4. Let f
(α)
1 , . . . , f

(α)
rα ∈ A be representatives for generators of the ideal of Zα in the quotient Ared of

A by topological nilpotents. We have Zα = Spf(Bα) where Bα is the (f (α)
1 , . . . , f

(α)
rα )-adic completion of A ,

or equivalently Bα ' A [[T1, . . . , Trα ]]/(Tj − f
(α)
j ) as topological A -algebras. By the functoriality of (·)rig, it

follows that Zrig
α is identified with the locus in Xrig×∆rα cut out by the conditions T1 = f

(α)
1 , · · · , Trα

= f
(α)
rα ,

and under this identification the projection Xrig×∆rα → Xrig induces (3.2.5). Thus, we can reformulate our
problem entirely in terms of rigid spaces, without the intervention of formal schemes, as follows.

Let X be an arbitrary rigid space over a non-archimedean field k, and let f
(α)
j ∈ H0(X, OX) be finitely

many elements, with 1 ≤ j ≤ rα for α ranging through a finite set. Define Zα ↪→ X × ∆rα to be the zero
locus of the finitely many differences Tj − f

(α)
j for 1 ≤ j ≤ rα (with T1, . . . , Trα

the coordinates on ∆rα).
We make two claims:

(1) The projection X × ∆rα → X induces an isomorphism of Zα onto the admissible open Uα in X
defined by

(3.2.6) |f (α)
1 | < 1, · · · , |f (α)

rα
| < 1

(the formation of the locus (3.2.6) clearly commutes with any analytic extension on the base field).
(2) The finite union U = ∪αUα is an admissible open in X such that the Uα’s are an admissible

covering, the formation of the union U commutes with analytic extension on the base field, and the
admissibility property for the Uα’s as a covering of U is preserved by any analytic extension on the
base field.

Since X × ∆rα is the locus in X × Brα cut out by the conditions |T1|, . . . , |Trα | < 1, it suffices to work
with the map X ×Brα → X and the conditions |f (α)

j | ≤ 1 for all 1 ≤ j ≤ rα and all α. We may work locally
on X, and so we can assume that X is affinoid. In this case all Uα are affinoid, and everything is therefore
obvious. �

Corollary 3.2.7. Let R0 be a complete discrete valuation ring with fraction field k0, and let X be a separated
R0-scheme of finite type. Let f : P → X be a proper morphism, and let Z ↪→ X be a locally closed subset.
Let X̂ and P̂ denote the formal completions of X and P along Z and f−1(Z) respectively. The commutative
square of rigid spaces

(3.2.7) P̂ rig //

��

P an
k0

��
X̂rig // Xan

k0

is cartesian.
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By Theorem 3.2.6 (with Y0 taken to be empty), the horizontal maps in (3.2.7) are open immersions. One
example we have in mind is for P → X to be a proper universal object over an open locus in a moduli space.

Proof. By [Ber1, 3.4.7] and [Te, Cor. 4.5], analytification carries proper algebraic maps to proper rigid-
analytic maps. Hence, the right side of (3.2.7) is proper. Likewise, since P̂ → X̂ is proper, it follows from
Theorem 3.1.6 that the left side of (3.2.7) is proper. Thus, the induced map

(3.2.8) P̂ rig → X̂rig ×Xan
k0

P an
k0

over X̂rig is a quasi-compact open immersion, so it is an isomorphism if and only if it is bijective.
By (3.2.3) applied to both X and P , we can replace the formal schemes X̂ and P̂ over Spf(Rdisc

0 ) in (3.2.8)
with the formal completions X̂ ′ and P̂ ′ of X and P along the closed fiber of Z (and its preimage in P ) over
Spec R0. The formal schemes X̂ ′ and P̂ ′ over Spf(R0) lie in FSR0 . It is obvious from the construction of
(X̂ ′)rig that for every point ξ of (X̂ ′)rig there exists a discrete valuation ring R′

0 finite flat over R0 and an R0-
morphism x : Spec(R′

0) → X sending the closed point into Z such that ξ = x̂rig where x̂ : Spf(R′
0) → (X̂ ′)rig

is the induced map in FSR0 between formal completions along the closed point and along Z respectively.
Since our remaining problem is set-theoretic, and (·)rig and (·)an are compatible with fiber products, by using
pullback along x̂rig and xan

/k0
we may reduce to the case X = Spec R′

0. We can rename R′
0 as R0 to reduce

to the case when X = Spec R0 and Z is its closed point (the other option, Z = X, is trivial). In this case P
is a proper scheme over Spec R0 and the cartesian property of (3.2.7) in this case is the assertion that the
canonical (quasi-compact) open immersion iP : Prig → P an

k0
is bijective (or equivalently, an isomorphism),

where P is the formal completion of P along its closed fiber over Spec R0. The fact that iP is bijective is a
consequence of the valuative criterion for properness (or see [C1, 5.3.1(4)]). �

Now we turn to proving Theorem 3.2.1 over certain modular curves, and this case will then be used to
settle the general case. The only input that we require from the theory of modular curves is a good theory
of proper moduli spaces over the valuation ring (analogous input in the higher-dimensional case is provided
by work of Chai and Faltings [CF, IV 6.7; V, 5.8]); the 1-dimensionality of modular curves is not an essential
ingredient in the method that we use.

Theorem 3.2.8. Let N be a positive integer divisible by an integer n ≥ 5 with n ∈ R×, and let Z′ denote
the localization of Z at the prime ideal ker(Z → R/mR), so M = M Γ1(N)/Z′ is a scheme over Z′. For
any M ≥ 1, let kM = k ⊗Z Z[ζM ] and let k+

M = k ⊗Z Z[ζM ]+, where Z[ζM ] and Z[ζM ]+ denote the M th
cyclotomic integer ring and its maximal totally real subring respectively.

There exists a finite set of Γ1(N)-structures on generalized elliptic curves over open discs of the form
kN/d⊗k ∆ for various d|N with d > 2 and over open discs of the form k+

N/d⊗k ∆ for various d|N with d ≤ 2
such that the induced maps from these open discs to M an

/k are open immersions whose images constitute an
admissible open covering of the locus of degenerate fibers.

For each d|N with d > 2 (resp. d ≤ 2) the generalized elliptic curves for the Γ1(N)-structures over
kN/d ⊗k ∆ (resp. k+

N/d ⊗k ∆) become isomorphic to the pullback of the Tate family Tatean
d over kN ⊗k ∆ via

multiplication on the standard coordinate of ∆ by a suitable power of ζd
N ∈ k×N .

Remark 3.2.9. The method of proof of Theorem 3.2.8 applies to all standard Drinfeld level structures that ad-
mit no non-trivial automorphisms when working with Z′-schemes. The implicit roots of unity that intervene
in the twisted Tate families at the end of Theorem 3.2.8 are made explicit in [C2, Thm. 4.3.6, Thm. 4.3.7].

Proof. Let M∞ ↪→ M be the locus of non-smoothness for the universal generalized elliptic curve over M ,
so M∞ is proper (even finite) over Z′. It follows from the integral theory of the formal structure along the
cusps that M∞ is a union of finitely many closed subsets M∞

i such that the formal completion of M along
each M∞

i is isomorphic to a formal spectrum with one of two forms: Spf(Z′[ζN/d][[t]]) for some d|N with
d > 2, or Spf(Z′[ζN/d]+[[t]]) for some d|N with d ≤ 2. Moreover, if we extend scalars to Z′[ζN ] then the
formal completion of the universal generalized elliptic curve over such a formal spectrum is isomorphic to a
twist of the formal generalized elliptic curve T̂ated over Spf(Z′[ζN ][[q1/d]]) via pullback along multiplication
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on q1/d by a suitable power of ζd
N ; the details concerning these formal calculations along M∞ (including

the explicit power of ζd
N that intervenes at each cusp) are given in [C2, §4.3]. We may extend scalars by

Z′ → R to get similar conclusions over R. Thus, formally along the cusps on M /R the universal generalized
elliptic curve becomes isomorphic to a twisted formal Tate curve after passing to a “cyclotomic” covering of
R. (The only purpose in using Z′ rather than Z above is that the moduli stack over Z becomes a scheme
over Z′; when the moduli stack is a scheme over Z then we can replace Z′ with Z throughout.)

We now bring in Berthelot’s functor. By Example 3.1.2, we can find a complete discrete valuation ring
R0 over which R is faithfully flat. Let k0 ⊆ k be the fraction field of R0. We shall first work over R0 because
completion along closed subschemes is better-behaved in the noetherian case. Let us return to the setup for
Theorem 3.2.6: X0 is a separated R0-scheme of finite type, Y0 ↪→ X0 is an R0-proper closed subscheme, and
{Zα} is a finite set of locally closed subsets of X0 whose union contains Y0. (The example we have in mind
is in Example 3.2.4 with X0 = M , Y0 = M∞, and {Zα} the set of components {M∞

i } of Y0.) We write X̂α

to denote the formal completion of X0 along Zα; the use of formal completion along the Zα’s is the reason
for initially considering the case of noetherian R0 (i.e., the discretely-valued case). We get natural maps of
rigid spaces as in (3.2.2).

For the intended application with universal generalized elliptic curves over modular curves, it is important
to note that (3.2.2) has a “cartesian” property with respect to proper morphisms. To be precise, if P0 → X0

is a proper morphism and P̂ rig
α denotes the formal completion of P0 along the pullback of Zα, then by

Corollary 3.2.7 the commutative square of rigid spaces

P̂ rig
α

//

��

P an
0/k0

��
X̂rig

α
// Xan

0/k0

is cartesian. In the context of modular curves we take {Zα} to be the set of components {M∞
i } of the

cuspidal locus; for each i the explicit description of formal completions of modular curves over Z′ provides
a divisor di|N such that if di > 2 there is a cartesian square

(3.2.9) Ei
//

��

E an
/k0

��
kN/di

⊗k ∆ // M an
0/k0

with kN⊗kN/di
Ei over kN⊗k ∆ isomorphic to the pullback of kN⊗k T̂ate

rig

di
= kN⊗k Tatean

di
by multiplication

by a suitable power of ζd
N on the coordinate of the disc. We likewise obtain similar squares with twisted

forms of Tatean
di

using k+
N/di

instead of kN/di
when di ≤ 2. Of course, for a single d|N there may be several

such squares with di = d (different maps along the bottom side) as we run through the M∞
i ’s.

It must be proved that the bottom sides of the squares (3.2.9) for di > 2 (and the analogues using k+
N/di

for di ≤ 2) are open immersions that provide an admissible open cover of an admissible neighborhood of the
locus of cusps on M an

/k0
, and it has to be proved that these properties (open immersion, admissibility, and

covering) persist after applying the functor k⊗̂k0(·).
The bottom side of (3.2.9) is an instance of (3.2.2), so we may apply Theorem 3.2.6 to (3.2.2) to get the

desired results over k0. The compatibility with change in the base field in Theorem 3.2.6 gives the desired
results for rigid spaces over the initial base field k. �

Example 3.2.10. The preceding technique of proof (in conjunction with (3.1.4)) provides the justification
of the well-known fact (used in [BT] and [Bu]) that a modular form over a number field has the same
q-expansion whether we work complex-analytically or p-adic-analytically.

Finally, we can prove Theorem 3.2.1:
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Proof. Let M ≥ 5 be an integer relatively prime to d such that M ∈ k×. By working locally on S, we may
assume via Corollary 2.2.5 that there is a k-scheme S locally of finite type and a k-map S → S such that
f : E → S is the pullback of a generalized elliptic curve falg : E → S .

Choose any s ∈ S∞,f , and let σ ∈ S∞,falg
be its closed-point image in S . Let σ be an algebraic

geometric point over σ and let c(E ) denote the contraction of E away from its fibral identity components,
so over the strictly henselian local ring Osh

S ,σ the quasi-finite flat separated group scheme c(E )sm[d] admits a
“finite part”: a finite flat closed subgroup scheme that lifts the d-torsion on the geometric fiber c(E )smσ . This
“finite part” is a multiplicative group of order d, and so it is isomorphic to µd over the strictly henselian base
Osh

S ,σ. Since c(E )sm is naturally a subgroup of E sm, we obtain a short exact sequence of finite flat d-torsion
Osh

S ,σ-group schemes 0 → µd → E sm[d] → Z/dZ → 0, and this sequence must split if d ∈ k×. If char(k)|d,
this sequence splits over a finite flat covering of Spec(Osh

S ,σ). By Lemma B.2.2, the subgroup Z/dZ lifted into
E sm[d] under such a splitting maps isomorphically onto the geometric component groups of the non-smooth
fibers over the local base Spec Osh

S ,σ because such an assertion may be checked on the fibers over the unique
closed point. The pullback of the quasi-finite, flat, separated group scheme E sm[M ] over Osh

S ,σ also has a
“finite part.” This “finite part” lifts the M -torsion on the fiber E sm

σ and hence (due to how we chose M) it
is the constant group Z/MZ over our strictly henselian local base.

By using standard limit arguments to descend from a strict henselization (or finite flat covering thereof),
we can find a quasi-finite flat separated neighborhood Uσ → S of σ such that E sm[M ]|Uσ

contains a closed
subgroup scheme Z/MZ and E sm[d]|Uσ

is isomorphic to Z/dZ×µd with Z/dZ mapping isomorphically onto
the geometric component group of the non-smooth fibers of E sm over Uσ; if d ∈ k× then we can choose
Uσ → S to be étale.

Since each map Uσ → S has open image, and opens in S pull back to Zariski-opens of S, we may
shrink S and S to reduce to the case that S is quasi-compact and Uσ → S is surjective for some σ.
We may work locally on S, and by the local existence of quasi-compact flat (resp. quasi-compact étale)
quasi-sections to analytifications of faithfully flat (resp. étale surjective) morphisms of algebraic k-schemes
[C3, Thm. 4.2.2] (whose proof uses Berkovich spaces) we may make a base change by a quasi-finite fpqc
morphism (or a quasi-compact étale surjective morphism if d ∈ k×) to arrange that there exists a closed
immersion Z/MZ ↪→ Esm[M ] and an isomorphism Esm[d] ' Z/dZ × µd, where Z/dZ maps isomorphically
to the geometric component group of all non-smooth fibers over S. Letting N = Md, the pair of sections
1 ∈ Z/MZ and 1 ∈ Z/dZ define a Γ1(N)-structure on E → S (this level structure is S-ample because of the
fibral relationship between Z/dZ and the geometric component groups of non-smooth fibers over S). Thus,
by Theorem 3.2.3 there exists a morphism S → M an

Γ1(N)/k that pulls the universal generalized elliptic curve
back to our given E/S . An application of Theorem 3.2.8 now concludes the proof, since N/d = M is not
divisible by char(k) and the k-algebra kN = k ⊗Z Z[ζN ] has a section over the finite étale k-algebra kN0 ,
with N0 the largest factor of N not divisible by char(k). �

4. Canonical subgroups

We now focus on the case when k is an analytic extension field of Qp for some prime p, which is to say that
the valuation ring R of k has mixed characteristic (0, p). We impose the normalization condition |p| = 1/p.
The reader is referred to §B.3 for a review of two topics: (i) the algebraic theory of “reduction type” for
generalized elliptic curves over k when k is not assumed to be discretely-valued (so the theory of Néron
models is not available), and (ii) Lubin’s algebraic theory of the p-torsion canonical subgroup in generalized
elliptic curves over k.

4.1. The p-torsion case. By Corollary 2.1.14, every rigid-analytic generalized elliptic curve Ek over Sp(k)
is the analytification of a unique (up to unique isomorphism) generalized elliptic curve Ealg

k over Spec k.
Thus, the concepts of potentially toric, potentially ordinary, and potentially supersingular reduction may be
defined for Ek by applying the definitions in the algebraic case to Ealg

k (see §B.3 for the definitions in the

algebraic case). Likewise, by using the algebraization we may define the Hasse invariant h(Ek) def= h(Ealg
k ) ∈

[1/p, 1]∩
√
|k×| (see Definition B.3.3); as h(Ek) is made smaller, the potential reduction-type for Ek becomes
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“more supersingular.” These definitions on the rigid-analytic side are unaffected by analytic extension on
the base field, and h(Ek) = 1 if and only if Ek has potentially toric or potentially ordinary reduction.

Definition B.3.6 and the discussion preceding it give a theory of the canonical subgroup in Esm
k when

h(Ek) > p−p/(p+1); the discussion there is given in the algebraic case over Spec(k), and we carry it over
to any rigid-analytic generalized elliptic curve over Sp(k) by analytifying the canonical subgroup on the
algebraization. Our aim below is to give the relativization in rigid-analytic families E → S. There are two
steps: (a) admissibility (and good behavior with respect to change of the base field) for the locus S>p−p/(p+1)

of s ∈ S such that h(Es) > p−p/(p+1), and (b) construction of (and uniqueness for) the relative canonical
subgroup over the locus S>p−p/(p+1)

such that it recovers Lubin’s theory on fibers and has formation that
commutes with base change and with analytic extension of the base field. We begin with (a):

Theorem 4.1.1. Let E → S be a generalized elliptic curve over a rigid-analytic space S over k. Fix
h ∈ [1/p, 1) ∩

√
|k×|. Let S>h be the set of s ∈ S such that h(Es) > h, and define S≥h similarly for

h ∈ (1/p, 1] ∩
√
|k×|.

(1) The loci S>h and S≥h are admissible opens in S whose formation is compatible with base change on
S, and the open immersion S≥h → S is quasi-compact. Moreover, for any h0 ∈ [1/p, 1) ∩

√
|k×| the

set of loci S≥h for all h ∈ (h0, 1) ∩
√
|k×| constitutes an admissible cover of S>h0 .

(2) For quasi-separated or pseudo-separated S, the formation of S>h and S≥h is compatible with change
of the base field. In particular, the maps k′⊗̂kS≥h → k′⊗̂kS>h → k′⊗̂kS are open immersions for
any k′/k.

See §1.3 for the definition of pseudo-separatedness. Also, keep in mind that non-algebraic change of the
base field introduces points not seen over the original base field, so the compatible of S>h and S≥h with
respect to such extension on k does require a proof.

Proof. Once S>h and S≥h are proved to be admissible, their formation clearly commutes with base change
on S. By fpqc descent theory for admissible opens [C3, Lemma 4.2.4] and fpqc descent for properties of
morphisms [C3, Thm. 4.2.7] (applied to the properties of being an open immersion and being quasi-compact),
we may work fpqc-locally on S for both the admissibility and the compatibility with change in the base field.
Thus, by Corollary 2.2.5 and arguments on the algebraic side (or, alternatively, by Theorems 2.2.3, 2.2.4,
and 3.2.1), we may suppose that E admits a Γ1(N)-structure where N is divisible by an integer d ≥ 5
that is a unit in R. The moduli stack M Γ1(N)/R is therefore a proper and finitely presented scheme over
R, and by Theorem 3.2.3 the analytification M an

Γ1(N)/k of its generic fiber represents the moduli functor of
Γ1(N)-structures on generalized elliptic curves over rigid-analytic spaces over k. Thus, it suffices to treat
the universal object over M an

Γ1(N)/k.
More generally, avoiding the specificity of modular curves, it suffices to consider the case of the analytified

generic fiber of a generalized elliptic curve E → M over a proper, flat, and finitely presented R-scheme. The
significance of properness over R is that if Ê → M̂ is the induced map of formal completions along an ideal
of definition of R then in the commutative diagram

Ê rig

��

// E an
k

��

M̂
rig // M an

k

the horizontal maps are isomorphisms [C1, 5.3.1(4)]. This gives a link between the rigid-analytic setup over
k and an R-structure on relative formal groups that will tie in with Lubin’s integral theory (applied to formal
models of rigid-analytic fibers over the base space M an

k ).
The map Ê → M̂ is formally smooth along the identity section ê, so ê∗Ω̂1bE /cM is an invertible sheaf on

M̂ . We may therefore find a covering of M̂ by formal open affines Spf A on which this invertible sheaf has

trivial restriction, and the associated rigid spaces (Spf A)rig are an admissible covering of M̂
rig

= M an
k (and
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continue to be so after any analytic extension on k). Fix such an A. The formal completion Γ of Ê along its
identity section is a smooth formal group over M̂ , and ΓA = Γ|Spf A has globally free relative cotangent space
along êA = ê|Spf A. Let I be the augmentation ideal in O(ΓA), so I is free of rank 1 as an O(ΓA)-module.
Using a formal coordinate X that is dual to a generating cotangent vector along êA (i.e., X is a generator of
I), we obtain an identification ΓA ' Spf(A[[X]]) as formal Spf(A)-schemes, where A[[X]] has the (π,X)-adic
topology for any nonzero π ∈ mR. We thereby obtain on A[[X]] the structure of a 1-parameter commutative
formal group law over the Zp-algebra A.

If aΓA
is the coefficient of Xp in [p]∗(X) then aΓA

depends on X but for any h ∈ [1/p, 1) ∩
√
|k×| the

admissible locus |aΓA
| > h on (Spf A)rig = Sp(k ⊗R A) is independent of X and so is intrinsic to ΓA. The

same goes for the locus |aΓA
| ≥ h if h ∈ (1/p, 1]∩

√
|k×|. By Lemma A.1.5, for every s ∈ M an

k = M̂
rig

there
exists an A as above such that s = ŝrig for a suitable continuous map ŝ : A → R′ to the valuation ring R′ of
a finite extension k′/k. The crux of the matter is that Es = Ê rig

s has semi-stable reduction with associated
formal group given by formal completion of the formal proper Spf(R′)-scheme Êbs along its identity section.

We conclude from the definition of the Hasse invariant h(Es) via §B.3 that h(Es) = max(1/p, |aΓA
(s)|).

Thus, S>h meets (SpfA)rig in exactly the domain |aΓA
| > h, and similarly with non-strict inequalities for

S≥h. This proves the admissibility of S>h and S≥h, and also shows that S≥h → S is quasi-compact and
that {S≥h}h>h0 is an admissible cover of S>h0 for any h0 ∈ [1/p, 1) ∩

√
|k×|. From our local description of

S>h and S≥h we see that the formation of each is compatible with arbitrary analytic extension on k. �

Example 4.1.2. Let Γ = Γ(N) (resp. Γ1(N)) with N ≥ 3 (resp. N ≥ 5). Let E → M be universal Γ-
structure in the category of k-schemes, so M is proper over Spec k. By Theorem 3.2.3, E an → M an is the
universal Γ-structure in the category of rigid-analytic spaces over k, and the universality is preserved under
arbitrary analytic extension on k.

For h ∈ [1/p, 1) ∩
√
|k×|, it follows from Theorem 4.1.1 that (M an)>h (equipped with the restriction of

E an over it) represents the functor of Γ-structures on rigid-analytic generalized elliptic curves whose fibers
have Hasse invariant > h, and similarly for (M an)≥h when h ∈ (1/p, 1]∩

√
|k×|. These constructions respect

arbitrary analytic extension on k.

Theorem 4.1.3. Let E → S be a generalized elliptic curve over a rigid-analytic space over k, and fix
h ∈ [p−p/(p+1), 1)∩

√
|k×|. There exists a unique finite étale S>h-group G>h equipped with a closed immersion

of S>h-groups G>h ↪→ Esm|S>h such that G>h
s ↪→ Esm

s is the canonical subgroup for all s ∈ S>h. Moreover,
G>h is Zariski-open in Esm[p]|S>h and Zariski-closed in E|S>h . The same holds over S≥h for any h ∈
(p−p/(p+1), 1] ∩

√
|k×|.

The formation of G>h and G≥h is compatible with base change on S and (for quasi-separated or pseudo-
separated S) with change of the base field.

Proof. Throughout the argument, when working with S≥h we assume p−p/(p+1) < h ≤ 1. Let us first check
uniqueness. We may assume that S = S>h (resp. S = S≥h), and then we can assume that S is connected.
Suppose that G ↪→ Esm and H ↪→ Esm satisfy the given conditions to be G>h (resp. G≥h), so they are
closed in the separated flat S-group Esm[p]. Since we are in characteristic 0, consideration of fibers shows
that Esm[p] is étale over S. Thus, for uniqueness it suffices to prove the general claim that if Y is étale and
separated over a connected rigid space S, and if Z,Z ′ ⇒ Y are closed immersions such that Z and Z ′ are
finite and étale over S, then an equality of fibers Zs0 = Z ′

s0
inside of Ys0 for a single s0 ∈ S forces an equality

Z = Z ′ inside of Y .
The maps Z,Z ′ ⇒ Y must be finite étale (since Y is separated and étale over S), so Z ∩Z ′ = Z ×Y Z ′ is

also S-finite and S-étale. Hence, we may replace Z ′ with Z ∩ Z ′ to reduce to proving that if i : Z ′ ↪→ Z is
a closed immersion between finite étale S-spaces with Z ′

s0
= Zs0 for some s0 ∈ S then i is an isomorphism.

Connectivity of S forces Zs and Z ′
s to have ranks that are independent of s, so taking s = s0 shows that

these ranks agree. Hence, is : Z ′
s ↪→ Zs must be an isomorphism for all s ∈ S. The map i between finite

étale S-spaces must be finite and étale, and since is is an isomorphism for all s ∈ S it follows that i has
constant degree 1 and hence it is an isomorphism.
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Uniqueness implies compatibility with base change, and in particular with finite extension of the base
field. Let us now check compatibility with arbitrary change of the base field (granting existence) for quasi-
separated or pseudo-separated S. Since the formation of S>h and S≥h is compatible with extension of the
base field, we may replace S with S>h or S≥h to reduce to the case when S = S>h or S = S≥h respectively
(a property that is preserved under extension on k, by Theorem 4.1.1). We may assume that S is connected,
so by [C1, 3.2.3] there exists a finite extension K/k such that K⊗̂kS has finitely many connected components
and all are geometrically connected over K. Thus, we can assume that S is geometrically connected over k.
Let k′/k be an analytic extension field, and suppose that canonical subgroups G ↪→ Esm and G′ ↪→ E′sm

exist, where E′ = k′⊗̂kE. Since S′ = k′⊗̂kS is connected, we may therefore use the method of proof of
uniqueness to show that the two finite étale closed S′-subgroups k′⊗̂kG and G′ inside of E′sm[p] agree, since
they certainly agree in fibers at any single point of S′ induced by a point of S. In particular, k′⊗̂kG has the
canonical subgroup property inside of E′sm.

Continuing to assume existence, the étale property for Esm[p] ensures that G must be Zariski-open in
Esm[p]. Indeed, the closed immersion G → Esm[p] over S between S-étale spaces must be an étale map, and
clearly an étale closed immersion is a Zariski-open immersion. Also, since G is S-finite and E is S-separated,
the S-map G → E is finite and hence (by Nakayama’s Lemma) it is a closed immersion since it is obviously
so on fibers over S. This is a special case of the general fact that proper rigid-analytic monomorphisms are
closed immersions.

It remains to prove existence, and by fpqc descent theory (for morphisms and objects finite over the
base) the uniqueness allows us to work fpqc-locally. The same technique as in the proof of Theorem 4.1.1
therefore allows us to reduce to treating the loci (M an

k )>h and (M an
k )≥h for E an

k → M an
k , where E → M

is a generalized elliptic curve over a proper, flat, and finitely presented R-scheme M . More specifically, we
may assume that this arises by local base change from a family over Zp (such as a universal family over a
modular curve). Thus, we can suppose that R is a discrete valuation ring provided that we prove more: we
must directly prove in this special situation that the construction we shall give for the canonical subgroup
“works” after any further analytic extension on k (so as to return to the initial situation for which the ground
field was perhaps not discretely-valued).

The properness hypothesis on M provides the identification M̂
rig

= M an
k (and likewise for E ), and so we

may find a finite (necessarily admissible) covering of M an
k by affinoids (Spf A)rig = Sp(k ⊗R A) for formal

(R-flat) open affines Spf A ⊆ M̂ such that ê∗Ω̂1bE /cM is trivial. We let Γ denote the formal completion of

Ê along its identity section, so its restriction ΓA over Spf A has the form Spf(A[[X]]) as a pointed formal
scheme (where A[[X]] has the (π,X)-adic topology for any nonzero π ∈ mR). Fixing the choice of X, we
define a ∈ A to be the coefficient of Xp in [p]∗(X), so max(|a(s)|, 1/p) is the Hasse invariant h(Es) for all
s ∈ S = (Spf A)rig.

By Theorem 3.2.6, the canonical map of (separated) rigid-analytic spaces Γrig → Ê rig = E an
k is an open

immersion over the base M an
k and remains so after arbitrary analytic extension on k. By construction,

this map lands inside of the relative smooth locus of the target and so it gives rise to an open immersion
Γrig ↪→ (E an

k )sm that is clearly a map of M an
k -groups. We shall now restrict this map over the affinoid

S = Sp(k ⊗R A) for A as above, and we will inspect what happens over S>h and S≥h.
Let ΓS denote the S-group Γrig

A , so ΓS = S ×∆ as pointed S-spaces. Define G>h
S = ΓS [p] ∩W>h, where

W>h = {(s, x) ∈ S ×∆ | |a(s)| > h, |a(s)||x|p−1 ≤ 1/p}

lies over S>h. We define W≥h and G≥h
S = ΓS [p] ∩W≥h over S≥h similarly. Observe that the formation of

G>h
S and G≥h

S is compatible with arbitrary extension on k, due to the preservation of the “open immersion”
conditions in Theorem 3.2.6 under any analytic extension on the base field. Also, the respective canonical
maps from G>h

S and G≥h
S to E an

k |S>h and E an
k |S≥h are clearly monomorphisms and remain so after any

analytic extension of the base field.
The conditions in the definition of W>h force |x| to be uniformly bounded away from 1 (explicitly,

|x| < (ph)−1/(p−1)) at all points (s, x) ∈ W>h, so it is obvious that W>h → S>h is a quasi-compact
morphism; the same goes for the morphism W≥h → S≥h. Since Γrig[p] → Γrig is a closed immersion (as
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Γrig is separated over the base), it follows that the maps G>h
S → S>h and G≥h

S → S≥h are quasi-compact.
But W>h and W≥h are admissible opens in ΓS , so G>h

S and G≥h
S are admissible opens in ΓS [p]. Since the

multiplication map [p] : Γrig → Γrig for the smooth commutative M an
k -group Γrig is an étale map, as k has

characteristic 0, it follows that the torsion subgroup ΓS [p] is étale over S. Thus, G>h
S and G≥h

S are étale over
S, and hence are respectively étale over S>h and S≥h. By Lubin’s theory on fibers (see §B.3), (G>h

S )s ⊆ Esm
s

is the canonical subgroup for all s ∈ S>h, and similarly for (G≥h
S )s if s ∈ S≥h; this is where we use the

condition |a(s)||x|p−1 ≤ 1/p in the definitions of W>h and W≥h.
The maps G>h

S → S>h and G≥h
S → S≥h have been shown to be quasi-compact, separated, and étale,

with fibers of constant rank (namely, p). Thus, by Theorem A.1.2 it follows that both maps are finite. In
particular, the respective monomorphisms G>h

S → E an
k |S>h and G≥h

S → E an
k |S≥h are closed immersions, and

likewise G>h
S → ΓS [p]|S>h and G≥h

S → ΓS [p]|S≥h are closed immersions. Since finite étale covers always split
over a finite étale cover the base, we may use connectivity arguments (for closed immersions of finite étale
spaces into the separated étale S-group ΓS [p] restricted over S>h or S≥h) as in the proof of uniqueness to
infer that the finite étale G>h

S inside of (E an
k )sm|S>h is an S>h-subgroup (as this is true on fibers over S>h),

and similarly for G≥h
S over S≥h. Thus, we have proved existence over S>h and S≥h. By uniqueness, these

local constructions for the admissible collection of affinoids S covering M an
k glue to give global existence

over (M an
k )>h and (M an

k )≥h.
Finally, we must explain why this construction over M an

k is compatible with arbitrary analytic change in
the base field. The content of this claim is that for each A as above we have a compatibility between the
formal parameter X and formal parameters on fibral integral formal groups associated to fibers over points
s′ ∈ k′⊗̂kSp(k ⊗R A) = (Spf(R′⊗̂RA))rig at which the Hasse invariant exceeds h or is ≥ h, exactly as in the
proof of Theorem 4.1.1. This compatibility follows from the construction of X in terms of Ê and M̂ . �

Example 4.1.4. Consider the Tate curve Tatean
d → ∆ as in §3.1. The fiber over the origin is not smooth,

and the other fibers all have toric reduction (by (3.1.4)), so ∆ = ∆≥1 for this family. Hence, the preceding
general theory provides a canonical subgroup G in (Tatean

d )sm[p] over the entire base ∆. Let us make it
explicit, with the expected answer on fibers over ∆− {0}.

By [C2, (2.5.3)ff.], in the formal Tate curve T̂ated over Z[[q1/d]] there is a unique open formal torus

T = Spf(Z[[q1/d]]{{t, 1/t}}) ↪→ T̂ated

lifting the identity component of the standard d-gon fiber over q1/d = 0. This lies inside of the formal smooth
locus as an open subgroup, so applying the functor (·)rig (as in Theorem 3.1.5 with C = Z) gives an open
immersion over ∆

{|t| = 1} ×∆ = T rig ↪→ T̂ate
rig

d = Tatean
d ,

and this factors through the ∆-smooth locus (Tatean
d )sm as a map of ∆-groups that (by (3.1.4)) is the

canonical map µp → Gan
m /qdZ

0 over any q0 ∈ ∆−{0}. In particular, we get an closed immersion of ∆-groups
T [p]rig = T rig[p] = µp × ∆ ↪→ (Tatean

d )sm. The finite étale ∆-groups T [p]rig and G inside of the separated
étale ∆-group (Tatean

d )sm[p] clearly agree over the origin, so by connectivity of ∆ they are equal everywhere.

4.2. Higher torsion-level canonical subgroups. In [Bu, §3–§4], Buzzard uses results of Lubin to study a
theory of higher torsion-level canonical subgroups in the universal elliptic curves over certain rigid-analytified
modular curves (extending earlier work of Katz and Gouvea). That development is given over modular curves
over finite extensions of Qp, and it rests on the fine structure of such curves. We wish to explain how the
methods in §4.1 may be used to obtain such a theory for generalized elliptic curves over arbitrary rigid spaces
over arbitrary analytic extension fields k/Qp. The definition we use is not the same as that of Buzzard and
Gouvea, but the equivalence of the definitions (for elliptic curves) will be proved below; an advantage of our
definition is that it readily generalizes to the case of abelian varieties [C4]. In the 1-dimensional case we
shall obtain explicit optimal universal bounds on the Hasse invariant that recover the ad hoc ones used in
[Bu, §3]; in the higher-dimensional case it does not seem reasonable to expect that necessary and sufficient
conditions for the existence canonical subgroups are given by bounds on a Hasse invariant as in the case of
relative dimension 1.
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We continue to normalize the absolute value on k by requiring |p| = 1/p. Let E be a rigid-analytic
generalized elliptic curve over k, and let k′/k be a finite extension as in the semistable reduction theorem
(Theorem B.3.2): the algebraization of Ek′ (under GAGA and Corollary 2.1.14) extends to a generalized
elliptic curve E′ over the valuation ring R′ of k′. (In the discussion that follows, it is immaterial whether E
begins life as an algebro-geometric or rigid-analytic object; the relativization below, however, will only make
sense in the rigid-analytic setting.) The associated p-divisible formal group Ê′ over R′ is independent of the
choice of E′, and in Definition B.3.5 we use an arbitrary choice of formal parameter for this formal group to
define an intrinsic notion of size for a point of Ê′ valued in the maximal ideal of the valuation ring of any
analytic extension field of k′. In particular, for any 0 < r < 1 we get a k-subgroup Esm[pn]0≤r in Esm[pn]
whose geometric points are precisely those of Ê′[pn] with size ≤ r. (The superscript “0” in this notation is
meant to be suggestive of an identity component for a finite flat group scheme over R′.)

Remark 4.2.1. Elementary arguments with formal group laws show that the subgroup of points x of Ê′ with
size < p−1/(p−1) = |ζp − 1| has no nontrivial p-torsion and so is torsion-free, and that if size(x) ≥ p−1/(p−1)

then size([p](x)) ≤ size(x)p, so by induction on n ≥ 1 if r < p−1/pn−1(p−1) = |ζpn − 1| then Esm[pn]0≤r is
killed by pn−1.

Definition 4.2.2. A level-n canonical subgroup of E is a k-subgroup Gn ⊆ Esm[pn] of the form Esm[pn]0≤rn

such that its group of geometric points is free of rank 1 as a Z/pnZ-module.

Geometrically, a level-n canonical subgroup is a group of pn geometric points of Esm[pn] whose members
are nearer to the origin than the other pn-torsion points, and whose module structure is free. The specific
radius rn in Definition 4.2.2 is not unique, but if such a radius exists then Remark 4.2.1 implies that
necessarily rn ≥ p−1/pn−1(p−1) = |ζpn − 1|. Obviously if a level-n canonical subgroup Gn exists in E then it
is unique and Gn[pm] is a level-m canonical subgroup for all 1 ≤ m ≤ n.

Remark 4.2.3. In the case of an elliptic curve E our definition of level-n canonical subgroup is different from
the one used in [Bu] and [G], but the equivalence of these definitions follows from Theorem 4.2.5.

It is clear that the existence or not of a level-n canonical subgroup Gn is unaffected by extension on k, and
that the formation of Gn commutes with any analytic extension of the base field. If E has (potentially) good
reduction, then the notion of a level-1 canonical subgroup coincides with the notion of canonical subgroup
in the work of Katz. In particular, a level-1 canonical subgroup exists in a generalized elliptic curve E over
k if and only if h(E) > p−p/(p+1).

Example 4.2.4. If E has potentially ordinary or potentially toric reduction then it admits a level-n canonical
subgroup for all n ≥ 1. This subgroup consists of the pn-torsion geometric points of the height-1 multiplicative
formal group Ê′ over the valuation ring of a sufficiently large finite extension k′/k. Thus, as in the case n = 1,
the interesting case in the theory is when E is an elliptic curve with potentially supersingular reduction.

We first formulate an existence result that is analogous to Lubin’s input into Katz’ work for n = 1, and
then we shall prove a relativization generalizing Theorem 4.1.3.

Theorem 4.2.5. A rigid-analytic generalized elliptic curve E over k admits a level-n canonical subgroup
Gn if and only if h(E) > p−p/pn−1(p+1). Moreover, if E is an elliptic curve and such a Gn exists with n > 1
then Gn/Gn[p] is a level-(n− 1) canonical subgroup in the elliptic curve E/Gn[p] and h(E/Gn[p]) = h(E)p.

In particular, E admits a level-n canonical subgroup for all n ≥ 1 if and only if h(E) = 1, which is to say
that E has potentially toric or potentially ordinary reduction.

Proof. By replacing k with a finite extension, we may assume that E (viewed algebraically) extends to a
generalized elliptic curve E over the valuation ring R of k. First consider the cases of potentially ordinary or
potentially toric reduction, which is to say that the formal group Ê has height 1, or in other words that the
semi-abelian scheme c(E )sm given by the R-smooth locus of the contraction away from the identity section
has closed fiber that is a torus or an ordinary elliptic curve. In this case h(E) = 1 and Ê [pn]k is a level-n
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canonical subgroup of Esm for all n. When E is moreover an elliptic curve, it is obvious that Gn/Gn[p] is a
level-(n− 1) canonical subgroup of E/Gn[p].

We now may and do assume E is an elliptic curve over R whose reduction is supersingular (so h(E) < 1).
The case n = 1 is discussed in §B.3, so we now proceed via induction on n and assume n > 1. First assume
that E admits a level-n canonical subgroup Gn, and let Gm = Gn[pm] be the level-m canonical subgroup of E
for 1 ≤ m ≤ n. In particular, since E has a level-1 canonical subgroup we must have p−p/(p+1) < h(E) < 1.
Let G1 be the local schematic closure of the level-1 canonical subgroup G1 in E , so E /G1 is the unique
elliptic curve over R with analytic k-fiber E/G1 (by GAGA over k and Lemma B.3.1 over R). By studying
the degree-p isogeny of elliptic curves E → E /G1 over R we shall prove that Gn/G1 is a level-(n − 1)
canonical subgroup of E/G1, so in particular the level-1 canonical subgroup of E/G1 has preimage G2 that
is cyclic of order p2 and so is not E[p]. Granting this for a moment, it then would follow from results
of Lubin (see [Bu, Thm. 3.3(ii)-(iv)]) that h(E) > p−1/(p+1) and h(E/G1) = h(E)p, but induction gives
h(E/G1) > p−p/pn−2(p+1) so we would get h(E) > p−p/pn−1(p+1) as desired.

Let us now check that indeed Gn/G1 is a level-(n − 1) canonical subgroup of E/G1. Clearly it is free
of rank 1 over Z/pn−1Z. Since (E/G1)[pn−1] ⊆ E[pn]/G1, our problem is to analyze size in the formal
group of E /G1 for the images of the points of E[pn]/G1. This problem is intrinsic to the height-2 p-divisible
formal groups Γ = Ê and Γ′ = Γ/G1. The following argument could probably be expressed entirely in the
language of Newton polygons for [pm]∗ on 1-parameter commutative formal groups, but we prefer to use a
more geometric language that carries over to the higher-dimensional case in [C4].

Let X be a formal parameter for Γ, so O(Γ) ' R[[X]] is finite free as a module over the subring O(Γ′) for
which a formal parameter is given by

(4.2.1) X ′ = NΓ/Γ′(X) =
∏

ξ∈G1

(X −X(ξ)) = X ·
∏

ξ∈G1−{0}

(X −X(ξ)).

If x is a generator of the cyclic group Gn then [pn−1](x) is a generator of G1 and so has size (ph(E))−1/(p−1) >
p−1/(p−1) (whence x has size > p−1/(p−1)). But if a point x0 of the formal group Γ has size r ≥ p−1/(p−1)

then [p](x0) has size ≤ rp (Remark 4.2.1), so inductively we conclude that [pj ](x) has size at most size(x)pj

for 1 ≤ j ≤ n − 1. Hence, |X(x)| ≥ (ph(E))−1/pn−1(p−1), and since n > 1 this strictly exceeds |X(ξ)| =
(ph(E))−1/(p−1) for all ξ ∈ G1 − {0}. It follows via (4.2.1) that x mod G1 in E/G1 has size |X ′(x)| that is
equal to |X(x)|p.

To conclude that Gn/G1 is level-(n− 1) canonical subgroup in E/G1, we have to prove that any point in
(E/G1)[pn−1] not in Gn/G1 has size > |X(x)|p. For x′ ∈ E lifting such a point, we have [pn−1](x′) ∈ G1 =
pn−1(Gn), so x′ = x′1 + x′0 with x′1 ∈ Gn and x′0 ∈ E[pn−1] with x′0 not in Gn. By the defining property
of Gn as a level-n canonical subgroup, the pn-torsion point x′0 in E has size strictly larger than that of any
point of Gn, so in particular it has larger size than x′1 and larger size than any ξ ∈ G1 − {0}. Since the
formal group law has integral coefficients and its linear part is addition, we conclude

|X(x′)| = |X(x′0)| > |X(x)|, |X(x′)−X(ξ)| = |X(x′0)| > |X(x)|

for all ξ ∈ G1 − {0}. This implies |X ′(x′)| = |X(x′0)|p > |X(x)|p, as desired.
It remains to prove that if h(E) > p−p/pn−1(p+1) then E admits a level-n canonical subgroup. We may

assume n > 1 and that the result is known for smaller positive values of n; as we have seen above, we
can also assume that E extends to an elliptic curve over R with supersingular reduction (so in particular
h(E) < 1). Since h(E) > p−p/(p+1), certainly E admits a level-1 canonical subgroup G1. Since n ≥ 2 we
have h(E) > p−1/(p+1), so by [Kz, 3.10.7(2)] it follows that h(E/G1) = h(E)p > p−p/p(n−1)−1(p+1), and by
induction E/G1 therefore has a level-(n− 1) canonical subgroup G′

n−1. Letting Gn be its preimage in E, we
shall prove that Gn is level-n canonical. Certainly Gn has order pn, and to see that it is a free Z/pnZ-module
we just have to rule out the possibility that it contains E[p], which is to say that E[p]/G1 is the p-torsion
in G′

n−1. But G′
n−1[p] is the level-1 canonical subgroup of E/G1, so the module structure of Gn will work

out provided that E[p]/G1 is not the level-1 canonical subgroup of E/G1. The nonzero points in the level-1
canonical subgroup of E/G1 have size (ph(E/G1))−1/(p+1) = p−1/(p+1)h(E)−p/(p+1), so to show that this
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subgroup does not equal E[p]/G1 it is enough to show that nonzero points in E[p]/G1 have size in E/G1 that
exceeds this value. A nonzero point in E[p]/G1 is represented by a point x′ ∈ E[p]−G1, so its size in E is
h(E)1/(p2−p) and this exceeds the size in E of all points in G1. Thus, by (4.2.1) the image of x′ in E/G1 has
size equal to sizeE(x′)p = h(E)1/(p−1). Our problem is therefore to show h(E)p/(p−1)+1/(p−1) > p−1/(p−1).
But h(E) ∈ (p−1/(p+1), 1) since n ≥ 2, so the desired inequality is clear. This shows that Gn as just defined
is cyclic of order pn.

Finally, we have to prove that if n > 1 then the points of Gn have strictly smaller size than all other pn-
torsion points in E. Pick x′ ∈ E[pn] not in Gn, so there is a largest 0 ≤ m ≤ n− 1 such that [pm](x′) 6∈ Gn.
Since size(x′) ≥ size([pm](x′)), we can replace x′ with [pm](x′) and so we can assume x′ 6∈ Gn and [p](x′) ∈ Gn.
Thus, [p](x′) ∈ E[pn−1] ∩ Gn = Gn[pn−1] = p · Gn (as we have already proved that Gn is free of rank 1
over Z/pnZ), so x′ = x′0 + x′1 with x′0 ∈ Gn and x′1 ∈ E[p] − G1. It is therefore enough to show that x′1
has size strictly exceeding the size of any point in Gn (as then x′ has the same size as x′1, so we are done).
Renaming x′1 as x′ therefore reduces us to the case x′ ∈ E[p]−G1, so size(x′) = h(E)1/(p2−p). Our problem
is to prove sizeE(x) < h(E)1/(p2−p) for all x ∈ Gn, and since Gn is cyclic it suffices to treat the case when x
is a generator of Gn. We shall now restrict our attention to such points x.

Since n > 1, G1 = pn−1 · Gn ⊆ p · Gn consists of points with size strictly smaller than the size of the
generator x of Gn, so by (4.2.1) we deduce

(4.2.2) sizeE/G1(x mod G1) = sizeE(x)p.

We can therefore restate our desired inequality as sizeE/G1(x mod G1)
?
< h(E)1/(p−1). But x mod G1 lies in

the level-(n − 1) canonical subgroup G′
n−1 in E/G1, so its size (in E/G1) is strictly less than that of the

p-torsion in E/G1 not contained in the level-1 canonical subgroup of E/G1. That is,

sizeE/G1(x mod G1) < h(E/G1)1/(p2−p) = h(E)1/(p−1).

�

Corollary 4.2.6. If E is a generalized elliptic curve over k and h(E) > p−p/pn−1(p+1) then the generators
of the level-n canonical subgroup Gn in E have size p−1/pn−1(p−1)h(E)−1/(p−1).

Proof. In the case n = 1 this is part of Lubin’s theory (as in §B.3), so suppose n > 1. Let Gm be the level-m
canonical subgroup in E for 1 ≤ m ≤ n, so E/G1 has Gn/G1 as its level-(n − 1) canonical subgroup by
Theorem 4.2.5. Pick a generator x ∈ Gn, so (4.2.2) gives sizeE/G1(x mod G1) = sizeE(x)p. By by Theorem
4.2.5 and induction sizeE/Gj

(x mod Gj) = sizeE(x)pj

for 1 ≤ j ≤ n − 1. Since x mod Gn−1 generates
the subgroup Gn/Gn−1 that is the level-1 canonical subgroup of E/Gn−1 with h(E/Gn−1) = h(E)pn−1

by
Theorem 4.2.5, the settled case of level 1 gives

sizeE(x)pn−1
= sizeE/Gn−1(x mod Gn−1) = (ph(E/Gn−1))−1/(p−1) = (ph(E)pn−1

)−1/(p−1).

Extracting pn−1th roots gives the result. �

Here is the relativization for higher torsion levels:

Theorem 4.2.7. Fix n ≥ 1. Let E → S be a generalized elliptic curve over a rigid-analytic space over k,
and fix h ∈ [p−p/pn−1(p+1), 1) ∩

√
|k×|. There exists a unique finite étale S>h-group G>h

n equipped with a
closed immersion of S>h-groups G>h

n ↪→ Esm|S>h such that G>h
n,s ↪→ Esm

s is the level-n canonical subgroup
for all s ∈ S>h. Moreover, G>h

n is Zariski-open in Esm[p]|S>h and Zariski-closed in E|S>h . The same holds
over S≥h for any h ∈ (p−p/pn−1(p+1), 1] ∩

√
|k×|.

The formation of G>h
n and G≥h

n is compatible with base change on S and (for quasi-separated or pseudo-
separated S) with change of the base field.

Proof. The proof is identical to that of Theorem 4.1.3 (which is the case n = 1), except for two changes: we
use the inequality |a(s)||x|p−1 ≤ p−1/pn−1

in the definitions of W>h and W≥h, and we replace references to
Lubin’s work with references to Theorem 4.2.5 and Corollary 4.2.6. �
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Example 4.2.8. The same argument as in Example 4.1.4 shows that for any d ≥ 1 and n ≥ 1, the level-n
canonical subgroup in Tatean

d → ∆ is the canonically embedded ∆-subgroup µpn ×∆.

Example 4.2.9. Let N be a positive integer not divisible by p and let E → X be the universal rigid-analytic
generalized elliptic curve over X = X1(Npm)an/Qp

, with m ≥ 1 and Npm ≥ 5 (so the Γ1(Npm)-moduli problem
is representable over Sp(Qp); see Theorem 3.2.3). Let C ↪→ Esm[pm] be the universal finite étale cyclic
subgroup of order pm in the Γ1(Npm)-level structure over X (so C is Zariski-closed in E and both Zariski-open
and Zariski-closed in Esm[pm]). Choose h ∈ [p−1/pm−1(p+1), 1)∩pQ (resp. h ∈ (p−1/pm−1(p+1), 1]∩pQ) and let
S = X>h (resp. S = X≥h). The restriction ES = E|S has a level-m canonical subgroup Gm(ES) ⊆ Esm

S [pm]
that is a finite étale open and closed subgroup with order pm and cyclic geometric fibers.

By the method of proof of uniqueness in Theorem 4.1.3, the condition of equality for Gm(ES)/S′ and C/S′

inside of E/S′ for rigid spaces S′ over S is represented by a Zariski-open and Zariski-closed locus in S (i.e.,
a union of connected components of S); in particular, if the geometric fiber of C over a single point s ∈ S
is the level-m canonical subgroup in the geometric fiber of E at s then C coincides with Gm(ES) over the
entire connected component of s in S. This criterion is especially convenient when taking s to be a cusp or
ordinary point on the modular curve X, and the theory of integral models for modular curves over p-adic
integer rings ensures that every connected component of S contains a cusp and an ordinary point. (A more
general result concerning distinguished points on connected components of rigid-analytic curves is proved in
[C4] and plays a crucial role in the higher-dimensional theory of canonical subgroups of any level.)

Example 4.2.10. Choose n ≥ 1 and r ∈
√
|k×| with p−1/pn−1(p−1) < r < 1. Let E → S be a generalized

elliptic curve and suppose h(Es) > p−p/pn−1(p+1) for all s ∈ S, so E admits a relative level-n canonical
subgroup Gn over S. Define

hn,p(r) =

{
rp2−p ∈ [p−1/pn−1(p+1), 1) if p−1/pn−1(p2−1) ≤ r < 1,

(1/r)p−1p−1/pn−1 ∈ (p−1/pn−1(p+1), 1) if p−1/pn−1(p−1) < r < p−1/pn−1(p2−1).

Using Corollary 4.2.6 and the formula h(Es)1/(p2−p) for the size of p-torsion points in Es not in the level-1
canonical subgroup when h(Es) < 1, it is easy to check that Gn,s = Esm

s [pn]0≤r if and only if s ∈ S>hn,p(r)

(resp. s ∈ S≥hn,p(r)) when r ≥ p−1/pn−1(p2−1) (resp. r < p−1/pn−1(p2−1)). In particular, for r sufficiently
close to the theoretical minimum p−1/pn−1(p−1) in Remark 4.2.1 it follows that for all s ∈ S≥hn,p(r) the fibral
level-n canonical subgroup is Esm

s [pn]0≤r; the point is that we are controlling the size of points of the level-n
canonical subgroup subject to only a universal lower bound hn,p(r) on h(Es). In the higher-dimensional case
with fixed n and p and with r sufficiently near p−1/pn−1(p−1), an analogous universal “size bound” A[pn]0≤r

for level-n canonical subgroups is proved in [C4] for g-dimensional abelian varieties A with “Hasse invariant”
h(A) ≥ hn,p,g(r); we do not know an explicit formula for such an hn,p,g(r) when g > 1.

4.3. Frobenius lifts. Let E be a generalized elliptic curve over k with h(E) > p−p/pn−1(p+1), so E admits
a level-n canonical subgroup. Replace k with a finite extension so that (by Theorem B.3.2) E extends to a
generalized elliptic curve E over R whose associated formal group Ê “is” a p-divisible group over R that is
intrinsic to E. We may form the finite flat schematic closure Gn of Gn in the finite flat closed R-subgroup
Ê [pn] ⊆ E [pn] and consider its mod-pR reduction G n as a finite flat closed R/pR-subgroup in E = E mod pR.
How does G n relate to the kernel ker(FE ,n,R/pR) of the n-fold relative Frobenius (for E , or equivalently for
its p-divisible formal group)?

If h(E) = 1 then these two R/pR subgroups coincide for all n. Also, if we take c ∈ mR satisfying

|c| ≥ p−1/pn−1(p−1)h(E)−1/(p−1) ∈ (p−1/pn−1(p2−1), p−1/pn−1(p−1)] ⊆ (p−1/pn−1(p2−1), p−1/(p−1)]

(so c|p in R) then Corollary 4.2.6 yields equality of these two subgroup schemes modulo cR for the trivial
reason that the monic degree-png Weierstrass polynomial cutting out Gn in the formal group R[[X]] has all
roots in cR. But by using geometry we can do better at the expense of being non-explicit, as follows. For
any λ ∈ (0, 1), we say that two finite flat closed subschemes of Ê coincide modulo pλ (or modulo pλR) if they
agree modulo c′R′ for any analytic extension k′/k and any c′ in its valuation ring R′ such that |c′| ≥ p−λ.
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Theorem 4.3.1. Fix p and n ≥ 1, and choose λ ∈ (0, 1) ∩ Q. With notation as above, there exists
hn,p(λ) ∈ (p−p/pn−1(p+1), 1) such that if h(E) > hn,p(λ) then

Gn mod pλR = ker(FbE mod pλR,n,R/pλR)

inside Ê [pn] mod pλR.

The proof gives a way to compute the optimal hn,p(λ) in terms of power-series coefficients of [pn]∗(X)
for the universal deformation of the unique height-2 commutative formal group of dimension 1 over Fp.
However, we have not carried out such an explicit analysis. A non-explicit result similar to Theorem 4.3.1
is proved in the higher-dimensional case in [C4], and the geometric argument at the heart of the proof of
Theorem 4.3.1 is written so that it applies to the higher-dimensional case verbatim.

Proof. Pick an integer N ≥ 3 not divisible by p. We can restrict attention to the case h(E) < 1, so
after making a finite extension on k we may assume that E extends to an elliptic curve E over R (with
supersingular reduction) and that E admits a full level-N structure. Let Y = Y (N)/Zp

and let E → Y be
the universal elliptic curve. Passing to the p-adic completions, by Corollary 3.2.7 the map Êrig → Ŷ rig is
an elliptic curve over a rigid space over Qp obtained by pullback along the quasi-compact open immersion
Ŷ rig → Y an

Qp
. Our elliptic curve E arises as a fiber in this family after applying the extension of scalars

k/Qp, and so it suffices to find an hn,p(λ) that works for the fibers over Ŷ rig and continues to work after any
analytic extension of the base field. More generally, it suffices to do the same for Erig → Yrig with E → Y
any fixed formal elliptic curve over a formal scheme Y that is topologically of finite type over Zp. Working
with formal schemes and Raynaud (or Berthelot) generic fibers gives a way to relate integral structure to
rigid spaces.

To analyze the situation in a structural manner that avoids unnecessary use of special features of elliptic
curves or modular curves (and so will be applicable in the higher-dimensional case in [C4]), let us now pass
to a more general problem for formal abelian schemes. We first explain the setup (to be applied with E → Y
as above for the purposes of the proof of Theorem 4.3.1). Let A → M be a formal abelian scheme of relative
dimension g over a formal scheme M that is topologically of finite type over a discrete valuation ring R
with fraction field k that is an analytic extension of Qp; impose the normalization condition |p| = 1/p. Let
A → M be the associated rigid-analytic map, and let A0 → M0 denote the associated abelian scheme modulo
p. For each m ∈ M = Mrig we have m = mrig for a unique map m : Spf(R(m)) → M valued in the valuation
ring R(m) of k(m), so we may let Am denote the formal abelian scheme m∗(A) over R(m) whose Raynaud
generic fiber over k(m) is Am. We say m is ordinary if the reduction of Am over the residue field of R(m) is
an ordinary abelian variety. The locus of non-ordinary points for A0 → M0 is a Zariski-closed set Z0 given
by the vanishing of the locally principal determinant ideal of the map of rank-g vector bundles

Lie(VA0/M0) : Lie(A0)(p) → Lie(A0)

induced by the Verschiebung for A0 → M0, so the locus of ordinary points in M is the quasi-compact
admissible open preimage of M0−Z0 under the reduction map of sets M → M0. Although a local generator H
for this ideal may not globalize, its absolute value |H| does globalize and hence loci such as M≥h = {|H| ≥ h}
and M>h = {|H| > h} are admissible opens in M . The ordinary locus is {|H| = 1}. (In the motivating
example with a formal elliptic curve, such an H is locally given by an Xp-coefficient as in the proof of
Theorem 4.1.1. Over M>p−p/pn−1(p+1)

there is a level-n canonical subgroup, the fibral points of which have
physical reduction 0 in the fibers of the given formal elliptic curve.)

We assume that for some h ∈ (1/p, 1) ∩ pQ there is given a finite étale subgroup G ⊆ A[pn]|M≥h whose
geometric fibers are (Z/pnZ)g. Let Â denote the formal completion of A along its identity section. Since k is
discretely-valued, by Theorem 3.2.6 there is a natural admissible open subgroup (using Berthelot’s functor)
Ârig ↪→ Arig = A and this relativizes the formal groups of the formal abelian scheme fibers Am. Intuitively,
Ârig is a relative open unit polydisc that glues the integral formal groups of the fibers Am = Arig

m . We assume
that G → A|M≥h factors through the open subgroup Ârig|M≥h ⊆ A|M≥h ; equivalently, when points of Gm

are extended to integral points of Am for m ∈ M≥h then such extended integral points are assumed to
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reduce to the identity. In particular, for all ordinary points m ∈ M the fibral subgroup Gm ⊆ Am[pn] is the
generic fiber of the identity component “canonical subgroup” Am[pn]0 ⊆ Am[pn]. Under these assumptions,
we claim that for any λ ∈ (0, 1) ∩ pQ there exists h(λ) ∈ (h, 1) ∩ pQ depending on A and G such that if
m ∈ M satisfies |H(m)| > h(λ) then the schematic closure Gm of Gm in the finite flat R(m)-group Am[pn]0

coincides modulo pλ with the kernel of the n-fold relative Frobenius on Am mod pλ. We also claim that this
property of h(λ) persists after any analytic extension of the base field.

The key to the proof is to extend G ⊆ A[pn] to a finite flat formal subgroup scheme of A[pn] with connected
fibers, and to do this we will have to change the formal model M without affecting the rigid-analytic Raynaud
generic fiber. The need to possibly change M is the reason that we have axiomatized our setup beyond the
initial specific case of interest. By pullback to the closed formal subscheme of M defined by the coherent
ideal of p-power torsion in the structure sheaf OM, we may and do assume M is R-flat. By [BL1, Lemma 4.4],
there is an admissible formal blow-up M′ of M such that M≥h arises from an open formal subscheme of M′.
By pulling back A to this open formal subscheme, we may put ourselves in the case that M = M≥h, so G
now exists over the entirety of M . The following lemma is the crux:

Lemma 4.3.2. There is an admissible formal blow-up M′ → M such that the pullback A′ of A admits a
finite locally free subgroup G′ ⊆ A′[pn] with generic fiber G ⊆ A[pn] and with connected fibers over M′.

We avoid noetherian hypotheses on R in the proof.

Proof. We identify A[pn] with a finite locally free OM-algebra P. For an open affine U = Spf(C) in M with
generic fiber U ⊆ M the restriction of A[pn] over U is associated to a finite locally free C-algebra P , and
G|U corresponds to a quotient of Pk = k⊗R P by an ideal whose saturation I in P defines an R-flat quotient
P/I that is C-finite but possibly not C-flat. By [BL1, Lemma 1.2(c)], the ideal I is finitely generated in P .
Thus, for any c ∈ C the quotient of P{c} = C{c}⊗̂CP by the ideal I{c} = C{c}⊗̂CI is R-flat with generic
fiber given by the restriction of G over the locus |c| = 1 in U . Hence, I{c} is the saturated ideal associated
to G and U{c}. It follows that the formation of I globalizes over M to a coherent ideal sheaf I ⊆ P over
M with R-flat quotient algebra P/I whose associated topologically finitely presented and closed formal
subscheme G ↪→ A[pn] is an R-flat and M-finite formal model for G ↪→ A[pn]. However, G is probably not
M-flat and so it may not be a subgroup of A[pn].

If M′ → M is any admissible formal blow-up, then the pullbacks of A and A[pn] over M′ are their own
strict transforms since A and A[pn] are flat over the R-flat M. Hence, the strict transform G′ of G under
such a blow-up is a closed formal subscheme of A′[pn]. Raynaud’s flat models theorem [BL2, 5.2] provides
such an admissible formal blow-up for which G′ is also M′-flat. Hence, by renaming M′, A×M M′, and G′

as M, A, and G respectively, we arrive at the situation in which the M-finite formal closed subscheme G in
A[pn] is M-flat. Since the generic fiber G of G is an M -subgroup of A[pn], it follows from the R-flatness of
M that G is an M-subgroup of A[pn].

The flatness of G over M implies that for any m ∈ M with associated point m : Spf(R(m)) → M, the
pullback m∗(G) is a finite flat R(m)-subgroup of Am[pn] and so it is the schematic closure of its generic fiber
Gm ↪→ Am[pn]. Our initial assumptions on G imply that each fiber Gm consists of points that extend to
integral points of the connected finite flat R(m)-group Am[pn]0, so the schematic closure m∗(G) is necessarily
connected. �

The properties in Lemma 4.3.2 imply that the map G → A physically lands in the closed identity section
on underlying topological spaces (as this holds on fibers over closed points of the Jacobson space M). Hence,
G factors throught the formal completion Â along the identity section as M-groups. Since the composite

G → Â → A

is a closed immersion of locally noetherian formal schemes and the second map is separated (in the sense
of such formal schemes), the first map is a closed immersion. We may work locally on the quasi-compact
M, so we can assume that M = Spf(C) is affine and that the tangent space for A along its identity
section is a free C-module. Thus, we can identify the formal completion of Â along its identity section with
Spf(C[[X1, . . . , Xg]]), using the (I , X)-adic topology on C[[X]] with I an ideal of definition of C (such as
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pC). The determinant ideal for the Lie algebra map of the relative Verschiebung of A0 = A mod pR therefore
has a principal generator in C/pC that we may lift to some H ∈ C, and the closed immersion G ↪→ Â is cut
out by an ideal I ⊆ C[[X1, . . . , Xg]] that is contained in the augmentation ideal.

Since C is noetherian, the ideal I is finitely generated. Picking generators f1, . . . , fN of I, each is a
formal power series with vanishing constant term and only finitely many coefficients for monomials

∏
X

ej

j

with max(ej) < pn. Let {cj}j∈J be the finitely many such coefficients that arise. For any λ ∈ (0, 1] ∩Q,
the admissible open locus Mλ = {|cj | ≤ p−λ}j∈J in M consists of precisely the points m = mrig ∈ M for
which the specialization m∗(G) of Gm ⊆ Am[pn] in Am has reduction modulo pλR that is killed by the
n-fold relative Frobenius and so (for order reasons) m∗(G) is the kernel of this iterated Frobenius map on
Am mod pλR. This description clearly persists after any extension of the base field, and so we now drop the
discreteness hypothesis on k/Qp.

Given λ ∈ (0, 1)∩Q, our problem is precisely to construct h(λ) ∈ (0, 1)∩ pQ so that {|H| ≥ h(λ)} ⊆ Mλ.
Note that {|H| = 1} is the ordinary locus, and |cj(m)| ≥ 1/p for all j at ordinary points m ∈ M . Hence,
by letting f = H and g = cj/p for each of the finitely many j (considered separately) we are reduced to
the following assertion in rigid geometry: if f and g are analytic functions on a quasi-compact rigid space
X and {|f | ≥ 1} ⊆ {|g| ≥ 1} then for any η ∈ (0, 1) ∩

√
|k×| there exists η′ ∈ (0, 1) ∩

√
|k×| such that

{|f(x)| > η′} ⊆ {|g| > η}. We fix η, and we may assume X is affinoid. The restriction of |f | to the affinoid
U = {|g| ≤ η} has a finite supremum σ. (We can and do assume U 6= ∅.) The maximum modulus theorem
for f |U provides u ∈ U such that |f(u)| = σ, so σ < 1 since η < 1. Thus, η′ = σ works. �

Appendix A. Some properties of morphisms

A.1. Properties of finite morphisms. There are two properties of finite morphisms that we require, the
topological invariance of finiteness and a fibral criterion for finiteness. We do not know references in the
generality used in this paper (no discreteness hypothesis on the absolute value), so we provide proofs below.
Here is the topological invariance.

Theorem A.1.1. A rigid space X is affinoid if and only if Xred is affinoid. In particular, a morphism
f : Y → Z between rigid spaces is finite if and only if the induced morphism Yred → Zred is finite.

This result is well-known to experts, but we do not know a published reference with a proof. The assertion
would be trivial if there were a rigid-analytic cohomological criterion for a quasi-compact and separated rigid
space to be affinoid, akin to Serre’s cohomological criterion for a quasi-compact and separated scheme to
be affine. However, there is no such criterion because over any non-archimedean field k there exists a
quasi-compact separated surface that has vanishing higher coherent cohomology but is not affinoid [Liu].

Proof. We first indicate why, for any rigid space Y , the natural map i : Yred → Y induces a “homeomorphism”
of Grothendieck topologies. That is, every admissible open U ⊆ Yred (resp. admissible covering {Uj} of such
a U) has the form i−1(V ) (resp. {i−1(Vj)}) for a unique admissible open V ⊆ Y (resp. admissible covering
{Vj} of V ). This is proved by reduction to the case of affinoid Y and using the definition of admissibility
and the Gerritzen–Grauert description of affinoid subdomains of an affinoid in terms of rational subdomains
and Weierstrass subdomains [BGR, 7.3.5/3]; the point is that the assertions to be proved are trivial for
admissible opens that are rational or Weierstrass subdomains (one merely lifts the defining inequalities
through the nil-thickening of affinoid algebras).

With this “homeomorphism” point settled, we may conclude that the property of a map being quasi-
compact is insensitive to passing to underlying reduced spaces. Thus, if Xred is affinoid, then X is at
least quasi-compact and quasi-separated (i.e., the diagonal morphism X → X × X is quasi-compact). In
particular, the coherent ideal sheaf I defining Xred in X is nilpotent. Thus, by induction on the order
of nilpotence it suffices to prove that if X is a quasi-compact and quasi-separated rigid space and I is a
coherent ideal on X with I 2 = 0 such that the zero space X0 ↪→ X defined by I is an affinoid Sp(A0) then
X is affinoid.
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Let {Ui} be a finite admissible affinoid open covering of X and let {Vii′j}j∈Ji,i′ be a finite admissible
affinoid open covering of the quasi-compact overlap Ui ∩ Ui′ . Consider the left exact sequence

(A.1.1) 0 → OX(X) →
∏

OX(Ui) →
∏

OX(Vii′j).

The two terms on the right are naturally k-Banach algebras and have underlying k-Banach spaces of countable
type. By continuity, it follows that (A.1.1) gives A = OX(X) a structure of k-Banach algebra having
countable type as a k-Banach space. We will now show that A is k-affinoid (and hence the k-Banach algebra
structure is the unique one on A).

Using the hypothesis that X0 = Sp(A0) is k-affinoid and the fact that the square-zero coherent ideal
sheaf I on X may be viewed as a coherent sheaf on X0, the ideal I = H0(X, I ) in A is naturally a finite
A0-module and we have an exact sequence 0 → I → A → A0 → 0. Choose a surjection of k-algebras

(A.1.2) k〈〈t1, . . . , tn〉〉� A0

with tr 7→ ar, where ar ∈ A0 is power-bounded. Choose any ar ∈ A lifting ar. We claim that ar is power-
bounded (for the above k-Banach algebra structure on A). By definition of the k-Banach structure on A it
suffices to check power-boundedness of each ar|Ui ∈ OX(Ui), so we reduce to showing that for a k-affinoid B
and a square-zero ideal J ⊆ B, the preimage of a power-bounded element under B → B/J is power-bounded.
Power-boundedness in an affinoid is equivalent to having absolute value at most 1 at every maximal ideal,
and this property is insensitive to passing to the quotient by a nilpotent ideal.

Due to the power-boundedness of the ar’s, we may use [BGR, 6.1.1/4] to construct a unique continuous
k-algebra morphism k〈〈t1, . . . , tn〉〉 → A that satisfies tr 7→ ar. This map induces the surjection (A.1.2) onto
A/I = A0. Recall that I is a finite module over A/I = A0. For A0-module generators b1, . . . , bm of I we
have b2

s = 0 for all s, so there is a unique continuous k-algebra map

k〈〈t1, . . . , tm, u1, . . . , um〉〉 → A

satisfying tr 7→ ar, us 7→ bs. This map is visibly surjective, so A = OX(X) is indeed k-affinoid. We conclude
that there is a natural map of rigid spaces ι : X → Sp(A), but we do not yet know that it is an isomorphism.

Since ι is compatible with the isomorphism X0 ' Sp(A0) = Sp(A/I), we conclude that ι is a home-
omorphism of Grothendieck topologies and that for all x ∈ X there is a commutative diagram of local
k-algebras

OSp(A),ι(x)
ι∗x //

��

OX,x

��
OSp(A0),ι(x) '

// OX0,x

with the bottom row an isomorphism, the vertical maps surjective, and the right column having square-zero
kernel generated by I (as I may be viewed as a coherent sheaf on the affinoid X0 and hence has its stalk
modules over the stalks of OX0 or OX generated by its global sections). We conclude that the top row is
surjective. Moreover, for any open affinoid W ⊆ ι(Ui), the preimage ι−1(W ) ' Ui ×Sp(A) W is affinoid. The
map ι therefore satisfies all of the criteria in [BGR, 9.5.3/5] to be a closed immersion. That is, X admits a
closed immersion into an affinoid and hence must be affinoid (and ι is therefore an isomorphism). �

The following fibral criterion for finiteness is inspired by some results in the complex-analytic and scheme-
theoretic cases.

Theorem A.1.2. Let f : X → Y be a flat map between rigid spaces. The map f is finite if and only if it is
quasi-compact and separated with finite fibers and its fiber-rank is locally constant on Y .

Remark A.1.3. This finiteness criterion was independently proved by Abbes–Mokrane [AM, Lemme A.1]
when k is discretely-valued. (The quasi-separatedness hypothesis in [AM, Lemme A.1] must be strengthened
to separatedness, as this is used in the proof and the result is false without it.) Their argument follows a
strategy that is similar to ours, except that they use complete local rings on formal models and we cannot use
such completions because local rings on formal models are not noetherian when k is not discretely-valued.
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Before we begin the proof of Theorem A.1.2, we note that the complex-analytic analogue (without a
quasi-compactness condition) is an immediate consequence of the structure theorem for locally quasi-finite
maps in the complex-analytic case. Due to the admissibility condition for open covers in rigid geometry,
we will need to work a little harder in the rigid case. The scheme-theoretic analogue of Theorem A.1.2 is
given in [DR, II, 1.19] with noetherian hypotheses, proved via Zariski’s Main Theorem and the valuative
criterion for properness. Our proof in the rigid case will use this scheme-theoretic version via the theory of
formal models, but we need to drop the noetherian condition (for applications to the case in which k has
non-discrete valuation). Thus, we first prove a generalization of [DR, II, 1.19]:

Lemma A.1.4. Let f : X → Y be a flat morphism of schemes that is locally of finite presentation. The
map f is finite if and only if it is separated with finite fibers and its fiber-rank is locally constant on Y .

The application of this lemma in the proof of Theorem A.1.2 will be in the case of a map that is already
known to be quasi-compact, but it is curious that this lemma does not require an assumption of quasi-
compactness. In contrast, the quasi-compactness assumption in Theorem A.1.2 is necessary, as is seen by
the standard example of the bijective local isomorphism {|t| = 1}

∐
{|t| < 1} → {|t| ≤ 1}.

Proof. The “only if” implication is trivial, since a finite flat Y -scheme that is locally of finite presentation is
classified by a quasi-coherent sheaf of OY -algebras whose underlying OY -module is locally free of finite rank.
Thus, we focus on the “if” direction. By working locally on Y , we may suppose that all fibers of f have the
same rank, say d.

We first settle the case of local Y . By fpqc base change, we may assume that Y is henselian. The
structure theorem for locally quasi-finite separated maps [EGA, IV4, 18.5.11(c)] ensures that we can write
X = X ′ ∐ X ′′ with X ′′ having empty closed fiber and X ′ → Y finite. Since X ′ → Y is visibly finite flat and
locally of finite presentation, it is finite free of some constant rank d′. Looking over the closed fiber, d′ = d.
The open immersion X ′ ↪→ X must therefore be an isomorphism on fibers over Y , and hence an isomorphism.
This settles the case of local Y . In general, choose y ∈ Y . The map X ×Y Spec OY,y → Spec OY,y is finite
flat of rank d by the local case, and we want to smear out this property over a neighborhood of y. We may
assume Y is affine and we may find a quasi-compact open U ⊆ X that contains X ×Y Spec OY,y ⊆ X. In
particular, U×Y Spec OY,y is finite locally free of rank d over Spec OY,y. Since U → Y is of finite presentation,
by shrinking Y around y we may assume that U → Y is finite locally free of rank d. The open immersion
U ↪→ X is therefore an isomorphism on fibers over Y , and hence an isomorphism. �

Lemma A.1.5. Let R be the valuation ring of k and let Y be a formal scheme over Spf(R) that is flat and
locally topologically of finite presentation. Every point y : Sp(k′) ↪→ Yrig has the form y = yrig for a unique
closed immersion

y : Spf(B) ↪→ Y,

with B a finite flat domain over R. Conversely, every closed point y0 ∈ Y underlies such a morphism y.

Proof. This follows from the theory of rig-points as developed in [BL1], particularly [BL1, 3.5]. �

Proof. (of Theorem A.1.2). The “only if” implication is trivial, since rigid spaces equipped with a finite
morphism to Y are classified by coherent sheaves of OY -algebras, so we focus on the “if” direction. Working
locally on Y , we may assume Y is affinoid, or more conceptually that X and Y are both quasi-compact and
separated. We may likewise assume that f has constant fiber rank, say d.

Let f : X → Y be a formal model of f . By [BL1, Prop. 4.7], the map f is automatically separated. By
[BL2, Cor. 5.3], we may choose f to be quasi-finite. Since the operations of base change by any Y′ → Y and
replacing X by a closed formal subscheme do not destroy the quasi-finiteness or separatedness conditions on
the formal side, by [BL2, Thm. 5.2] we may also assume f is flat. It suffices to prove that the formal scheme
map f is finite, and for this it suffices to prove that the ordinary scheme maps fn = f mod In+1 are finite
for a fixed ideal of definition I of the valuation ring R of k and any n ≥ 0. A priori each fn is quasi-finite,
separated, flat, and finitely presented. Thus, by Lemma A.1.4 it is enough to prove that each fn has fibers
of constant rank d.
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Let f denote the induced map of finite type schemes over the residue field k̃ of R. It is necessary and
sufficient to prove that the quasi-finite, flat, separated map f has all fibers of constant rank d. By [EGA,
IV3, 9.8.8] the locus of fibers with a specified rank is constructible, so it suffices to look at fibers over closed
points. Choose a closed point y0 ∈ Y. By Lemma A.1.5, there exists a finite flat local R-algebra domain
B and a locally closed immersion y : Spf(B) → Y that hits y0. Let yk ∈ Y denote the corresponding rigid
point, with residue field equal to the fraction field of B. The fibers of the fn’s (or, equivalently, of f) over y0

are identified with the fiber of
T

def= X×Y Spf(B)

over the residue field of B. The formal scheme T is quasi-finite flat over Spf(B), and Spec(B/IB) consists
of a single point, so by topological reasons we conclude that the R-flat T is affine and finite over Spf(B), say
T = Spf(C). Thus, C is finite flat over B. Since B is local, C is finite free over B of some rank d′. We just
need to show d′ = d. Since C ⊗R k is finite free of rank d′ over the fraction field k(yk) = B ⊗R k of B and it
is also the affinoid algebra of f−1(yk), we conclude that indeed d′ = d. �

A.2. Change of base field. Since change of the base field in rigid geometry often creates points that are
not seen on the original base (due to the lack of “enough physical points” in the rigid site), it is not obvious
that reasonable fibral properties of a morphism, such as having equidimensional fibers of a fixed dimension
d, are preserved by arbitrary change of the base field. We need to know that for many reasonable properties
of morphisms of quasi-separated rigid spaces there is good behavior with respect to change in the base field.
Raynaud’s theory of formal models is well-suited to settling such questions because base change for formal
models is closely related to the better-behaved case of schemes (where there are enough points).

Theorem A.2.1. Let X and Y be formal schemes over Spf(R) that are locally topologically finitely presented
and R-flat. Let f : X → Y be an R-morphism, and let f = frig : X → Y be the induced map between quasi-
separated rigid spaces over k.

(1) If all fibers of f have dimension ≤ n then all fibers of f have dimension ≤ n, and the converse holds
when f is flat.

(2) If f is flat and surjective with all fibers geometrically reduced of pure dimension d, then the same
holds for f .

Proof. We begin by proving (1). First consider the implication “⇒.” Let y : Sp(k′) → Y be a point. By
Lemma A.1.5, we have y = yrig for a morphism y : Spf(B) → Y, where B is a finite flat domain over R with
fraction field k′. Using base change by y, we may assume Y = Spf(B). We may compose f with the finite
flat map Spf(B) → Spf(R) in order to reduce to the case Y = Spf(R). That is, for a topologically finitely
presented (and not necessarily flat) formal scheme X over Spf(R), we need to show that the “generic fiber”
X = Xrig has dimension ≤ n if X has dimension ≤ n.

Working locally, without loss of generality X = Spf(A) is affine. The fiber Ã = A/mRA of A over the
residue field k̃ of R is a finite type k̃-algebra of dimension ≤ n. By Noether normalization for finitely
generated algebras over a field, there is a finite map of k̃-algebras k̃[x1, . . . , xn] → Ã. Let ai ∈ A lift the
image of xi in Ã. Consider the unique continuous R-algebra morphism

(A.2.1) R〈〈t1, . . . , tn〉〉 → A

that satisfies ti 7→ ai. We claim that (A.2.1) is finite, in which case the k-affinoid k ⊗R A is finite over an
n-variable Tate algebra and hence has dimension ≤ n, as desired.

Somewhat more generally, if ϕ : B → A is a continuous R-algebra map between topologically finitely
presented R-algebras, then we claim that ϕ is finite if the corresponding k̃-algebra map ϕ̃ is finite (the
converse is trivial). Let t1, . . . , tn be topological R-algebra generators of A. Pick a1, . . . , am ∈ A lifting
B̃-module generators of Ã, so there exist monic polynomials fi ∈ B[T ] and an ideal of definition I of R
such that fi(ai) ∈ IA and tj ∈

∑
ϕ(B)ai + IA. Since A/IA is generated by the tj ’s as an R/I-algebra we

conclude that A/IA is finite over B/IB, but A is I-adically separated and complete [BL1, §1] so it follows
that A is finite over B. This proves “⇒.”
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Now we prove the converse, assuming f to be flat. Working locally on X and Y, we can assume both
of these formal schemes are quasi-compact. Thus, f can be topologically identified with a map between
k̃-schemes of finite type, and so by [EGA, IV3, 9.9.5] the non-empty fibers of f have dimension ≤ n if and
only if this is true for the non-empty fibers of f over closed points. By Lemma A.1.5, we reduce to the case
Y = Spf(B) for a domain B that is finite flat over R. The assertion in question is insensitive to composing
f with the finite flat map Spf(B) → Spf(R). Since f is flat, so any non-empty open in X gives rise to a
non-empty open in X under Raynaud’s functor, we therefore just need to prove

(A.2.2) dim(A⊗R k) = dim(A/mRA)

for a flat topologically finitely presented R-algebra A.
The inequality ≤ in (A.2.2) was proved above, even without R-flatness conditions on A. For the re-

verse inequality, we need R-flatness. Let d = dim(A ⊗R k). We will construct a finite R-algebra map
R〈〈t1, . . . , td〉〉 → A, from which it follows that A/mRA is finite over a d-variable polynomial ring over the
residue field of R and hence has dimension at most d. To construct such a finite R-algebra map, choose a
surjection

R〈〈t1, . . . , tn〉〉� A.

Since the change of variables in [BGR, 5.2.4/1] is of the form Xi 7→ Xi + Xci
n , it follows from the proof of

Noether normalization for affinoid algebras in [BGR, 6.1.2/1] that we may make a change of variables over
R so that R〈〈t1, . . . , td′〉〉 injects into A ⊆ A⊗R k for some d′ ≥ 0 (the R-flatness ensures that A injects into
A⊗R k) such that this injection into A is a finite ring map. Applying the functor (·)⊗R k, we deduce that
A ⊗R k is a finite extension ring of a Tate algebra in d′ variables, so d′ = d. This completes the proof of
(A.2.2), and so proves (1).

Now consider (2). It is obvious that f must be flat, and Lemma A.1.5 provides the surjectivity (since
f is flat). We may also use Lemma A.1.5 to reduce the fibral properties of geometric reducedness and
equidimensionality of dimension d to the special case when Y = Spf R and X = Spf A is affine. By hypothesis,
A/mRA is geometrically reduced over the residue field R/mR and it has pure dimension d. We need to prove
that Sp(k ⊗R A) is geometrically reduced over k and has pure dimension d. Since geometric reducedness is
a property that may be checked over a single perfect extension of k and the initial assumptions on A are
preserved under arbitrary analytic extension on k, we can assume k is algebraically closed. More specifically,
allowing k to be arbitrary, it suffices to prove that k ⊗R A is reduced and has pure dimension d if A/mRA
is reduced with pure dimension d.

To prove that k ⊗R A is reduced, it is enough to show that A is reduced. If a ∈ A is nilpotent then the
reduction of a into A/mRA vanishes, so a = ca′ for a′ ∈ A and c ∈ R with |c| < 1. Since A is R-flat, clearly
a′ 6= 0 if both c and a are nonzero, and also a′ is nilpotent if c 6= 0. Thus, to prove a = 0 it suffices to prove
that for any nonzero α ∈ A there exists c ∈ R − {0} such that α = cα′ with α′ ∈ A and α′ 6∈ mRA. This
general claim will also be used in our proof that k⊗R A has pure dimension d, so we record it as a separate
lemma:

Lemma A.2.2. For any topologically finitely presented and flat R-algebra A and any non-zero a ∈ A⊗R k,
there is some k×-multiple of a that is in A but is not in mRA.

I am grateful to L. Lipshitz for the following proof that is much simpler than my original argument.

Proof. We can write A = R〈〈t1, . . . , tn〉〉/I with I = (f1, . . . , fm) a finitely generated ideal, and we may
suppose that a ∈ A. Let I ′ denote the ideal generated by the fj ’s in the Tate algebra k〈〈t1, . . . , tn〉〉. Since A
is R-flat, it follows that I = I ′ ∩ R〈〈t1, . . . , tn〉〉. Let F ∈ R〈〈t1, . . . , tn〉〉 be a representative for our non-zero
a, so F 6∈ I ′. Working in the n-variable Tate algebra over k, viewed as a Banach algebra with respect to the
usual sup norm, it follows from the closedness of ideals that

inf
h∈I′

||F − h|| > 0.

By [BGR, 5.2.7/8], this infimum is attained and has the form |c| for some c ∈ k. Since |c| ≤ ||F || ≤ 1 and
|c| = ||F − h0|| for some h0 ∈ I ′, we deduce that ||h0|| ≤ 1. In particular, h0 ∈ I ′ ∩ R〈〈t1, . . . , tn〉〉 = I.
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Replacing F with F − h0 reduces us to the case |c| = ||F ||. Thus, F/c has integral coefficients, so a/c ∈ A.
Replacing a with a/c reduces us to the case |c| = 1, so ||F − h|| = 1 for all h ∈ I. Since such elements
F − h constitute exactly the representatives of a relative to the given presentation of A, it follows that this
a cannot lie in mRA. �

The preceding lemma settles the (geometric) reducedness aspect, and we now turn to the proof that
k ⊗R A has pure dimension d. We know by (1) that dim Sp(k ⊗R A) ≤ d since f : Spf A → Spf R is assumed
to have fibers with pure dimension d. The problem is therefore one of giving lower bounds to dimensions of
irreducible components. If A is a domain, then so is A⊗R k. In this case, all maximal ideals of the k-affinoid
A⊗R k have the same height [C1, 2.1.5], so (A.2.2) proves what we need when A is a domain.

More generally, let p be a minimal prime of A. We claim that p cannot contain an ideal of definition of R
(that is, p ∩ mR = (0)), and hence the set of minimal primes of the possibly non-noetherian A is naturally
in bijection with the finite set of minimal primes of the noetherian ring A⊗R k. Suppose otherwise, so there
exists some non-zero π ∈ mR ∩ p. All elements in the maximal ideal pAp of the local ring Ap are nilpotent.
Since R-flatness of A implies that π ∈ pAp is not a zero divisor, we have a contradiction. By [BL1, 1.1(c)], it
follows that p is finitely generated, so A/p is an R-flat topologically finitely presented R-algebra. Applying
(A.2.2) to the R-flat domain A/p, the quotient domain

(A⊗R k)/(p⊗R k) ' (A/p)⊗R k

has dimension equal to that of A/(mRA + p). Thus, it suffices to check that dim(A/(mRA + p)) = d, and we
have already proved the inequality ≤ holds.

Let q1, . . . , qm be the finite set of minimal primes of A/mRA, and let qj be the preimage of qj under
A � A/mRA. We claim that p lies in some qj . If this is shown then A/(mRA + p) has a d-dimensional
quotient A/(mRA + qj) = (A/mRA)/qj , so by (A.2.2) we get dim(A/(mRA + p)) ≥ d, giving the desired
reverse inequality. To find a qj containing p, it is equivalent to show

p ⊆
⋃

qj .

Since mR ⊆ qj for all j, it is necessary and sufficient to show that the image of p in the noetherian ring
A/mRA lies inside of the union of the minimal primes qj . But ∪qj is exactly the set of zero divisors in
A/mRA because A/mRA is assumed to be reduced, so it suffices for p to map into the annihilator of some
non-zero element of A/mRA.

Since p⊗R k is a minimal prime of the noetherian ring A⊗R k, there exists a non-zero a ∈ A⊗R k such
that p⊗R k annhilates a. By Lemma A.2.2, there exists a k×-scaling ca of a that lies in A and not in mRA,
so p maps into the annihilator of a non-zero element in A/mRA, thereby completing the proof. �

Corollary A.2.3. Let f : X → Y be a topologically flat map between locally topologically finitely presented
formal schemes over Spf R. If the non-empty fibers of f are geometrically integral then the non-empty fibers
of f = frig are geometrically integral (with f surjective when f is surjective). If in addition f is formally
smooth, then so is f .

Proof. Since Raynaud’s functor is well-behaved with respect to the formation of the sheaf of relative 1-forms,
the smoothness aspect follows from the rest. By Theorem A.2.1(2), the only issue that we need to address
is the geometric irreducibility of the non-empty fibers of f , and since f has open image we may suppose it is
surjective. By Lemma A.1.5 we may easily reduce to the case when k is algebraically closed and Y = Spf R,
so (Theorem A.2.1(2)) X = Xrig is geometrically reduced and we just have to show that X is irreducible.
The hypothesis on the R-flat X is that the ordinary scheme X mod mR over the residue field is integral, so
this hypothesis is inherited by every non-empty open in X.

We first claim that X is connected. Let {Xi} be a covering of X by non-empty open affines, so each
Xi = Xrig

i is a non-empty open affinoid in X. Since each open overlap Xi ∩Xj is non-empty and R-flat, each
overlap Xi ∩Xj is non-empty. Thus, connectivity of X is reduced to that of each Xi. Hence, by renaming
Xi as X we may assume that X = Spf A is affine. Let e ∈ OX(X) = k ⊗R A be a nonzero idempotent. We
want to prove e = 1. By Lemma A.2.2, if e 6∈ A then there exists a nonzero π ∈ mR such that e′ = πe ∈ A

with e′ 6∈ mRA. However, e′
2 = πe′ and A/mRA is reduced, so we have a contradiction. Thus, e ∈ A.
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Since Spec(A/πA) is irreducible for every nonzero π ∈ mR, we must have e mod πA ∈ {0, 1} for all π. The
non-vanishing of e therefore forces e = 1. Hence, in our initial setup X is indeed connected.

Since X is connected (and non-empty), it follows from the global irreducible decomposition of rigid spaces
that if X is not irreducible then there exists x ∈ X that lies on two distinct irreducible components of X.
Letting U be an open affine in X such that the affinoid open U

def= Urig ⊆ X contains x, it follows from
the relationship between global and local irreducible components (see [C1, 2.2.9]) that x lies on two distinct
irreducible components of U . Hence, we may rename U as X to reduce to the affine case X = Spf A. Since
X = Sp(k ⊗R A) is reduced, irreducibility of X is equivalent to k ⊗R A being a domain. To prove that X
is irreducible it is therefore equivalent to prove that A is a domain. Choose nonzero a, a′ ∈ A. By Lemma
A.2.2 there exist non-zero c, c′ ∈ R such that a/c, a′/c′ ∈ A−mRA. For the purposes of proving aa′ 6= 0, we
may replace a and a′ with a/c and a′/c′ respectively to get to the case when a and a′ have nonzero images a
and a′ in A/mRA. The assumptions on X imply that A/mRA is a domain, so a · a′ 6= 0. Hence, aa′ 6= 0. �

Theorem A.2.4. Let f : X → Y be a quasi-separated map of rigid spaces, with Y quasi-separated. Let k′/k
be an analytic extension field. Let f ′ : X ′ → Y ′ be the morphism of rigid spaces over k′ induced by extension
of scalars. Let P denote one of the following properties of a morphism of rigid spaces:

(a) flat,
(b) all fibers have dimension ≤ n,
(c) each non-empty fiber is equidimensional with dimension n,
(d) étale,
(e) smooth,
(f) closed immersion,
(g) monomorphism,
(h) separated,
(i) isomorphism,
(j) quasi-compact open immersion,
(k) quasi-compact,
(l) finite,
(m) proper,
(n) faithfully flat and quasi-compact,
(o) flat with geometrically reduced fibers,
(p) flat and quasi-compact with geometrically reduced and geometrically connected (possibly
empty) fibers.

Then f satisfies the property P if and only if f ′ does.

The analogue of Theorem A.2.4 with respect to fpqc base change is given in [C3, Thm. 4.2.7], where the
analogue of (j) does not require the quasi-compactness restriction.

Proof. For (a), (b), and (c), we may assume X and Y are affinoid, say X = Sp(A), Y = Sp(B). By [C1,
1.1.5(1)], the natural map A → A′ = k′⊗̂kA is faithfully flat, and likewise for B → B′. If f ′ is flat then
it follows formally that f must be flat. Thus, (a) descends. Noether normalization ensures that for any
extension K ′/K of non-archimedean fields we have dim(C) = dim(K ′⊗̂KC) for any K-affinoid algebra C.
Related elementary methods (see [C1, 2.1.5]) show that C is equidimensional with dimension d if and only
if K ′⊗̂KC is equidimensional with dimension d. Thus, (b) and (c) descend (since every fiber of f becomes
a fiber of f ′ upon suitable extension of the base field of the fiber).

To go in reverse and deduce flatness and fiber-dimension conditions for f ′ from the analogous property
for f , we will use Raynaud’s theory of formal models for (a) and (b), and we will use Berkovich spaces for
(c). Since f has quasi-compact and quasi-separated (even affinoid) source and target, if f is flat (resp. has
fiber dimension ≤ n) then by [BL2, 5.10] we have f = frig for some morphism f between quasi-compact flat
formal models, with f flat (resp. having fiber dimension ≤ n). Thus, the base change f′ is flat (resp. has
fiber dimension ≤ n). Hence, f ′ = f′

rig is flat (resp. has fiber dimension ≤ n, by Theorem A.2.1(1)). This
settles (a) and (b).
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To handle preservation of (c) under extension of the base field, recall Kiehl’s theorem [K, 3.7] that for
any map f : X → Y between rigid-analytic spaces, the loci Fm(f) = {x ∈ X | dimx f−1(f(x)) ≥ m} are
Zariski-closed in X. Since we assume that all non-empty fibers of f are equidimensional of dimension n, we
conclude that Fn(f) = X and (by (b)) all fibers of f ′ have dimension ≤ n. Our problem is therefore to prove
that Fn(f ′) = X ′, so it suffices to prove:

Lemma A.2.5. For an arbitrary map f : X → Y between quasi-separated rigid spaces over k and for an
arbitrary integer m, the analytic sets k′⊗̂kFm(f) and Fm(f ′) in X ′ coincide.

Proof. We may (and do) assume X = Sp(A) and Y = Sp(B). Kiehl’s method of proof of analyticity of the
loci Fm(f) is given in terms of commutative-algebra constructions whose interaction with analytic change in
the base field is rather difficult to understand. Thus, to relate Fm(f) and Fm(f ′) we use a different point of
view: Berkovich spaces.

Let M (A) and M (B) be the strictly k-affinoid Berkovich spaces associated to A and B, and let

ϕ : M (A) → M (B)

be the k-morphism corresponding to f : Sp(A) → Sp(B). Finally, write A′, f ′, etc. to denote the base
change over k′. For any point y ∈ M (B) with associated completed residue field k(y), the fiber ϕ−1(y) in
the sense of Berkovich is the strictly k(y)-affinoid space

ϕ−1(y) = M (k(y)⊗̂BA) = M (k(y)⊗̂k(y)b⊗kB(k(y)⊗̂kA)),

where the map k(y)⊗̂kB → k(y) is the rational point defined by the continuous k-algebra map y : B → k(y).
Let us now briefly digress to discuss pointwise dimension on certain Berkovich spaces. In general, for any

non-archimedean field K, strictly K-affinoid algebra C, and point x ∈ M (C), we define dimx M (C) to be
the maximum of the dimensions dim C/p for minimal primes p of C such that the subset M (C/p) ⊆ M (C)
contains the point x. This notion of pointwise dimension is well-behaved with respect to change in the ground
field in the sense that if K ′/K is an analytic extension field and C ′ = K ′⊗̂KC then for any x′ ∈ M (C ′)
lying over x under the canonical map M (C ′) → M (C), we have

(A.2.3) dimx′ M (C ′) = dimx M (C).

Indeed, in view of the definition, it suffices to to recall the elementary fact [C1, 2.1.5] that if C is a strictly
K-affinoid domain then the strictly K ′-affinoid algebra K ′⊗̂KC is equidimensional of dimension dim C.

In [Ber2, 1.1.6], Berkovich adapts Kiehl’s methods to the category of Berkovich spaces, and he thereby
proves that the loci Fm(ϕ) = {x ∈ M (A) | dimx ϕ−1(ϕ(x)) ≥ m} are analytic sets in M (A). Since Fm(ϕ) is
an analytic set, its preimage under the morphism of Berkovich spaces

k′⊗̂kM (A) ' M (A′) → M (A)

is the analytic set k′⊗̂kFm(ϕ). For any analytic set Z ⊆ M (A), k′⊗̂kZ ⊆ M (A′) meets the set of “classical
points” Sp(A′) ⊆ M (A′) in exactly the locus k′⊗̂k(Sp(A)∩Z). Since (SpA)∩Fm(ϕ) = Fm(f), we conclude
that the preimage of Fm(ϕ) in M (A′) meets SpA′ in k′⊗̂kFm(f). The equality (SpA′) ∩ Fm(ϕ′) = Fm(f ′)
therefore reduces the desired equality k⊗̂kFm(f) = Fm(f ′) inside SpA′ to the assertion that the preimage of
Fm(ϕ) in M (A′) is Fm(ϕ′). For x′ ∈ M (A′) over x ∈ M (A), we have ϕ′

−1(y′) = k(y′)⊗̂k(y)ϕ
−1(y) for the

point y′ = ϕ′(x′) over the point y = ϕ(x), so by (A.2.3) it follows that dimx′ ϕ
′−1(ϕ′(y)) = dimx ϕ−1(ϕ(x))

for x = ϕ(x′). Hence, Fm(ϕ′) is indeed the preimage of Fm(ϕ). �

Turning to (d), since étale maps are flat maps whose Ω1 vanishes, we deduce (d) from (a). For (e), we
first note that, as in algebraic geometry, a smooth morphism can be described locally (for the Tate topology)
as an étale morphism to a relative ball. Such a description is preserved under extension of the ground field,
by (d), so smoothness is preserved under extension of the ground field. To go in the reverse direction and
descend smoothness, suppose f ′ is smooth. Thus, f ′ is flat and Ω1

X′/Y ′ is locally free, so by (a) we conclude
that f is flat and Ω1

X/Y is locally free. By working locally on X, we may assume that Ω1
X/Y has constant

rank d, and hence the same holds for Ω1
X′/Y ′ . The map f ′ must therefore have all fibers with pure dimension

d, so the same holds for f (by the trivial direction in (c)). The flatness of f reduces the smoothness of f to
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a fibral problem, and so it remains to check that a pure d-dimensional rigid space Z over a non-archimedean
field k is k-smooth if Ω1

Z/k is locally free of rank d. Smoothness is equivalent to “geometric regularity”,
and so since the property of having pure dimension d is preserved by change of the base field [C1, 2.1.5],
we may assume k is algebraically closed. In this case all points are k-rational and hence we can deduce
regularity from the properties of Ω1

Z/k as in the algebraic case (using that a k-linear derivation A → M from
a k-affinoid to a finite A-module is automatically continuous [BKKN, 2.1.5]). This finishes (e).

Cases (k)–(p) will be treated shortly, but let us see how to settle everything else if we grant (k)–(p). It
is obvious that (f) reduces to (l). Since f is a monomorphism (resp. separated) if and only if ∆f is an
isomorphism (resp. a closed immersion), (g) and (h) may also be reduced to (l) (here we use the faithful
flatness of A → A′ def= k′⊗̂kA and the well-known canonical isomorphism k′⊗̂kM ' A′ ⊗A M for finite
A-modules, as in [C1, 1.1.5(1)]). Clearly (i) reduces to (f) and (n). By [BL2, 5.4(a)], quasi-compact open
immersions are the same as quasi-compact flat monomorphisms. Thus, (j) follows from (a), (g), and (k).

It remains to consider the properties (k)–(p). For (k), (l), and (m), the preservation of the property
under passage from f to f ′ is trivial. We now consider the problem of descending such properties of f ′ to
properties of f . Due to the quasi-compactness condition in Raynaud’s theory of formal models, we begin with
(k): assume f ′ is quasi-compact. In order to prove that f is quasi-compact, we may assume Y is affinoid.
Let {Ui} be an admissible open affinoid covering of X, so {U ′

i} is an admissible open affinoid covering of
X ′. By quasi-compactness of f ′, a finite subcollection {U ′

i1
, . . . , U ′

in
} is an admissible covering of X ′. Since

X is quasi-separated, the union U = ∪Uij
⊆ X is an admissible open with the Uij

’s an admissible covering
of U . It remains to check that U = X. If not, there is a morphism Sp(k1) → X with k1/k a finite extension
and Sp(k1) ×X U = ∅, so Sp(k1) ×X Uij = ∅ for all j. Applying the base change functor k′⊗̂k(·), the map
Sp(k′ ⊗k k1) → X ′ has empty fiber over all U ′

ij
, an absurdity. This settles (k).

To descend finiteness and thereby settle (l), suppose f ′ : X ′ → Y ′ is finite. By (b) and (k), f : X → Y
is quasi-compact and quasi-separated with finite fibers. We can assume Y is affinoid, so both X and Y
are quasi-compact and quasi-separated rigid spaces. By [BL1, 5.10], there exists a quasi-finite formal model
f : X → Y for f , so f′ is a formal model for the proper f ′. Since f ′ is proper, f′ must be proper [L, 2.5, 2.6].
Hence, ordinary fpqc descent for schemes (over the residue fields) implies that f is proper. By properness
and quasi-finiteness of f, it follows (working modulo ideals of definition of R) that f is a finite map of formal
models and hence f = frig is a finite map.

Now assume that f ′ is proper. By (h) we know that f is quasi-compact and quasi-separated, and we must
prove that f is proper. By working locally we may assume that Y is quasi-compact and quasi-separated
(even affinoid), whence the same holds for X. To prove that f is proper, we again use the theory of formal
models. Let f be a formal model of f . The base change f′ is a formal model of the proper f ′, so f′ is proper.
As in the proof of (l), it follows that f must be proper. By [Te, Cor. 4.4, Cor. 4.5], f = frig is therefore
proper. This settles (m).

Consider (n). From what has already been proved, we may assume f and f ′ are both quasi-compact and
flat, and we must show that f is surjective if and only if f ′ is surjective. We may work locally on Y , so we
may assume X and Y are quasi-compact (and quasi-separated, by taking Y to be affinoid and then replacing
X with a finite disjoint union of affinoids). Using the theory of formal models, we just have to check that
if f is a flat formal model of f , then f is surjective if and only if f is surjective. Since f is surjective if and
only if it is surjective on closed points, it follows from Lemma A.1.5 that surjectivity of f forces surjectivity
of f. Conversely, suppose that the flat f is surjective. To prove that f is surjective, we may first reduce to
the case where X = Spf(A) and Y = Spf(B) are affine. The flat map of topological R-algebras B → A is
faithfully flat (as this can be checked by working with localizations at maximal ideals, all of which contain
mR), so k ⊗R B → k ⊗R A is faithfully flat. Thus, f = frig = k ⊗R f is surjective.

Next, we address (o). Descent from f ′ to f is obvious, and for the converse we may work locally on both X
and Y . Thus, we may suppose that X and Y are quasi-compact and quasi-separated. It is permissible to also
replace Y with a quasi-compact (and quasi-separated) étale cover. By the Reduced Fiber Theorem [BLR2],
since f is flat with geometrically reduced fibers we can make a base change by a suitable quasi-compact étale
cover of Y in order to arrange that f = frig for a flat map f : X → Y between R-flat quasi-compact formal
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models such that the fibers of f (as ordinary schemes over residue fields on Y) are geometrically reduced.
Using base change by Spf R′ → Spf R, the map f′ : X′ → Y′ is also flat with geometrically reduced fibers.
The generic fiber f ′ of f′ is therefore flat and, by the methods in the proof of Theorem A.2.1, it must have
have geometrically reduced fibers.

Finally, consider (p). As with (o), descent from f ′ to f is trivial. For the converse, we may assume that
Y is affinoid, so X is quasi-compact and quasi-separated. We may suppose that Y is affinoid, say with a
formal model Y. By suitable admissible blow-up on Y we may arrange that there exists a flat formal model
f : X → Y for f with geometrically reduced fibers, and by passing to the projection p1 : X×Y X → X in the
role of f we may assume that there exists a section s. By [C1, 3.2.1], a connected quasi-separated rigid space
with a rational point is geometrically connected. Thus, we need only show that f ′ has connected fibers.

Every point of Y is the underlying point of a morphism y : Spf B → Y with B a local domain that is finite
and flat over R (Lemma A.1.5), and the base change Xy is a flat and topologically finitely presented formal
scheme over Spf B with generic fiber Xy that is connected. Hence, Xy cannot have non-trivial idempotents,
and so it is connected. Thus, all fibers of X → Y over closed points are connected, and so the section s
ensures that all such fibers are geometrically connected. By [EGA, IV3, 9.7.9], all fibers of X → Y are
therefore geometrically connected. The same holds after the base change by Spf(R′) → Spf(R), so to prove
connectivity of the fibers of f ′ we are reduced to checking that if B′ is a local finite flat domain over R′ and
X′ is a connected formal scheme that is flat and topologically finitely presented over Spf B′ with reduced
fiber modulo mB′ then its generic fiber X ′ is connected. We may certainly suppose B′ = R′, and then the
connectivity is proved by arguing as in the proof of Corollary A.2.3 (via passage to the affine case and using
Lemma A.2.2). �

One further important property of flatness is the fibral criterion for a map to be flat or an isomorphism:

Corollary A.2.6. Let X and Y be rigid spaces over S, and f : X → Y an S-morphism.
(1) If X and Y are S-flat and fs : Xs → Ys is flat for all s ∈ S then f is flat. If moreover f is

quasi-compact then fs is an isomorphism for all s ∈ S if and only if f is an isomorphism. In both
cases, it suffices to work with geometric fibers over S when X and Y are quasi-separated over S.

(2) If f induces a flat map on all infinitesimal fibers over S, then f is flat. The same conclusion holds
for the property of being an isomorphism if f is quasi-compact. In both cases it suffices to work with
infinitesimal geometric fibers over S if X and Y are quasi-separated over S.

(3) Two S-maps f, g : X ⇒ Y that coincide on all infinitesimal fibers over S are equal. It suffices to
work with infinitesimal geometric fibers over S if X and Y are quasi-separated over S.

Remark A.2.7. The assertions concerning isomorphisms are false if we drop the quasi-compactness hypoth-
esis. For example, let Y = S = Sp k 〈〈t〉〉 be the “closed” unit ball and let X be the disjoint union of the
“boundary” {|t| = 1} and the “open” unit ball {|t| < 1}.

Proof. Theorem A.2.4 shows the equivalence of working with geometric and ordinary (infinitesimal) fibers.
Thus, it suffices to consider ordinary fibers and infinitesimal fibers. This case follows by standard arguments
(cf. the proof of [C3, Thm. A.2.6]), using the local flatness criterion [Mat, 23.3] to handle flatness and the
Krull intersection theorem to handle (3). The only delicate point is to show that if f is flat and quasi-compact,
then f is an isomorphism if fs is an isomorphism for all s ∈ S. Since f is bijective and quasi-compact, by
[BGR, 9.5.3/5] it follows that f is an isomorphism if and only if f is a local isomorphism. It therefore
suffices to show that the natural map OY,f(x) → OX,x is an isomorphism for all x ∈ X. This map of rings is
a priori finite and flat (since f is quasi-finite and flat), so it is enough to check surjectivity of the ring map.
By Nakayama’s Lemma this can be checked modulo ms, where it follows from the assumption that fs is an
isomorphism. �

Appendix B. Algebraic theory of generalized elliptic curves

B.1. Deligne–Rapoport semistable curves of genus 1. For the convenience of the reader, we begin by
reviewing some basic algebraic notions, but we generally omit proofs.
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For any n ≥ 2, the standard (Néron) n-gon Cn over a base scheme S is the scheme obtained from
P1

S × Z/nZ by gluing the section 0 on P1
S × {i} to the section ∞ on P1

S × {i + 1} for all i ∈ Z/nZ. The
formation of this gluing is naturally compatible with base change (for flatness reasons) and it is proper over
S.

The map “t 7→ (t2 + 1, t(t2 + 1))” from P1 to the nodal plane curve C1 : y2z = x3 − x2z gives C1 the
universal property to be the gluing of P1 to itself along the sections 0 and ∞. The relative smooth locus
Csm

1 of C1 is canonically identified with Gm = P1 − {0,∞}, and the Cn’s form a compatible tower of finite
étale covers of C1. Over a base scheme S we call C1 the standard (Néron) 1-gon.

Definition B.1.1. A Deligne–Rapoport (DR) semistable genus-1 curve over a scheme S is a proper, flat,
finitely presented map f : C → S such that every fiber of f is a geometrically connected and geometrically
reduced curve with at worst ordinary double point singularities and with trivial dualizing sheaf.

In [DR] such curves are called stable genus-1 curves; we prefer the terminology in Definition B.1.1 because
such marked curves are generally semistable but not stable in the sense now commonly used in algebraic
geometry. In [DR, II, 1.2, 1.3] it is shown that the DR semistable genus-1 curves over an algebraically closed
field are exactly the smooth genus-1 curves and the standard n-gons Cn for n ≥ 1 (this classification also
holds over separably closed fields).

The following is an analogue of a higher-genus theorem for stable curves [DM, 1.2].

Theorem B.1.2. Let f : C → S be a DR semistable genus-1 curve, and let D ↪→ C be a relative effective
Cartier divisor with degree d ≥ 1 and support in Csm. Assume that D meets all irreducible components of all
geometric fibers of C → S. For all r ≥ 1, O(rD) is S-ample and R1f∗(O(rD)) = 0. Moreover, f∗(O(rD))
is locally free of rank rd and its formation is compatible with base change.

The natural map f∗f∗(O(rD)) → O(rD) is surjective for r ≥ 3, so the natural map C → P(f∗(O(rD)))
is a closed immersion for r ≥ 3.

In the study of families, a basic fact is:

Lemma B.1.3. [DR, II, 1.5] Let f : C → S be a proper flat map of finite presentation. The set of s ∈ S
over which the fiber is a DR semistable genus-1 curve is Zariski-open.

Let C be a DR semistable genus-1 curve and let D be a relative effective Cartier divisor on Csm that is
finite over S and meets every fiber Cs. By [DR, IV, 1.2] there is a DR semistable genus-1 curve C/S and a
proper S-morphism

(B.1.1) u : C → C

such that on geometric fibers over S the map u contracts precisely the irreducible components disjoint from
D. This “contraction of C away from D” is unique up to unique isomorphism (though C can have non-
trivial automorphisms over C), so its formation is naturally compatible with base change. Since the open
subscheme C

sm ⊆ C is universally schematically dense over S [EGA, IV3, 11.10.4, 11.10.10], it follows from
the uniqueness that for any S-automorphism α of C taking D into D there is a unique S-automorphism α
of C such that α ◦ u = u ◦ α. In more precise terms, the contraction construction (B.1.1) is functorial with
respect to isomorphisms in the pair (C,D).

Remark B.1.4. Since the contraction C is constructed as Proj of a suitable finitely generated and graded
quasi-coherent sheaf of OS-algebras that is chosen by means of the theory of Hilbert schemes, the rigid-
analytic analogue of contractions in Theorem 2.1.6 requires the Proj construction in the rigid-analytic cate-
gory [C3, 2.3].

Let f : C → S be a proper, flat, and finitely presented map whose fibers have pure dimension 1. The
first Fitting-ideal sheaf of Ω1

C/S defines a canonical closed subscheme structure on Csing = C − Csm whose
formation is compatible with base change over S. We call Csing the non-smooth locus on the curve C. In case
the fibers are semistable curves, one sees by étale-local calculation that this Fitting ideal is the annihilator
ideal of Ω2

C/S .
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Definition B.1.5. Let f : C → S be a DR semistable genus-1 curve. The locus of non-smoothness of f is
the scheme-theoretic image S∞,f of the S-finite Csing in S.

Example B.1.6. By direct calculation, S∞,f = S when f : C → S is the standard n-gon over a scheme S for
any n ≥ 1.

B.2. Generalized elliptic curves over schemes.

Definition B.2.1. A generalized elliptic curve over a scheme S is a triple (E,+, e) where E is a DR
semistable genus-1 curve, + : Esm ×S E → E is an S-morphism (with Esm the relative smooth locus of E
over S), and e ∈ Esm(S) is a section such that the following properties hold:

• + restricts to a commutative group scheme structure on Esm with identity section e,
• + is an action of Esm on E such that on each n-gon geometric fiber, the translation action by each

rational point in the smooth locus induces a rotation on the graph of irreducible components.

By [EGA, IV3, 11.10.4, 11.10.10], Csm
n = Gm × Z/nZ is universally schematically dense in the standard

n-gon Cn (relative to S). Thus, there can be at most one action of the group scheme Csm
n on Cn compatible

with the group law on Csm
n (and this action must be compatible with base change). Such an action always

exists: the compatibility of gluing with respect to flat base change (such as Csm
n → S) ensures that for all

n ≥ 1 the natural action (Gm ×Z/nZ)×S (P1
S ×Z/nZ) → (P1

S ×Z/nZ) uniquely descends to a morphism

(B.2.1) + : Csm
n ×S Cn → Cn;

by universal relative schematic denseness, this is an action extending the S-group law on Csm
n .

Over an algebraically closed field, up to isomorphism the generalized elliptic curves are exactly the smooth
elliptic curves and standard n-gons with the structure (B.2.1) [DR, II, 1.15]. Whenever we speak of standard
polygons over S as generalized elliptic curves, it is always understood that we use the structure (B.2.1).

Lemma B.2.2. [DR, II, 1.15] Let f : E → S be a generalized elliptic curve. The locus of non-smoothness
S∞,f ↪→ S for f is a locally finite (in S) disjoint union of open subschemes S∞,f

n ⊆ S∞,f such that the
generalized elliptic curve E is isomorphic to the standard n-gon fppf-locally over S∞,f

n .
If n is a unit on S then these fppf coverings of S∞,f

n can be taken to be étale coverings.

Remark B.2.3. The cohomological method in the proof of Theorem B.3.2 below shows that if k is an imperfect
field of characteristic p then for any positive n ∈ pZ there exists a generalized elliptic over k that becomes
a standard n-gon over a finite extension of k but not over any finite separable extension of k.

The following important fact is implicit (but not stated) in [DR] and underlies the definition of closed
substacks “at infinity” in moduli stacks of generalized elliptic curves.

Theorem B.2.4. Let f : E → S be a generalized elliptic curve. The formation of the closed subscheme
S∞,f ↪→ S is compatible with base change on S.

Proof. See [C2, Thm. 2.1.12] for a proof, and see [C2, Ex. 2.1.11] for a counterexample if “generalized elliptic
curve” is weakened to “DR semistable genus-1 curve.” �

We conclude our review of the algebraic theory with a discussion of how to construct generalized elliptic
curve structures on a DR semistable genus-1 curve C without the explicit use of the non-proper curve Csm.

Consider a proper flat semistable curve C → S over a scheme S and let e ∈ Csm(S) be a section of the
relative smooth locus. Since the geometric fibers are reduced and connected, we have OS ' f∗OC universally
and so the functor PicC/S classifies line bundles on C rigidified along the section e. This is a smooth locally
separated algebraic space group locally of finite presentation over S, and the union Pic0

C/S = Picτ
C/S of

the fibral identity components is an open subspace that is a semi-abelian algebraic space and classifies line
bundles with degree-0 restriction to each irreducible component of a geometric fiber of C → S.

Let E → S be a generalized elliptic curve over a scheme S, and consider the natural action map of
algebraic spaces

(B.2.2) Esm × Pic0
E/S → Pic0

E/S
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arising from the Esm-action on E. By [DR, II, 1.13], this action must be trivial. This motivates the relevance
of the following powerful result that provides the key to circumventing problems caused by the non-properness
of Esm in the rigid-analytic case.

Theorem B.2.5. [DR, II, 3.2] Let f : C → S be a DR semistable genus-1 curve over a scheme S, and let
e ∈ Csm(S) be a section of the relative smooth locus. Let G be a commutative flat S-group scheme locally
of finite presentation, and let ρ : G × C → C be an action of G on C. Assume that G acts trivially on
the algebraic space Pic0

C/S and that G(s) acts transitively on the set of irreducible components of Cs for all
geometric points s of S.

There exists a unique generalized elliptic curve structure on C with identity section e such that each
g ∈ G(T ) acts on C/T via translation by g(e) ∈ Csm(T ) for all S-schemes T . Moreover, an automorphism
α of C commuting with the G-action must be translation by α(e) ∈ Csm(S).

The case G = Z in Theorem B.2.5 will be useful in our study of the rigid-analytic case, but for most
purposes the following special case will suffice.

Theorem B.2.6. Let f : C → S be a DR semistable genus-1 curve over a scheme S, and let D ↪→ C be
an S-ample relative effective Cartier divisor supported in Csm. Assume that D is endowed with a structure
of commutative S-group scheme and that there is given an action of D on C that extends the group scheme
structure on D.

This extends to a generalized elliptic curve structure on C if and only if the natural induced action of D
on the semi-abelian algebraic space Pic0

C/S is trivial, in which case such a generalized elliptic curve structure
on C/S is unique. The locus of fibers with trivial action is Zariski-open and Zariski-closed in S, and over
this locus the action is trivial.

Proof. The S-ampleness of D ⊆ Csm ensures that (on geometric fibers) the action of D(s) on Cs is transitive
on irreducible components of Cs. Thus, the theorem is essentially a special case of Theorem B.2.5 except for
the assertions concerning the locus of fibers with trivial action. These are addressed in [C2, Cor. 2.2.3]. �

When working with the constant group G = Z in Theorem B.2.5, the triviality condition for the action
on Pic0

C/S may again be checked on fibers, due to:

Lemma B.2.7 (Deligne–Rapoport). Let A → S be a semi-abelian algebraic space over a scheme S. Let g
and h be two endomorphisms of A/S. There exists a unique Zariski-open and Zariski-closed U ⊆ S such that
for any S-scheme S′, the pullback endomorphisms g′ and h′ of A′ = A/S′ coincide if and only if S′ → S
factors through U .

Proof. This is essentially [DR, II, 1.14], except that we allow A to be an algebraic space rather than a
scheme. The proof carries over to this more general situation. �

By étale descent, Lemma B.2.7 is valid with S and S′ taken to be algebraic spaces.

B.3. Reduction-type and formal canonical subgroups. Let k be a non-archimedean field with valua-
tion ring R. If k is not discretely-valued then there is no theory of Néron models over R for abelian varieties
over k. However, in the 1-dimensional case we can easily push through some aspects of the theory. We shall
explain how this works, and then link it up with canonical subgroups of 1-parameter commutative formal
groups when the reduction type is “not too supersingular.”

The starting point is:

Lemma B.3.1 (Faltings). The functor A  k ⊗R A from semi-abelian schemes over R to semi-abelian
varieties over k is fully faithful.

Proof. Since R is a normal ring, this is a special case of [F, §2, Lemma 1]. �

If E1 and E2 are generalized elliptic curves over Spec R and c(E1) and c(E2) are the contractions away from
fibral identity components then c(E1)sm and c(E2)sm are semi-abelian schemes over Spec R. Thus, for any
isomorphism ϕk between the generic fibers of E1 and E2 there is a unique isomorphism ϕ : c(E1)sm ' c(E2)sm
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extending the induced map c(ϕk)sm between smooth loci on “contracted” generic fibers. In particular, if Ek

is an elliptic curve over Spec k then for any generalized elliptic curve E over Spec R with generic fiber Ek,
the property that E has smooth (resp. non-smooth) closed fiber is independent of E; if Ek is not smooth
then E must have non-smooth closed fiber. When there exists a generalized elliptic curve E over Spec R
with generic fiber Ek, we shall say that Ek has semi-stable reduction over R. Since c(E)sm is canonical in
such cases, the concepts of good reduction and toric reduction are well-defined for those generalized elliptic
curves over Spec k that have semi-stable reduction over R. In the case of good reduction and positive residue
characteristic we may moreover distinguish the cases of ordinary reduction and supersingular reduction. The
properties of toric, ordinary, and supersingular reduction for semi-stable generalized elliptic curves over
Spec k are unaffected by arbitrary analytic extension on k.

Theorem B.3.2. For any generalized elliptic curve Ek over Spec k, there exists a finite separable extension
k′/k (with valuation ring R′) such that Ek′ has semi-stable reduction over R′.

Proof. First assume that Ek is smooth. Choose an integer N ≥ 5 with N ∈ R×, so the proper moduli stack
M Γ1(N)/R is a scheme over R [C2, Thm. 3.2.7, Thm. 4.2.1(2)]. By the valuative criterion for properness,
it suffices to pick a finite separable extension k′/k that splits the finite étale N -torsion Ek[N ] because Ek′

then admits a Γ1(N)-structure (so we get a k′-point of M Γ1(N), and it extends to an R′-point).
Now assume Ek is non-smooth, so by Lemma B.3.1 it is an fppf form of a standard n-gon for some

n ≥ 1. Since the automorphism functor for the standard n-gon Cn as a generalized elliptic curve over SpecZ
is represented by a finite semi-direct product Z-group Gn = µn o 〈inv〉 (where “inv” denotes the unique
involution extending inversion on the smooth locus), the set of isomorphism classes of fppf-forms of Cn over a
scheme S is classified (functorially in S) by the pointed cohomology set Ȟ1

fppf(S, Gn). By the usual procedure
in non-abelian cohomology, there is an exact sequence of pointed sets

Ȟ1
fppf(S, µn) → Ȟ1

fppf(S, Gn) → Ȟ1
fppf(S,Z/2Z)

and this is functorial in S. Since the final term coincides with the analogous étale cohomology set, for any
c ∈ Ȟ1

fppf(S, Gn) there is a (finite) étale cover S′ → S such that the restriction c|S′ comes from Ȟ1
fppf(S

′, µn).
In case S = Spec(B) is local, Kummer theory functorially identifies Ȟ1

fppf(S, µn) with B×/(B×)n. Thus,
in our setting we may replace B = k with a finite separable extension so that Ek is classified by an element
coming from k×/(k×)n, and hence it extends to a generalized elliptic curve over k if this class comes from
R×/(R×)n. Our problem therefore reduces to showing that for any element c ∈ k×/(k×)n there is a finite
separable extension k′ of k such that the image of c in k′

×
/(k′×)n is in the image of R′×/(R′×)n. This says

that |c| ∈ |k×| is an nth power in |k′×|. Thus, it suffices to prove that |k×sep| is a divisible group. But ksep is

dense in an algebraic closure k of k [BGR, 3.4.1/6], and so |k×sep| coincides with the divisible group |k×| �

By this “semi-stable reduction theorem,” in the obvious manner we can define the notions of potentially
good and potentially toric reduction, and in the potentially good case with positive residue characteristic we
have the dichotomy of potentially ordinary and potentially supersingular reduction. When Ek′ extends to a
generalized elliptic curve E′ over R′ then the preceding considerations show that the semi-abelian R′-group
c(E′)sm is independent of E′ and is functorial in Ek. The formal completion of c(E′)sm along its identity
section will be denoted Ê′; this formal group is intrinsic to Ek and k′/k, and it has underlying pointed formal
scheme of the form Spf R′[[X]] with the X-adic topology. The formation of this formal group commutes with
any further analytic extension on k′.

Now assume that k is an analytic extension field of Qp, which is to say that R has mixed characteristic
(0, p). We normalize the absolute value on k so that |p| = 1/p. Consider a generalized elliptic curve Ek

over Spec k and a finite separable extension k′/k such that Ek′ has semi-stable reduction, say with E′ a
generalized elliptic curve over R′ having generic fiber Ek′ . The formal group Ê′ of E′ over R′ coincides with
that of c(E′)sm and so it is canonically attached to Ek (and the choice of k′/k). This is a smooth 1-parameter
commutative formal over R′. Since [p] = V ◦ F over R′/pR′ [SGA3, VIIA, §4.2-4.3], if we choose a formal
parameter X then we may (non-uniquely) write

[p]∗(X) = pX + aXp + X2ph(Xp) + pX2f(X)
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with power series h and f over R′, so the reduction a ∈ R′/pR′ is independent of X up to (R′/pR′)×-multiple.
More conceptually, a generates the annihilator ideal for the cokernel of Lie(V bE′ mod p) and a ∈ R′ is a lift of
a. Hence, the following definition is intrinsic to Ek:

Definition B.3.3. The Hasse invariant of Ek is h(Ek) = max(|a|, 1/p) ∈ [1/p, 1] for any a ∈ R′ lifting a as
above.

Remark B.3.4. By [KM, 12.4.4] and the Serre-Tate theorem relating the infinitesimal deformation theory of
an abelian scheme and its p-divisible group, if Ek is an elliptic curve over k with supersingular reduction
E0 then we can interpret h(Ek) as the radius of a certain subdisc containing Ek as a point on the Berthelot
generic fiber (in the sense of Theorem 3.1.5) of the universal deformation ring of E0 over R.

The reduction of Ê′ over the residue field k̃′ = R′/mR′ is the identity component of the p-divisible group
of c(E′)smek′ , so it has height 1 (resp. height 2) when the reduction is a torus or ordinary (resp. supersingular).
That is, h(Ek) = 1 (resp. h(Ek) < 1) if and only if the reduction type for Ek is potentially ordinary or
potentially toric (resp. potentially supersingular). Making h(Ek) closer to 1/p makes the reduction-type of
Ek be “more supersingular”.

Suppose that Ek is a generalized elliptic curve over Spec k. Let k′/k be a finite separable extension such
that Ek′ has semi-stable reduction, say with Ek′ extending to a generalized elliptic curve E′ over Spec R′,
so the formal group Ê′ over R′ is intrinsic to Ek and the choice of k′/k.

Definition B.3.5. The size of a point x of Ê′ with values in the maximal ideal of an analytic extension of
k′ is the common absolute value |X(x)| for any formal parameter X of Ê′. This is denoted size(x).

It is clear that the notion of size is Galois-invariant with respect to k, and so in particular it is intrinsic
to points of Ek that extend to points of Ê′. The p-torsion Ê′[p] is a finite flat R′-group contained in the
quasi-finite flat R′-group E′[p], so Ê′[p]k′ is a finite k′-subgroup of E′

k′ [p] = Ek′ [p]. Obviously Ê′[p] has order
p (resp. order p2) if and only if h(Ek) = 1 (resp. h(Ek) < 1). Now assume h(Ek) > p−p/(p+1). By using
a choice of formal parameter X that linearizes the action of µp−1(Zp) on the formal group, it is proved in
[Lu] (also see [Kz, 3.10.7(1)]) that there is a unique finite flat R′-subgroup GR′ in Ê′[p] of order p such that
its nontrivial geometric points over k′ have size (ph(Ek))−1/(p−1) ∈ [p−1/(p−1), p−1/(p2−1)), and if h(Ek) < 1
(so GR′ 6= Ê′[p]) then the other p2 − p geometric points of Ê′[p] over k′ have strictly larger size (in fact,
size h(Ek)1/(p2−p) that is larger than p−1/(p2−1)). The subgroup GR′ is the canonical subgroup of Ê′[p] (or
of Ê′). By construction, the canonical subgroup is compatible with extension on k′. Hence, we can descend
its generic fiber by using étale descent:

Definition B.3.6. Let Ek be a generalized elliptic curve over Spec k, and assume that h(Ek) > p−p/(p+1).
The canonical subgroup G ⊆ Esm

k is the unique étale descent of the generic fiber of the canonical subgroup
GR′ in Ê′ for any finite separable k′/k as above.

By the definition, the formation of the canonical subgroup in Esm
k commutes with arbitrary analytic

extension on k. If h(Ek) ≤ p−p/(p+1) then all p2 − 1 nonzero geometric points in Ê′[p] have the same size
(namely, p−1/(p2−1)) and so there is no good notion of canonical subgroup for such Ek.
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IHES, 99 (2004), pp. 117–162.

[AG] F. Andreatta, C. Gasbarri, The canonical subgroup for families of abelian varieties, preprint, 2005.
[BKKN] R. Berger et. al., Differentialrechnung in der analytischen Geometrie, Lecture Notes in Math 38, Springer-Verlag, New

York, 1967.
[Ber1] V. Berkovich, Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Mono-

graphs, vol. 33, American Mathematical Society, 1990.
[Ber2] V. Berkovich, Local properties of morphisms, unpublished notes.



MODULAR CURVES AND RIGID-ANALYTIC SPACES 51
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[SGA3] A. Grothendieck, Schémas en groupes I, Springer Lecture Notes in Mathematics 151, Springer-Verlag, New York (1970).
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