Mathematics > Analysis of PDEs

Dissipative models generalizing the 2D Navier-Stokes and the surface quasigeostrophic equations

Dongho Chae, Peter Constantin, Jiahong Wu

(Submitted on 31 Oct 2010)

This paper is devoted to the global (in time) regularity problem for a family of active scalar equations with fractional dissipation. Each component of the velocity field \u is determined by the active scalar $\t \$ theta through $\m \$ athcal{R} \Lambda^{-1} P(\Lambda) \theta where $\\ \$ and $\P(\Lambda)$ represents a family of Fourier multiplier operators. The 2D Navier-Stokes vorticity equations correspond to the special case $\P(\Lambda)=I\$ while the surface quasi-geostrophic (SQG) equation to $\P(\Lambda) = \Lambda\$. We obtain the global regularity for a class of equations for which $\P(\Lambda)\$ and the fractional power of the dissipative Laplacian are required to satisfy an explicit condition. In particular, the active scalar equations with any fractional dissipation and with $\P(\Lambda) = (\log(I-\Delta))^{\gamma}\$ for any $\$

Subjects:Analysis of PDEs (math.AP)MSC classes:35Q35, 76D03Cite as:arXiv:1011.0171v1 [math.AP]

Submission history

From: Jiahong Wu [view email] [v1] Sun, 31 Oct 2010 15:36:21 GMT (17kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

(Help | Advanced search)

All papers 🚽 Go!

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.AP < prev | next > new | recent | 1011

Change to browse by:

math

References & Citations

• NASA ADS

Bookmark(what is this?)