Mathematics > Quantum Algebra

Poisson algebras, Weyl algebras and Jacobi pairs

Yucai Su

(Submitted on 6 Jul 2011 (v1), last revised 31 Oct 2011 (this version, v9))

> We study Jacobi pairs in details and obtained some properties. We also study the natural Poisson algebra structure \$(\PP,[...,..],...)\$ on the space \$|PP:=\C [y](($x^{\wedge}\{-$-frac1N\}))\$ for some sufficient large \$N\$, and introduce some automorphisms of $\$(\operatorname{PPP},[\ldots, \ldots], \ldots) \$$ which are (possibly infinite but welldefined) products of the automorphisms of forms $\$ e^{\wedge}\left\{\right.$ lad_H\}\$ for $\$ \mathrm{H}$ lin $x^{\wedge}\{1-$ $\backslash f r a c 1 N\} \backslash C[y]\left[\left[x^{\wedge}\{-\mid f r a c 1 N\}\right]\right] \$$ and $\$ \mid t a u _c:(x, y) \backslash m a p s t o\left(x, y-c x^{\wedge}\{-1\}\right) \$$ for some \$clin\C\$. These automorphisms are used as tools to study Jacobi pairs in \$\PP\$. In particular, starting from a Jacobi pair \$(F,G)\$ in \$\C[x,y]\$ which violates the two-dimensional Jacobian conjecture, by applying some variable change $\$(x, y) \backslash m a p s t o \backslash b i g\left(x^{\wedge}\{b\}, x^{\wedge}\{1-b\}\left(y+a _1 x^{\wedge}\left\{-b _1\right\}+\ldots+a _k x^{\wedge}\left\{-b _k\right\}\right) \backslash b i g\right) \$$ for some $\$ b, b _i \backslash i n \backslash Q _+, a _i l i n \backslash C \$$ with $\$ b _i<1<b \$$, we obtain a $\backslash Q J$ pair still denoted by $\$(\mathrm{~F}, \mathrm{G}) \$$ in $\$ \backslash \mathrm{C}\left[\mathrm{x}^{\wedge}\{\mid \mathrm{pm} \backslash f r a c 1 N\}, \mathrm{y}\right] \$$ with the form $\$ \mathrm{~F}=\mathrm{x}^{\wedge}\{\backslash \mathrm{frac}\{\mathrm{m}\}$ $\{m+n\}\}\left(f+F _0\right) \$, \$ G=x^{\wedge}\{\backslash f r a c\{n\}\{m+n\}\}\left(g+G _0\right) \$$ for some positive integers \$m,n\$, and \$f,glin\C[y]\$, \$F_0,G_0lin $x^{\wedge}\{-$-lfrac1N\}\C[x^\{-|frac1N\},y]\$, such that \$F,G\$ satisfy some additional conditions. Then we generalize the results to the Weyl algebra $\$ \operatorname{lWW}=\backslash C[v]\left(\left(u^{\wedge}\{-\mid f r a c 1 N\}\right)\right) \$$ with relation $\$[u, v]=1 \$$, and obtain some properties of pairs $\$(F, G) \$$ satisfying $\$[F, G]=1 \$$, referred to as Dixmier pairs.

Comments: arXiv admin note: substantial text overlap with arXiv:math/0512268
Subjects: Quantum Algebra (math.QA); Mathematical Physics (mathph); Commutative Algebra (math.AC); Algebraic Geometry (math.AG); Rings and Algebras (math.RA)
MSC classes: 17B63, 14R15, 14E20, 13B10, 13B25
Cite as: arXiv:1107.1115 [math.QA] (or arXiv:1107.1115v9 [math.QA] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.QA
< prev | next > new | recent | 1107

Change to browse by: math math-ph
math.AC
math.AG
math.RA
References \& Citations

- NASA ADS

1 blog link(what is this?)
Bookmark(what is this?)

Submission history

From: Yucai Su [view email]
[v1] Wed, 6 Jul 2011 12:55:42 GMT (42kb)
[v2] Thu, 7 Jul 2011 16:08:25 GMT (43kb)
[v3] Wed, 27 Jul 2011 19:38:19 GMT (46kb)
[v4] Wed, 3 Aug 2011 16:55:44 GMT (50kb)
[v5] Fri, 19 Aug 2011 09:12:55 GMT (54kb)
[v6] Tue, 30 Aug 2011 15:33:59 GMT (58kb)
[v7] Tue, 27 Sep 2011 07:39:11 GMT (63kb)
[v8] Wed, 12 Oct 2011 17:40:30 GMT (61kb)
[v9] Mon, 31 Oct 2011 07:24:41 GMT (68kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

