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Cheeger's finiteness theorem bounds the number of diffeomorphism types of 
manifolds with bounded curvature, diameter and volume; the Hadamard--
Cartan theorem, as popularized by Gromov, shows the contractibility of all 
non-positively curved simply connected metric length spaces. We establish a 
discrete version of Cheeger's theorem ("In terms of the number of facets, 
there are only exponentially many geometric triangulations of Riemannian 
manifolds with bounded geometry"), and a discrete version of the Hadamard--
Cartan theorem ("Every complex that is CAT(0) with a metric for which all 
vertex stars are convex, is collapsible"). The first theorem has applications to 
discrete quantum gravity; the second shows that Forman's discrete Morse 
theory may be even sharper than classical Morse theory, in bounding the 
homology of a manifold. In fact, although Whitehead proved in 1939 that all 
PL collapsible manifolds are balls, we show that some collapsible manifolds 
are not balls. 
Further central consequences of our work are: 
(1) Every flag connected complex in which all links are strongly connected, is 
Hirsch. (This strengthens a result by Provan--Billera.)  
(2) Any linear subdivision of the d-simplex collapses simplicially, after d-2 
barycentric subdivisions. (This presents progress on an old question by Kirby 
and Lickorish.) 
(3) There are exponentially many geometric triangulations of S^d. (This 
interpolates between the result that polytopal d-spheres are exponentially 
many, and the conjecture that all triangulations of S^d are exponentially many.) 

(4) If a vertex-transitive simplicial complex is CAT(0) with the equilateral flat 
metric, then it is a simplex. (This connects metric geometry with the 
evasiveness conjecture.) 
(5) The space of phylogenetic trees is collapsible. (This connects discrete 
Morse theory to mathematical biology.) 
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Comments: 35 pages, 5 figures. Rewritten and expanded version, with 
several new results, especially on complexes with convex 
geometric realizations (Main Theorem 5 and Main Theorem 6) 
and vertex-transitive complexes (section 4.1). Section 3.3 has 
been simplified and generalized to Riemannian manifolds
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