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Abstract. In this paper we describe our current research in the theory of partial

differential equations in conformal geometry. We introduce a bubble tree structure to

study the degeneration of a class of Yamabe metrics on Bach flat manifolds satisfying

some global conformal bounds on compact manifolds of dimension 4. As applications,

we establish a gap theorem, a finiteness theorem for diffeomorphism type for this

class, and diameter bound of the σ2-metrics in a class of conformal 4-manifolds. For

conformally compact Einstein metrics we introduce an eigenfunction compactification.

As a consequence we obtain some topological constraints in terms of renormalized

volumes.

1. Conformal Gap and finiteness Theorem

for a class of closed 4-manifolds

1.1 Introduction

Suppose that (M4, g) is a closed 4-manifold. It follows from the positive mass
theorem that, for a 4-manifold with positive Yamabe constant,

∫

M

σ2dv ≤ 16π2

and equality holds if and only if (M 4, g) is conformally equivalent to the standard
4-sphere, where

σ2[g] =
1

24
R2 − 1

2
|E|2,

R is the scalar curvature of g and E is the traceless Ricci curvature of g. This is
an interesting fact in conformal geometry because the above integral is a conformal
invariant like the Yamabe constant.
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One may ask, whether there is a constant ε0 > 0 such that a closed 4-manifold
M4 has to be diffeomorphic to S4 if it admits a metric g with positive Yamabe
constant and

∫

M

σ2[g]dvg ≥ (1 − ε)16π2.

for some ε < ε0? Notice that here the Yamabe invariant for such [g] is automatically
close to that for the round 4-sphere. There is an analogous gap theorem of Bray and
Neves for Yamabe invariant in dimension 3 [BN]. One cannot expect the Yamabe
invariant alone to isolate the sphere, and it is more plausible to consider the integral
of σ2. We will answer the question affirmatively in the class of Bach flat 4-manifolds.

Recall that Riemann curvature tensor decomposes into

Rijkl = Wijkl + (Aikgjl −Ailgjk −Ajkgil + Ajlgik),

in dimension 4, where Wijkl is the Weyl curvature,

Aij =
1

2
(Rij −

1

6
Rgij)

is Weyl-Schouten curvature tensor and Rij is the Ricci curvature tensor. Also recall
that the Bach tensor is

Bij = Wkijl,lk +
1

2
RklWkijl.

We say that a metric g is Bach flat if Bij = 0. Bach flat metrics are critical metrics
for the functional

∫

M
|W|2dv. Bach flatness is conformally invariant in dimension

4. It follows from Chern-Gauss-Bonnet,

8π2χ(M4) =

∫

M

(σ2 + |W|2)dv,

that
∫

M
σ2dv is conformally invariant.

The gap theorem is as follows:

Theorem 1.1.1. Suppose that (M 4, [g]) is a Bach flat closed 4-manifold with pos-
itive Yamabe constant and that

∫

M

(|W|2dv)[g] ≤ Λ0.

for some fixed positive number Λ0. Then there is a positive number ε0 > 0 such
that, if

∫

M

σ2[g]dvg ≥ (1 − ε)16π2
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holds for some constant ε < ε0, then (M4, [g]) is conformally equivalent to the
standard 4-sphere.

Our approach is based on the recent work on the compactness of Bach flat metrics
on 4-manifolds of Tian and Viaclovsky [TV1][TV2], and of Anderson [An]. Indeed
our work relies on a more precise understanding of the bubbling process near points
of curvature concentration. For that purpose we develop the bubble tree structure
in a sequence of metrics that describes precisely the concentration of curvature. Our
method to develop bubble tree structure is inspired by the work of Anderson and
Cheeger [AC] on the bubble tree configurations of the degenerations of metrics of
bounded Ricci curvature. Our construction is modeled after this work but differs in
the way that our bubble tree is built from the bubbles at points with the smallest
scale of concentration to bubbles with larger scale; while the bubble tree in [AC] is
constructed from bubbles of large scale to bubbles with smaller scales. The inductive
method of construction of our bubble tree is modeled on earlier work of [BC], [Q]
and [St] on the study of concentrations of energies in harmonic maps and the scalar
curvature equations.

As a consequence of the bubble tree construction we are able to obtain the
following finite diffeomorphism theorem:

Theorem 1.1.2. Suppose that A is a collection of Bach flat Riemannian manifolds
(M4, g) with positive Yamabe constant, satisfying

∫

M

(|W|2dv)[g] ≤ Λ0,

for some fixed positive number Λ0, and

∫

M

(σ2dv)[g] ≥ σ0,

for some fixed positive number σ0. Then there are only finite many diffeomorphism
types in A.

It is known that in each conformal class of metrics belonging to the family A,
there is a metric ḡ = e2wg such that σ2(Aḡ) = 1, which we shall call the σ2 metric.
The bubble tree structure in the degeneration of Yamabe metrics in A is also helpful
to understand the behavior of the σ2-metrics in A. For example:

Theorem 1.1.3. For the conformal classes [g0] ∈ A the conformal metrics g =
e2wg0 satisfying the equation σ2(g) = 1 has a uniform bound for the diameter.

1.2 The Neck Theorem
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The main tool we need to develop the bubble tree picture is the neck theorem
which should be compared with the neck theorem in the work of Anderson and
Cheeger [AC]. Due to the lack of point-wise bounds on Ricci curvature, our version
of the neck theorem will have weaker conclusion. But it is sufficient to allow us to
construct the bubble tree at each point of curvature concentration.

Let (M4, g) be a Riemannian manifold. For a point p ∈ M , denote by Br(p)
the geodesic ball with radius r centered at p, Sr(p) the geodesic sphere of radius r
centered at p. Consider the geodesic annulus centered at p:

Ār1,r2
(p) = {q ∈M : r1 ≤ dist(q, p) ≤ r2}.

In general, Ār1,r2
(p) may have more than one connected components. We will

consider any one component

Ar1,r2
(p) ⊂ Ār1, r2(p)

that meets the geodesic sphere of radius r2:

Ar1,r2
(p)

⋂

Sr2
(p) 6= ∅

Let H3(Sr(p)) be the 3D-Hausdorff measure of the geodesic sphere Sr(p).

Theoerm 1.2.1. Suppose (M 4, g) is a Bach flat and simply connected 4-manifold
with a Yamabe metric of positive Yamabe constant. Let p ∈ M , α ∈ (0, 1), ε > 0,
v1 > 0, and a < dist(p, ∂M). Then there exist positive numbers δ0, c2, n depending
on ε, α, Cs, v1, a such that the following holds. Let Ar1,r2

(p) be a connected compo-
nent of the geodesic annulus in M such that

r2 ≤ c2a, r1 ≤ δ0r2,

H3(Sr(p)) ≤ v1r
3, ∀r ∈ [r1, 100r1],

and
∫

Ar1,r2
(p)

|Rm|2dv ≤ δ0.

Then Ar1,r2
(p) is the only such component. In addition, for the only component

A
(δ

−

1
4

0
−ε)r1,(δ

1
4
0

+ε)r2

(p),

which intersects with S
(δ

1
4
0 +ε)r2

(p), there exist some Γ ⊂ O(4), acting freely on S3,

with |Γ| ≤ n, and an quasi isometry ψ, with

A
(δ

−

1
4

0 +ε)r1,(δ
1
4
0 −ε)r2

(p)
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⊂ Ψ(C
δ
−

1
4

0 r1,δ
1
4
0 r2

(S3/Γ))

⊂ A
(δ

−

1
4

0 −ε)r1,(δ
1
4
0 +ε)r2

(p)

such that for all C 1
2
r,r(S

3/Γ) ⊂ C
δ
−

1
4

0
r1,δ

1
4
0

r2

(S3/Γ), in the cone coordinates, one

has
|(Ψ∗(r−2g))ij − δij |C1,α ≤ ε.

The first step in the proof is to use the Sobolev inequality to show the uniqueness
of the connected annulus Ar1,r2

(p). The second step is to establish the growth of
volume of geodesic spheres

H3(Sr(p) ≤ Cr3

for all r ∈ [r1,
1
2r2]. Here we rely on the work of Tian and Viaclovsky [TV1] [TV2]

where they analyzed the end structure of a Bach-flat, scalar flat manifolds with finite
L2 total curvature. The last step is to use the Gromov and Cheeger compactness
argument as in the work of Anderson and Cheeger [AC] to get the cone structure
of the neck.

1.3 Bubble tree construction

In this section we attempt to give a clear picture about what happen at curvature
concentration points. We will detect and extract bubbles by locating the centers
and scales of curvature concentration.

We will assume here that (Mi, gi) are Bach flat 4-manifolds with positive scalar
curvature Yamabe metrics, vanishing first homology, and finite L2 total curvature.
Choose δ small enough according to the ε-estimates and the neck Theorem in the
previous section. Suppose that Xi ⊂ Mi contains a geodesic ball of a fixed radius
r0 and

∫

Tη0
(∂Xi)

|Rmi|2dvi ≤ δ

2
,

where
Tη0

(∂Xi) = {p ∈Mi : dist(p, ∂Xi) < η0},
for some fixed positive number 4η0 < r0. Define, for p ∈ Xi,

s1i (p) = r such that

∫

Bi
r(p)

|Rmi|2dvi =
δ

2
.

Let
p1

i = p such that s1i (p) = inf
Bi

t0
(pi)

s1i (p).
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We may assume λ1
i = s1i (p

1
i ) → 0, for otherwise there would be no curvature concen-

tration in Xi. We then conclude that (Mi, (λ
1
i )

−2gi, p
1
i ) converges to (M1

∞, g
1
∞, p

1
∞),

which is a Bach flat, scalar flat, complete 4-manifold satisfying the Sobolev inequal-
ity, having finite L2 total curvature, and one single end.

Definition 1.3.1. We call a Bach flat, scalar flat, complete 4-manifold with the
Sobolev inequality, finite L2 total curvature, and a single ALE end a leaf bubble,
while we will call such space with finitely many isolated irreducible orbifold points
an intermediate bubble.

Now, we define, for p ∈ Xi \Bi
K1λ1

i

(p1
i ),

s2i (p) = r

such that
∫

Bi
r(p)\Bi

K1λ1
i

(p1
i
)

|Rmi|2dvi =
δ

2
.

Let
p2

i = p

such that
s2i (p) = inf

Bi
r(p)\Bi

K1λ1
i

(p1
i
)
s2i (p).

Again let λ2
i = s2i (p

2
i ) → 0. Otherwise there would be no more curvature concen-

tration. Then

Lemma 1.3.2.
λ2

i

λ1
i

+
dist(p1

i , p
2
i )

λ1
i

→ ∞.

There are two possibilities:

Case 1.
dist(p1

i , p
2
i )

λ2
i

→ ∞

Case 2.
dist(p1

i , p
2
i )

λ2
i

≤M1.

In case 1, we certainly also have

dist(p1
i , p

2
i )

λ1
i

→ ∞.
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Therefore, in the convergence of the sequence (Mi, (λ
2
i )

−2gi, p
2
i ) the concentration

which produces the bubble (M1
∞, g

1
∞) eventually escapes to infinity of M 2

∞ and
hence is not visible to the bubble (M 2

∞, g
2
∞), likewise, in the converging sequence

(Mi, (λ
1
i )

−2gi, p
1
i ) one does not see the concentration which produces (M 2

∞, g
2
∞).

There are at most finite number of such leaf bubbles.

Definition 1.3.3. We say two bubbles (M j1∞ , g
j1∞) and (M j2∞, g

j2∞) associated with

(pj1
i , λ

j1
i ) and (pj2

i , λ
j2
i ) are separable if

dist(pj1
i , p

j2
i )

λj1
i

→ ∞ and
dist(pj1

i , p
j2
i )

λj2
i

→ ∞.

In Case 2, one starts to trace intermediate bubbles which will be called parents
of some bubbles. We would like to emphasize a very important point here. One
needs the neck Theorem to take limit in Goromov-Hausdorff topology to produce
the intermediate bubbles. The neck Theorem is used to prove the limit space has
only isolated point singularities, which are then proven to be orbifold points.

Lemma 1.3.4. Suppose that there are several separable bubbles {(M j
∞, g

j
∞)}j∈J

associated with {(pj
i , λ

j
i )}j∈J . Suppose that there is a concentration detected as

(pk
i , λ

k
i ) after {(pj

i , λ
j
i )}j∈J such that

dist(pk
i , p

j
i )

λk
i

≤M j,

therefore
λk

i

λj
i

→ ∞

for each j ∈ J . In addition, suppose that {(pj
i , λ

j
i )}j∈J is the maximal collection of

such. Then
(Mi, (λ

k
i )−2gi, p

k
i ) converges in Gromov-Hausdorff topology to an intermediate bub-

ble (Mk
∞, g

k
∞). (Mk

∞, g
k
∞) is either a parent or a grandparent of all the given bubbles

{(M j
∞, g

j
∞)}j∈J .

We remark that it is necessary to create some strange intermediate bubbles to
handle the inseparable bubbles. This situation does not arise in the degeneration
of Einstein metrics. In that case there is a gap theorem for Ricci flat complete
orbifolds and there is no curvature concentration at the smooth points due to a
simple volume comparison argument, both of which are not yet available in our
current situation. We will call those intermediate bubbles exotic bubbles.
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Definition 1.3.5. A bubble tree T is defined to be a tree whose vertices are
bubbles and whose edges are necks from neck Theorem. At each vertex (M j

∞, g
j
∞),

its ALE end is connected, via a neck, to its parent towards the root bubble of T ,
while at finitely many isolated possible orbifold points of (M j

∞, g
j
∞), it is connected,

via necks, to its children towards leaf bubbles of T . We say two bubble trees T1 and
T2 are separable if their root bubbles are separable.

To finish this process we just iterate the process of extracting bubbles the con-
struction has to end at some finite steps. In summary we have

Theorem 1.3.6. Suppose that (Mi, gi) are Bach flat 4-manifolds with positive
scalar curvature Yamabe metrics, vanishing first homology, and finite L2 total cur-
vature. Then (Mi, gi) converges to Bach-flat 4-manifold (M∞, g∞) with finitely orb-
ifold singularities S. The convergence is strong in C∞ away from a finite number
of points B ⊃ S. At each point b in B there is a bubble tree attached to b.

2. Conformally compact Einstein manifolds

2.1 Conformally compact Einstein manifolds

Suppose that Xn+1 is a smooth manifold of dimension n+1 with smooth bound-
ary ∂X = Mn. A defining function for the boundary Mn in Xn+1 is a smooth
function x on X̄n+1 such that











x > 0 in X;

x = 0 on M ;

dx 6= 0 on M.

A Riemannian metric g on Xn+1 is conformally compact if (X̄n+1, x2g) is a com-
pact Riemannian manifold with boundary Mn for a defining function x. Confor-
mally compact manifold (Xn+1, g) carries a well-defined conformal structure on the
boundary Mn, where each metric ĝ in the class is the restriction of ḡ = x2g to the
boundary Mn for a defining function x. We call (Mn, [ĝ]) the conformal infinity
of the conformally compact manifold (Xn+1, g). A short computation yields that,
given a defining function x,

Rijkl[g] = |dx|2ḡ(gikgjl − gilgjk) + O(x3)

in a coordinate (0, ε)×Mn ⊂ Xn+1. Therefore, if we assume that g is also asymp-
totically hyperbolic, then

|dx|2ḡ|M = 1
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for any defining function x. If (Xn+1, g) is a conformally compact manifold and
Ric[g] = −ng, then we call (Xn+1, g) a conformally compact Einstein manifold.

Given a conformally compact, asymptotically hyperbolic manifold (Xn+1, g) and
a representative ĝ in [ĝ] on the conformal infinityMn, there is a uniquely determined
defining function x such that, on M × (0, ε) in X, g has the normal form

(1.1) g = x−2(dx2 + gx)

where gx is a 1-parameter family of metrics on M . This is because

Lemma 2.1.1. Suppose that (Xn+1, g) is a conformally compact, asymptotically
hyperbolic manifold with the conformal infinity (M, [ĝ]). Then, for any ĝ ∈ [ĝ], there
exists a unique defining function x such that

|dx|2r2g = 1

in a neighborhood of the boundary [0, ε) ×M and

r2g|M = ĝ.

Given a conformally compact Einstein manifold (Xn+1, g), in the local product
coordinates (0, ε)×Mn near the boundary where the metric takes the normal form
(1.1), the Einstein equations turn into a second order ordinary differential equations
point-wisely on Mn with x = 0 as a regular singular point.

Lemma 2.1.2. Suppose that (Xn+1, g) is a conformally compact Einstein manifold
with the conformal infinity (Mn, [ĝ]) and that x is the defining function associated
with a metric ĝ ∈ [ĝ]. Then

gx = ĝ + g(2)x2 + (even powers of x)

+ g(n−1)xn−1 + g(n)xn + · · · ,

when n is odd, and

gx = ĝ + g(2)x2 + (even powers of x)

+ g(n)xn + hxn logx+ · · · ,

when n is even, where:
a) g(2i) are determined by ĝ for 2i < n;
b) g(n) is traceless when n is odd;
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c) the trace part of g(n) is determined by ĝ and h is traceless and determined by
ĝ;

d) the traceless part of g(n) is divergence free.

2.2 Examples of conformally compact Einstein manifolds

Let us look at some examples.

a). The hyperbolic spaces

(Rn+1,
(d|x|)2
1 + |x|2 + |x|2dσ),

where dσ is the standard metric on the n-sphere. We may write

gH = s−2(ds2 + (1 − s2

4
)2dσ)

where

s =
2

√

1 + |x|2 + |x|
is a defining function. Hence the conformal infinity is the standard round sphere
(Sn, dσ).

b). The hyperbolic manifolds

(S1(λ) ×Rn, (1 + r2)dt2 +
dr2

1 + r2
+ r2dσ).

Let

r =
1 − s2

4

s
= sinh log

2

s

for a defining function s. Then

g0
H = s−2(ds2 + (1 +

s2

4
)2dt2 + (1 − s2

4
)2dσ).

Thus the conformal infinity is standard (S1(λ) × Sn−1, dt2 + dσ).

c). AdS-Schwarzchild
(R2 × S2, gm

+1),
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where
gm
+1 = V dt2 + V −1dr2 + r2gS2 ,

V = 1 + r2 − 2m

r
,

m is any positive number, r ∈ [rh,+∞), t ∈ S1(λ) and (θ, φ) ∈ S2, and rh is the
positive root for 1 + r2 − 2m

r = 0. In order for the metric to be smooth at each

point where S1 collapses we need V dt2 + V −1dr2 to be smooth at r = rh, i.e.

V
1
2
d(V

1
2 2πλ)

dr
|r=rh

= 2π.

Note that its conformal infinity is (S1(λ)×S2, [dt2+dθ2+sinθ dφ2]) and S1 collapses
at the totally geodesic S2, which is the so-called horizon. Interestingly, λ is does not
vary monotonically in rh, while rh monotonically depends on m. In fact, for each
0 < λ < 1/

√
3, there are two different m1 and m2 which share the same λ. Thus,

for the same conformal infinity S1(λ)× S2 when 0 < λ < 1/
√

3, there are two non-
isometric AdS-Schwarzschild space with metric g+

m1
and g+

m2
on R2×S2. These are

the interesting simple examples of non-uniqueness for conformally compact Einstein
metrics.

d). AdS-Kerr spaces
(CP 2 \ {p}, gα),

where p is a point on CP 2,

gα = Eα((r2 − 1)F−1
α dr2 + (r2 − 1)−1Fα(dt+ cos θdφ)2

+ (r2 − 1)(dθ2 + sin2 θdφ2)),

Eα =
2

3

α− 2

α2 − 1
,

Fα = (r − α)((r3 − 6r + 3α−1)Eα + 4(r − α−1)),

r ≥ α, t ∈ S1(λ), and (θ, φ) ∈ S2. For the metric to be smooth at the horizon, the
totally geodesic S2, we need to require

√

F

E(r2 − 1)

d

dr
(2πλ

√

EF

r2 − 1
) = 2π.

Here (t, θ, φ) is the coordinates for S3 through the Hopf fiberation. The conformal
infinity is the Berger sphere with the Hopf fibre of length πEα and the S2 of area
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4πEα. For every 0 < λ < (2 −
√

3)/3 there are exactly two α, hence two AdS-Kerr

metrics gα. It is interesting to note that (2 −
√

3)/3 < 1, so the standard S3(1) is
not included in this family.

One may ask, given a conformal manifold (Mn, [ĝ]), is there a conformally
compact Einstein manifold (Xn+1, g) such that (Mn [ĝ]) is the conformal infinity?
This in general is a difficult open problem. Graham and Lee in [GL] showed that
for any conformal structure that is a perturbation of the round one on the sphere
Sn there exists a conformally compact Einstein metric on the ball Bn+1.

2.3 Conformal compactifications

Given a conformally compact Einstein manifold (Xn+1, g), what is a good con-
formal compactification? Let us consider the hyperbolic space. The hyperbolic
space (Hn+1, gH) is the hyperboloid

{(t, x) ∈ R× Rn+1 : −t2 + |x|2 = −1, t > 0}

in the Minkowski space-time R1,n+1. The stereographic projection via the imaginary
south pole gives the Poincaré ball model

(Bn+1, (
2

1 − |y|2 )2|dy|2)

and replacing the x-hyperplane by z-hyperplane tangent to the light cone gives the
half-space model

(Rn+1
+ ,

|dz|2
z2
n+1

),

where
1 + |y|2
1 − |y|2 = t,

1

zn+1
= t− xn+1.

Therefore
(Hn+1, t−2gH) = (Sn+1

+ , gSn+1),

(Hn+1, (t+ 1)−2gH) = (Bn+1, |dy|2)
(Hn+1, (t− xn+1)

−2gH) = (Rn+1
+ , |dz|2).

The interesting fact here is that all coordinate functions {t, x1, x2, . . . xn+1} of the
Minkowski space-time are eigenfunctions on the hyperboloid. Thus positive eigen-
functions on a conformally compact Einstein manifold are expected to be candidates
for good conformal compactifications.
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Lemma 2.3.1. Suppose that (Xn+1, g) is a conformally compact Einstein manifold
and that x is a special defining function associated with a representative ĝ ∈ [ĝ].
Then there always exists a unique positive eigenfunction u such that

∆u = (n+ 1)u in X

and

u =
1

x
+

R[ĝ]

4n(n− 1)
x+ O(x2)

near the infinity.

We remark here that, for the hyperbolic space Hn+1 and the standard round
metric in the infinity, we have

t =
1

x
+

1

4
x.

As we expect, positive eigenfunctions indeed give a preferable conformal compacti-
fication.

Theorem 2.3.2. Suppose that (Xn+1, g) is a conformally compact Einstein mani-
fold, and that u is the eigenfunction obtained for a Yamabe metric ĝ of the conformal
infinity (M, [ĝ]) in the previous lemma. Then (Xn+1, u−2g) is a compact manifold
with totally geodesic boundary M and

R[u−2g] ≥ n+ 1

n− 1
R[ĝ].

As a consequence

Corollary 2.3.3. Suppose that (Xn+1, g) is a conformally compact Einstein mani-
fold and its conformal infinity is of positive Yamabe constant. Suppose that u is the
positive eigenfunction associated with the Yamabe metric on the conformal infinity
obtained in Lemma 3.1. Then (Xn+1, u−2g) is a compact manifold with positive
scalar curvature and totally geodesic boundary.

The work of Schoen-Yau and Gromov-Lawson then give some topological obstruc-
tion for a conformally compact Einstein manifold to have its conformal infinity of
positive Yamabe constant. A surprising consequence of the eigenfunction compacti-
fications is the rigidity of the hyperbolic space without assuming the spin structure.

Theorem 2.3.4. Suppose that (Xn+1, g) is a conformally compact Einstein mani-
fold with the round sphere as its conformal infinity. Then (Xn+1, g) is isometric to
the hyperbolic space.
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2.4 Renormalized volume

We will introduce the renormalized volume, which was first noticed by physicists
in their investigations of the holography principles in AdS/CFT. Take a defining
function x associated with a choice of the metric ĝ ∈ [ĝ] on the conformal infinity,
then compute, when n is odd,

Vol({x > ε} = c0ε
−n + odd powers of ε + V + o(1),

when n is even,

Vol({s > ε}) = c0ε
−n + even powers of ε + L log

1

ε
+ V + o(1).

It turns out the numbers V in odd dimension and L in even dimension are indepen-
dent of the choice of the metrics in the class. We will see that V in even dimension
is in fact a conformal anomaly.

Lemma 2.4.1. Suppose that (Xn+1, g) is a conformally compact Einstein manifold
and that x̄ and x are two defining functions associated with two representatives in
[ĝ] on the conformal infinity (Mn, [ĝ]). Then

x̄ = xew

for a function w on a neighborhood of the boundary [0, ε) ×M whose expansion at
x = 0 consists of only even powers of x up through and including xn+1 term.

Theorem 2.4.2. Suppose that (Xn+1, g) is a conformally compact Einstein mani-
fold. The V in (4.1) when n is odd and L in (4.2) when nn is even are independent
of the choice of representative ĝ ∈ [ĝ] on the conformal infinity (Mn, [ĝ]).

Let us calculate the renormalized volume for the examples in Section 2.2

a). The hyperbolic space: We recall

(H4, gH) = (B4, (
2

1 − |y|2 )2|dy|2)

where

gH = s−2(ds2 + (1 − s2

4
)2h0)

and h0 is the round metric on S3. Then

vol({s > ε}) =

∫ 2

ε

∫

S3

s−4(1 − s2

4
)3dσ0ds
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where dσ0 is the volume element for the round unit sphere.

vol({s > ε}) = 2π2

∫ 2

ε

s−4(1 − 3s2

4
+

3s4

16
− s6

64
)ds

= 2π2(−1

3
s−3|2ε +

3

4
s−1|2ε +

3

16
(2 − ε) − 1

3 × 64
s3|2ε)

=
2π2

3
ε−3 − 3π2

2
ε−1 + 2π2(− 1

3 × 8
+

3

8
+

3

8
− 1

3 × 8
) + O(ε)

=
2π2

3
ε−3 − 3π2

2
ε−1 +

4π2

3
+ O(ε).

Thus

V (H4, gH) =
4π2

3
.

b). The hyperbolic manifold: We recall

(S1(λ) × R3, (1 + r2)dt2 +
dr2

1 + r2
+ r2gS2)

and

g0
H = s−2(ds2 + (1 − s2

4
)2(dθ2 + sin2 θdφ2) + (1 +

s2

4
)2dt2).

Then

vol({s > ε}) =

∫ 2

ε

∫

S2

∫

S1

s−4(1 − s2

4
)2(1 +

s2

4
)dω0dtds

where dω0 stands for the volume element for the round unit sphere S2.

vol({s > ε}) = 8π2

∫ 2

ε

s−4(1 − s2

2
+
s4

16
)(1 +

s2

4
)ds

= 8π2λ

∫ 2

ε

s−4(1 − s2

4
− s4

16
+
s6

64
)ds

=
8π2

3
λε−3 − 2π2λε−1 + 8π2λ(− 1

3 × 8
+

1

8
− 1

8
+

1

3 × 8
) +O(ε)

=
8π2

3
λε−3 − 2π2λε−1 +O(ε).

Thus
V (S1 ×R3, g0

H) = 0.
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c). AdS-Schwarzschild spaces: We recall on S2 × R2

gm
+1 = (1 + r2 − 2m

r
)dt2 +

dr2

1 + r2 − 2m
r

+ r2(dθ2 + sin2 θdφ2).

First let us find the special defining function, i.e. to have

1

1 + r2 − 2m
r

dr2 = s−2ds2

that is, if denote by r = ρ/s, where ρ = ρ(s),

ρ− sρ′ =
√

ρ2 + s2 − 2ms3/ρ,

and ρ(0) = 1. One may solve it in power series

ρ = 1 − 1

4
s2 +

m

3
s3 + · · · .

Then

gm
+1 = s−2(ds2 + (ρ2 + s2 − 2ms3

ρ
)dt2 + ρ2(dθ2 + sin2 θdφ2)).

Note that s ∈ [ε, sh] for r ∈ [rh,Mε],

log sh = log ε+

∫ Mε

rh

1
√

1 + r2 − 2m
r

dr < +∞,

and

Mε = ε−1ρ(ε) = ε−1(1 − 1

4
ε2 +

m

3
s3 + · · · )

Therefore

vol({s > ε}) =

∫ sh

ε

∫

S1(λ)

∫

S2

s−4

√

ρ2 + s2 − 2ms2

ρ
ρ2dtdσ0ds

= 8π2λ

∫ sh

ε

s−4

√

ρ2 + s2 − 2ms3

ρ
ρ2ds

= 8π2λ

∫ M

rh

s−1

√

1 + r2 − 2m

r
r2(−ds

dr
)dr

= 8π2λ

∫ M

rh

r2dr =
8π2λ

3
(M3 − r3h).
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Thus the renormalized volume

V (R2 × S2, gm
+1) =

8π2

3

r2h(1 − r2h)

3r2h + 1
,

where V (R2 × S2, gm
+1) < 0 when rh > 1; V (R2 × S2, gm

+1) = 0 only when rh = 1 or

0; and it achieves its maximum value at rh = 1/
√

3

V (R2 × S2, gm
+1)max =

1

9
· 4π2

3
χ(R2 × S2).

d). AdS-Kerr spaces: We will omit the calculation here. The renormalized volume

V (CP2 \ {p}, gα) = 4π2Eα(−1

6
Eα(α3 + 3α−1) +

2

3
(α+ α−1)).

Clearly, V (CP2 \ {p}, gα) goes to zero when α goes to 2, and V (CP2 \ {p}, gα) goes
to −∞ when α goes to ∞. One may find the maximum value for the renormalized
volume is achieved at α = 2 +

√
3. Therefore

V (CP2 \ {p}, gα)max =
4π2

3
· 2(4 −

√
3)

9
<

1

2

4π2

3
χ(CP2 \ {p}).

2.5 Renormalized volume and Chern-Gauss-Bonnet formula

We start with the Gauss-Bonnet formula on a surface (M 2, g)

4πχ(M2) =

∫

M

Kdvg

where K is the Gaussian curvature of (M 2, g). The transformation of the Gauss-
ian curvature under a conformal change of metrics gw = e2wg is governed by the
Laplacian as follows:

−∆gw +K[g] = K[e2wg]e2w.

The Gauss-Bonnet formula for a compact surface with boundary (M 2g) is

4πχ(M) =

∫

M

KdVg + 2

∫

∂M

kdσg
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where k is the geodesic curvature for ∂M in (M, g). The transformation of the
geodesic curvature under a conformal change of metric gw = e2wg is

−∂nw + k[g] = k[e2wg]ew,

where ∂n is the inward normal derivative. Notice that

−∆[e2wg] = e−2w(−∆[g])

−∂n[e2wg] = e−w(−∂n[g]),

for which we say they are conformally covariant. In four dimension there is a rather
complete analogue. We may write the Chern-Gauss-Bonnet formula in the form

8π2χ(M4) =

∫

M

(|W|2 +Q)dVg

for closed 4-manifold and

8π2χ(M4) =

∫

M

(|W |2 +Q)dVg + 2

∫

∂M

(L + T )dσg,

where W is the Weyl curvature, L is a point-wise conformal invariant curvature of
∂M in (M, g).

Q =
1

6
(R2 − 3|Ric|2 − ∆R)

T = − 1

12
∂nR+

1

6
RH − RαnβnLαβ +

1

9
H3 − 1

3
TrL3 − 1

3
∆̃H,

R is the scalar curavture, Ric is the Ricci curavture, L is the second fundamental
form of ∂M in (M, g). We know the transformation of Q under a conformal change
metric gw = e2wg is

P4[g]w +Q[g] = Q[e2wg]e4w,

where

P4 = (−∆)2 + δ{2

3
Rg − 2Ric}d

is the so-called Paneitz operator, and the transformation of T is

P3[g]w + T [g] = T [e2w]e3w,

where

P3 =
1

2
∂n∆g − ∆̃∂n +

2

3
H∆̃ + Lαβ∇̃α∇̃β +

1

3
∇̃αH · ∇̃α + (F − 1

3
R)∂n.
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We also have
P4[e

2wg] = e−4wP4[g]

P3[e
2wg] = e−3wP3[g].

On the other hand, to calculate the renormalized volume in general, for odd n,
upon a choice of a special defining function x, one may solve

−∆v = n in Xn+1

for
v = log x+A+ Bxn,

A,B are even in x, and A|x=0 = 0. Let

Bn[g, ĝ] = B|x=0.

Fefferman and Graham observed

Lemma 2.5.1.

(5.14) V (Xn+1, g) =

∫

M

Bn[g, ĝ]dv[ĝ].

We observe that the function v in the above is also good in conformal compact-
ifications. For example, given a conformally compact Einstein 4-manifold (X4, g),
let us consider the compactification (X4, e2vg). Then

Q4[e
2vg] = 0

and its boundary is totally geodesic in (X4, e2vg). Moreover

T [e2vg] = 3B3[g, ĝ].

Therefore we obtain easily the following generalized Chern-Gauss-Bonnet formula.

Proposition 2.5.2. Suppose that (X4, g) is a conformally compact Einstein man-
ifold. Then

8π2χ(X4) =

∫

X4

(|W |2dv)[g] + 6V (X4, g).
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2.6 Topology of conformally compact Einstein 4-manifolds

From the generalized Chern-Gauss-Bonnet formula, obviously

V ≤ 4π2

3
χ(X)

and the equality holds if and only if (X4, g) is hyperbolic. Comparing with Chern-
Gauss-Bonnet formula for a closed 4-manifold

1

8π2

∫

M4

(|W |2 + σ2)dv = χ(M4)

one sees that the renormalized volume replaces the role of the integral of σ2. In
the following we will report some results on the topology of a conformally compact
Einstein 4-manifold in terms of the size of the renormalized volume relative to the
Euler number, which is analogous to the results of Chang-Gursky-Yang on a closed
4–manifold with positive scalar curvature and large integral of σ2 relative to the
Euler number. The proofs mainly rely on the conformal compactifications discussed
earlier, a simple doubling arguement and applications of the above mentioned results
of Chang-Gursky-Yang.

Theorem 2.6.1. Suppose (X4, g) is a conformally compact Einstein 4-manifold
with its conformal infinity of positive Yamabe constant and the renormalized volume
V is positive. Then H1(X,R) = 0.

Theorem 2.6.2. Suppose (X4, g) is a conformally compact Einstein 4-manifold
with conformal infinity of positive Yamabe constant. Then

V >
1

3

4π2

3
χ(X)

implies that H2(X,R) vanishes.

A nice way to illustrate the above argument is the following. We may consider
the modified Yamabe constant

Y λ(M, [g]) = inf
g∈[g]

∫

M
(R[g] + λ|W+|g)dvg

(
∫

M
dvg)

n−2

n

.

Then, one knows that (M, [g]) is of positive Y λ(M, [g]) if and only if there is a
metric g ∈ [g] with R + λ|W+| > 0. As a consequence of the following Bochner
formula

∆
1

2
|ω|2 = |∇ω|2 − 2W+(ω, ω) +

1

3
R|ω|2

≥ |∇ω|2 + (R− 2
√

6|W+|)|ω|2

for any self-dual harmonic 2-form ω, one easily sees that a closed oriented 4-manifold

with Y −2
√

6 > 0 has its b+2 = 0. We also observe
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Theorem 2.6.3. Suppose (X4, g) is a conformally compact Einstein 4-manifold
with its conformal infinity of positive Yamabe constant and that

V >
1

2

4π2

3
χ(X).

Then X is diffeomorphic to B4 and more interestingly M is diffeomorphic to S3.

One may recall

a. V (H4, gH) =
4π2

3

b. V (S1 × R3, gH) = 0

c. V (S2 × R2, gm
+ ) =

8π2

3

r2h(1 − r2h)

3r2h + 1

≤ 1

9

4π2

3
χ(S2 × R2),

d. V (CP 2 \B, gK) ≤ 4π2

3
· 2(4 −

√
3)

9

<
1

3

4π2

3
χ(CP 2 \B).

Theorem 2.6.2 is rather sharp, in cases (c) and (d) the second homology is nontrivial
while the renormalized volume is very close to one-third of the maximum.
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