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Abstract

We derive a class of variational functionals which arise naturally in
conformal geometry. In the special case when the Riemannian man-
ifold is locally conformal flat, the functional coincides with the well
studied functional which is the integration over the manifold of the
k-symmetric function of the Schouten tensor of the metric on the man-
ifold.

1 Introduction

The purpose of this article is to derive a class of variational functionals
which arise naturally in conformal geometry. Recall on a Riemannian
manifold (M™,g), n > 3, the full Riemannian curvature tensor Rm

decomposes as
Rm=W @& PQ{gy,

where W denotes the Weyl tensor,

1
n—2

P =

(Ric — =1 1)9)
denotes the Schouten tensor, and (® is the Kulkarni-Nomizu wedge

product (see [Be87, pp. 110]). Under a conformal change of metrics
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gw = €2%g, where w is a smooth function over the manifold, the
Weyl curvature changes pointwisely as W, = eszg. Thus, all the
information of the Riemannian tensor under a conformal change of
metrics is reflected by the change of the Schouten tensor, and it is
natural to study the elementary symmetric function oy, (g_ng) (which
we later denote as oi(g)) of the eigenvalues of the Schouten under
the conformal change of metrics. For example when k = 1, 01(g) =
ng, where R, denotes the scalar curvature of g. The study of the
equation o1(g) = constant under conformal change of metrics is the
classical Yamabe problem. In [V00], Viaclovsky proved the following

statements: Consider the functional

Filg) = [ oulgdv, 0

(i): When k =1 or 2, and 2k < n, Fj, is variational in the confor-
mal class of metrics g, € [g] with fixed volume one, i.e. the extremal
metric for the functional in this class of metrics, when achieved, sat-
isfies the equation

o (gw) = constant.

(ii) When k£ > 3 and 2k < n, assertion in (i) only holds when the
manifold M™ is locally conformally flat.

(ili) When k£ = 2, n = 4, F5(g) is conformally invariant; while
for k = 5§ and k& > 3, Fj(g) is conformally invariant only when the
manifold (M™, g) is locally conformally flat.

We remark that in [BGO06], Branson and Gover have also proved
that the metric being locally comformally flat is also a necessary con-
dition for the statement of (ii) above.

In this article, we generalize the role played by the curvature poly-
nomial o4(g) to a new class of curvature invariant, v(?*)(g), so that:
v(®¥) (g) agrees with oy, (g) when (M™, g) is locally conformally flat; the
functional

Filo) = [ o ®(g)an, &)

satisfies the variational property in the statement (ii) above for all
2k < n; Fi(g) is conformally invariant when 2k = n for all Riemannian
manifolds (M™, g).



Our construction is closely related to the recent construction for
the @ curvature of R. Graham and Juhl [GJ06]. To state our result,
we first recall some definitions and basic results.

Definition 1 Given (X" M™ g%) with smooth boundary 0X =
M™. Let r be a defining function for M™ in X"t so that r >0 in X
while r = 0 on M and dr|py # 0. We say g* is conformally compact,
if there exists such r so that (X", r2g") is a compact manifold. We
say (X" M™, g*) is conformally compact Einstein if gt is Einstein
(i.e. Ricg+ = cg™ for some constant ¢ ). We call g* Poincare metric
if Ricg+ = —ng™.

Fefferman-Graham [FG85] proved that for any given (M",go),
there is an extension, g7, which is ”asymptotically Poincare Einstein”
in a neighborhood of M™, i.e. on [0,€) x M™ for some positive e.

For ¢ sufficiently small, we have X, = {r < ¢} C X is diffeomor-

phic to [0,c] x M. Hence, given a local coordinate chart (z!,---,z")

on M, (r,z',---,2™) is a coordinate chart on X.. Thus, we can write
L 2 i gd

gr = T—2(dr + hyj(r, x)dz' da?), (3)

where h(r,-) is a metric defined for M, :=r = ¢ C X. We remark that
in this expression, (X,72¢,) is a compact manifold.

dvoly,(r,z) = y/det h;;(r, x)dx' - - - da™.

We now expand the quantity % in an expansion near
17 \Ys
r=20 as
det h,]
v\ (z, ho)r”, 4
det h;; (0 Z oJr )

where v*)(z, hg) is a curvature invariant of the metric hg := hy;(0, ).

n [G00], R. Graham asserted that v(¥) vanished for k odd and
2k < n; furthermore, he has established that when n is even, the quan-
tity [ M v dvoly,, is conformally invariant over the conformal class of
metrics of [ho]. This quantity is related to the conformal invariant
term in the expansion of “renormalized volume” in the study of con-
formal field theory. In the later papers, [GZ03], [FG02] and [GJ06],
the authors have also established that the quantity is the same of the
integral of the ) curvature and is an important global conformally
invariant term.



Another fact which has been pointed out in [GJ06], based on a
result in [SS00], is that when hy is locally conformally flat, then

v®(he) = (=2) o (ho)- (5)
In this article, we prove the following

Theorem 2 For any metric h on M and 2k < n = dim M, define
the functional

n—2k

Folh) = /Mv@k)(h)dvozh/( /N dvoly) 52, (6)

then Fy, is variational within the conformal class when 2k < n; i.e.,
the critical metric in [h] satisfies the equation

v(¥) = constant.
For n =2k, Fn(h) is constant in the conformal class [h].

Remark 3 As we have mentioned before, the case n = 2k in the
theorem above has been established earlier in [G00).

For k =1, 2 cases, the new curvature invariant v¥) turns out to

agree, up to a scale, with the well-studied curvature polynomial o%(g).

Actually we have
1
v (g) = —5o1(9),

1
oW = 102(9)'

For k = 3, Graham and Juhl ([GJ06], page 5) have also listed the
following formula for v(6)

1 1

v (g) = ~3 o3(g) + m(Pg)ij(Bg)ij ;

where (Bg)ij = %V’“VIVVMJ- + ﬁRleVlikj is the Bach tensor of
the metric.

In this article, we carry out the computation for v(® and v®.
As the computation indicates, a straight forward computation of v(®)
is quite complicated. Instead, we derive the variational properties
of v(®) under conformal change of metrics directly, which is another
verification of our main theorem in this special case. Another pur-

pose of the derivation is to derive the variational formulas of v(®)
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under conformal change of metrics. We believe the study of the PDE
v (g,) = constant will be of interest to problems in conformal ge-
ometry. Another interesting question is the “uniqueness” problem of
curvature invariants which are extensions of oy (g) invariants in the
locally conformally flat case and satisfy the properties as v(2%) in The-
orem 2 above. We hope to address these two problems in a future
work.

This article is organized as follows: In Section 2, we prove The-
orem 2; In Section 3, we explicitly compute v@ and v® for all di-
mension n; In Section 4, we show the variational property of v(®) and
discuss some properties of this curvature invariants under conformal
change of metrics.

2 Proof of Theorem 2

Suppose (X"T1 M™ g,) is a conformally compact Einstein manifold.
Let r be an arbitrary smooth defining function for M = 90X defined
near M and set § = 72g+. We now recall some basic properties of
the metric g4 in this setting with respect to the changing of defining
functions.

Lemma 4 (/G00], Lemma 2.1 and 2.2]):

(a) A metric on M in the conformal infinity of g* determines a
unique defining function r in a neighborhood of M such that g|rar is
the prescribed boundary metric with |d7‘|§ =1.

(b)

gt =1 2(dr® + g,) (7)

on [0,e) x M for some € > 0. Furthermore,
gr =g+ 72¢P + W 4 4™ 4 heMogr 4 - - (8)

when n is even, with g = r2g*|y, and symmetric tensors g@, W,
. up to ¢*™ V) and Trgg(”) are determined by g, and Trgfl =0.

(¢) Let r and 7 be two special defining functions as in (a) associated
with two different conformal representatives in the conformal class of
metrics in [g]; then

7 =re? 9)
for a function w on [0,€) X M satisfying

wy + r(w? + |dyw]?) = 0. (10)

5



Furthermore, the power series expansion of w at r = 0 consists only
of even power of r up through and including the r" 1 term.

Now for a fixed smooth function ¢ defined on M, we consider a
family of conformal metrics ¢; = e?*?g on M. By Lemma 4 there exist
functions r; on a neighborhood of M in X such that

1
9+ = p(d?"? + ht(rtv ))7 (11)
t

where hy(c,-) is a metric defined on M;, = {ry = ¢} C X. Further-
more, we have the following asymptotic expansion

b= gt rig e (12)
For a point p € X, define

7¢(p)
7(p)

'w(t,p) = lOg( )

On the boundary, we have that w(t,-)|assr = to(-). Thus, w(t,p) =
w(t,r,x) is a smooth extension of t¢(z) to Xy . = {ry < ¢} C X for
some proper c¢. We then get the following from Lemma 4:

Corollary 5 For (t,z,r) € [0,1] x [0,¢€) x M, we have

0
E’T:Ow(tarax) = 0. (13)
o 1, 5
W’T:Ow(unx) = _§t ‘dM(b(x)‘g (14)
ak
Wh:ow(t, r,x) = 0, for k odd. (15)
ak
thow(t,r,aﬁ) = O(t?),for k even, 0 <k < n. (16)
In particular, we have
1
w(t,r,z) = tPp(x) — Zt2|VM¢($)|2r2 + O(t*rh). (17)
and p
E|t:0w(t7 T, 33‘) = ¢($), (18)

independent of the choice of the defining function r.



For future use, we define a useful vector field associated to the
conformal metric variation.

First we notice that, fix an € small enough, for a given point p €
[0,€) x M = X, for each t, we can assign a local coordinate chart
p = (re,zt) € Xy fort € [0, 1], with g = 7, 9 = = and with x; defined
as pry(p), the projection image of p onto M under the metric r2g. .

For each fixed ¢ < €, denote M.; = {p € X|r; = c}, then by
Lemma 4, the set M., is diffeomorphic to M via the projection with
respect to the metric r2g,. Hence, they are diffeomorphic to each
other. For a fixed level set M, := M, since the projectoin pr; is a
small perturbation of pro when ¢ is small, the map p — (¢, ;) gives
arise to a diffeomorphism of M_.; hence it introduces a vector field

d
F.:= c,0 — dt|t O(C :Et) (19)

on T'M.. Since M. is naturally diffeomorphic to M, without confusion,
we also denote the pushed-forward vector field on M as F..

It is worth pointing out that: the vector field is induced from the
one parameter family of points x;, which depends on the original point
p; hence the induced vector field depends on the choice of c.

Since we have a family of diffeomorphisms to identify a neigh-
borhood of M in X with [0,€) x M, given a local coordinate chart
(x',--- 2") on M, (ry,zt,---,2") is a coordinate chart on M., for
each t. Thus, a given point p € X near M can be represented in these
coordinate system as (r¢,z;), respectively.

We now consider the volume of g, at a given point p € M. For
future convenience, we will omit the foot index 0, and denote h = hg,
9 = go = ho|lram, ¥ = 1o, © = xy etc. Thus, p = (r,z) and the metric
r2g, is compact.

Recall 7(p) = re®“?) near M. For each t, by (11) and (12),

det ht(Tt, .’L’t)
det g ()

—n—1

dvol g+ (p) = " Y drdvoly, (re, ) = 1) dridvolg, (),

(20)
and

det ht Tt,l't
vV (24,
detgt xt) Z b g

Notice that, via diffeomorphism, we can view dvoly, (x;) as a n-form
on M, ;.



We now proceed by take the time derivative of Equation (20). For
notational convenience, we define the following linear operator

d
D="1_,.
dt't_o

We prove a technical lemma.

Lemma 6 At the point p = (r,z), the following formula hold:

(a)
D(drs)(r,x) A dvoly(z) = ¢(z)dr A dvoly(x).

(b)
D™ (24, )] = (Fo)(w, ) + D™ (w, 1)),

where the definition of F, is given in (19) and the remarks following
(19);
(c)

D[dvoly, (xt)] = [LF, (dvoly)](x) + ng(z)dvoly(x),

where L is the Lie derivative on M, with respect to the given vector
field.

Proof of Lemma 6. Since r; = e“rg = ¢“r, we have
dry = rydw + e%dr.
Apply D to both sides of above equation, and use Lemma 4 and (18),

D(dry) = rd¢ + rodw|i=o + ¢ dr
= rdo + ¢dr.
We then wedge above expression with dvoly(x), and observe that the
term rdg(x) A dvoly(z) = 0 at the point p = (r,z), we have thus
established statement (a).

Statement (b) follows directly by Leibniz rule and (19).
To prove statement (c), we apply Leibniz rule again and get

Dldvolg, (z¢)] = Dldvoly(z:)] + D[dvolg, (x)].
Notice that when restricted to M, g; = e*?g, the result follows easily.

We now give the proof of Theorem 2.



Proof of Theorem 2. Starting with the following basic equation

0 = D(dvoly+(p))

= D(ry "' QoW @y, go)rt )dridvoly, (x)),
k

we use Leibniz Rule and apply (17) and Lemma 5 above to get

S rE YD (@, )] + k(@) ® (2, g)bdr A dvoly()
k
+ Z k=" dr L [v(k)dvolg(x)]. (21)
k

We integrate ( 21) over M, which is identified to M via the canon-
ical diffeomorphism. Since the form involving the Lie derivative is
exact, it will vanish after the integration. Thus, we get

drjzzrk_n_l]a{{[nv“»ﬁwdgﬁ]4‘k¢($ﬁﬂkmx79)}d”0@(x)::0'

(22)
Now notice that the above equation holds for all small r, we prove
the following identity:

Claim 7
/ (DI (2, g)] + ko (@)o® (z, g) Ydvol, = 0. (23)

We now finish the proof of Theorem 2.

Given g; = €??g a variation of metrics on M in the conformal class
of g, denote V = fM dvoly. Then,

D] = —op [ D (e.a0] duoly(a) + [ o, 0)o(z) duoly(x)
n— 2k
—M/ gbdvolg/ v(%)(:n,g) dvoly(x)
— 2k 2)dvol,
_ :L/l_ / (k) — S V v ()]¢ dvol.



It implies that, when n > 2k, the critical metric g of the functional
F. satisfies
0¥ (g) = constant.

When n = 2k, the computation shows that the functional is invariant
under the conformal deformation.

3 Computation of v¥ for n > 4

In this Section, we verify the formula for v¥). In particular, we prove
that for any dimension n > 4, v® equals to o3(A) up to a constant.
We remark that this formula is stated without proof in [GJ06], and
the method of derivation is known to experts in this field, thus we will
be brief in our derivation.

We start with the basic equations

Ric(g+) = —ngs, (24)
1

g9+ = ﬁ(drz + h(r,-)) (25)

ho= g+7r2¢% + %W 4 4 he™logr +---. (26)

For future convenience, we denote
Cr=gMg .

First, we have the following Lemma, which follows from a simple
computation.

Lemma 8
w@ = lpoey
2
O %[TrCZ; + 0a(Ch) — i(Tr )2, (27)
We set up a local coordinate {z1, - -, x,} on M,; thus, {x1, -+, Tp, Tpi1 =

r} is a coordinate on X. By (24) and (25), we get,

rhi;+ (1—=n)hj; — RM R B —rhklhgkh;j + ghklh;lhgj —2r Ric(h);; =0,
(28)
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where we use ' to denote the derivative with respect to r and Ric(h)
is the Ricci curvature of the submanifold M, with respect to the re-
stricted metric h(r,-).

We analyze (28) by (26). Since n > 4 we get

B =2rg® 4 4r3¢W L 0>,
W' =2g? 112726 4 O(r%). (29)

Studying the coefficient of r in (28), we get a tensor equation over M,
29 + (1 —n)(29?) — 2gklg]g)g — 2Ric(g) = 0. (30)
Taking trace with respect to g, which we will denote as Tr,, we get

Ry = (2 —2n)Tr,g'?,

or,
R
Jg = ﬁ = —Trgg(2). (31)
Combine (30) and (31), we get
1
9(2) = 2- )(chg —Jg)=-F (32)
and 1
2 — 7Jg

We now apply the same method to compute v, Studying the
coefficient of 73 in (28), we have

12¢% + (1= n)(4gW) —a— B+~ -2 =0, (33)

where o, 3,7, are the coefficients of 73 in Tr[h = #/)h, rh' b= 1/, %h_lh’h’
and r Ric(h), respectively.
We now compute these coefficients. First notice that

h~l = [(Id+B)g =g '(Id-—B+B?>-B*+...),
= g1 —r2Cy —riCy + 1102 + o(rh)). (34)

Combing with (28), we get

a = —2(Tr C3)g + Try[(4g™W)]g + Try[29P]g?. (35)

11



Similarly, we can get,
B=29% g7" (29%), (36)
1
7 = 5Trg[29%](29), (37)
Thus, by (33), we get

0 =129 + (1 — n)(4g"W) + 2(Tr CF)g — Tr,[(49")]g
~Try[29P]g® — 49@ g71 ¢® 4+ 2Ty [¢P)(¢P) —26  (38)

Taking trace with respect to g, we get
(16 — 8n)Tr,g™® + (2n — 4)(Tr C3) — 2Tr,0 = 0;
or, equivalently we get the fomula
[(8 — 4n)Tr Cy + (n — 2)(Tr C3)] — Tryd = 0. (39)
Regarding to the term involving 4, we will prove the following
Lemma 9
Tryd = (4 — 4n)Tr Oy + (n — 1)Tr C3.

This lemma can be verified by relating the scalar curvature of g
to that of the scalar curvature of g and h(r,.). The computation is
tedious but relatively routine. We will skip the detail here.

Combine the formula in 39 and 9, we have

Tr Cy = Tr C3. (40)

By Lemma 8 and (40), we get

1 1 1 1 1
v = S [Tr Citon(Co)—((TCE)] = 5 (02(Ca)—502(C2)) = 702(Ca).
Noticing that Cy = —F,, where P, is the Schouten tensor, we have

established the following

Theorem 10 For n > 4, we have

12



4 Variational property of (0)

In this section, we study the properties of

1

v(g) = —3 [og(g) +

1

——(P,)"(B,)..| .
s (B
We give a direct proof of the following special case of Theorem 2.

Theorem 11 For any metric h on M and 6 < n = dim M, define a
functional

n—=6

Fa(h) = /M v (R)dvoly, /( /M dvoly) =, (41)

then Fj3 is variational within the conformal class; i.e., the critical
metric in [h] satisfies the equation

0% = constant. (42)

For n =6, we have that F5(h) is constant in the conformal class [h].

To prove the theorem, we first recall some basic conformal trans-
formation law for the curvature invariants involved.

Lemma 12 For a fixed smooth function ¢ defined on M, we consider
two conformal equivalent metrics, g and gy = e??qg on M. Then we
have, under a local coordinate system,

1
P(gy)i; = Pij — bij + didhj — §’V¢\2gz’j7 (43)

B(gg)ij = € 2?[Bij — (n—4)(Cirj + Ciri)d" — (n — 4)Wiiud* ¢'], (44)

where W and C are the Weyl tensor and Cotten tensor of g, respec-
tively.

We now consider a family of conformal metrics on M, g, = e*?g
and denote D = %|t:0 as before.

Now we can compute D[F3(g:)]. We separate the computation in
two steps.
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First,
D [ Byl P (gdvol(a)

= /{D[Bij(gt)]Pij + Bi; D[P (g)t]}dvol + B;; P” D]dvol(g)]}
= / [—2¢B;; P9 — 2(n — 4)Ciju P 6" — Bij¢" + (n — 4)¢By; PY]dvol
= / [~2¢B;; PY — 2(n — 4)Cyjs, PP ¢* + V' Bi;¢7 + (n — 4)¢B;; PY]dvol
= / [—2(n — 4)Cijp P — (n — 4)Cyji.PY ¢* + (n — 6)¢Bi; PY]dvol
- / [=3(n — 4)Cyyp P + (n — 6)¢Byy PY)dvol,

Second, define the Newton tensor as

T = 09(g)g"” — o1(g) P + (P?)Y.

Then we have

D ([ oatgn)dvol(g)
= / [03(9)(n — 6)¢ — T ¢;5]dvol
— [ loalo)n — 61+ T, )dvol. (45)

By the Bianchi identity, we have
PY = V'J;
7-] )
(P?) = (pPfPY),
= PLJ*+ PPk
= P,iJ’k + giSCksijj + ijP,;Zj
, y 1.
= PiJ*F4+CMip,; + §V’[Trg(P2)]
ik kij |- 2
= P"Jp+C" P+ §V [Trq(P)]. (46)
Thus, we have

/ TZ]] ¢pidvol
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— / {oy — J;PY — JJ' 4+ P* ]y + CFIp; + 5V’ [Tr,(P?)]}¢idvol

- ) 1
= / [CK Py + Vi{o2 + 5(Trglﬂ — J)psdvol

— / C*ii pyididvol. (47)
Finally, we can combine these to get
DF3(gt)
— —%[D (/ o3(g¢)dvol (g¢)) + ﬁD /Bij(gt)Pij(Qt)dWl(Qt)]
= (n—6) / v pdvol. (48)

Theorem 11 then follows easily.
Remark 13 From (43) and (44), we see that the equation
v (g,y) = constant. (49)

is a second order PDE in terms of the conformal factor w. This is
in analogue of oi(gy) = constant equation which has been intensively
studied in recent years. It remains to see under what conditions can
the PDE (49) be solved for metrics in a fized conformal class and if the
sign of the integral fv(6) (9)dvg plays some role and carries geometric
information as in the case for fv(4) (9)dvg on manifolds of dimension
3 and 4 (cf. [GVO01, CGY02]). The authors wish to report some
further study of this problem in the future.
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