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An absolutely classical problem in enumerative combinatorics and

in statistical mechanics, and inter alia in theoretical chemistry is

the enumeration of self-avoiding walks and polygons on a two- or

three-dimensional lattice.

Figure 1: A typical SAP on Z
2
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• The key question asked is, quite simply, how many SAW or

SAP are there of length n-steps, equivalent up to a translation?

• In the absence of a closed form solution, much effort has been

devoted to finding the answer to the above question for simpler

models.

• All of the solved, simpler models have a differentiably finite

generating function (otherwise called holonomic).

• Such functions satisfy a linear ODE with polynomial

coefficients.

• SAP do not (Rechnitzer), and nor do SAW (not proved, but

true).

• This distinction applies to a much broader class of problems

than just SAW and SAP.
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• For example, the Ising model. Specific heat and magnetisation

are known (and are D-finite), while the susceptibility is not

known (and is not D-finite).

• Here we consider two previously unsolved problems, that of

three-choice polygons and staircase polygons with staircase

holes, and one new (and still unsolved problem), prudent SAW

and SAP.

Figure 2: A 3-choice polygon
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• We obtain the perimeter generating function of three-choice

polygons and staircase polygons with staircase holes.

• We comment on the area generating function, and two-variable

(area-perimeter) generating functions.

• Prudent SAW were introduced by Turban and Debierre in

physics and by Pascal Préa in the mathematics literature.

More recently it has been carefully studied by Enrica Duchi.

They are conjectured to be non-D-finite, but may be solvable.

• At the very least, we already have a polynomial time algorithm

for their series expansion.
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• Three-choice SAW were introduced by Manna in 1984.

• They were defined to be SAW on the square (Z2) lattice, such

that after an E step, the next step could only be N or E, while

after a W step, the next step could only be S or W.

• This constraint is in addition to the SAW constraint.

• It is easy to prove that the number of such n-step SAW

equivalent up to a translation, grows as tn = µn+o(n).

• Whittington showed that µ, the growth constant, is exactly 2.
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• Thus the number of n-step 3-choice SAW tn grows as

tn = 2(n+o(n)) where we don’t have a clear idea of the

sub-dominant behaviour, unlike normal SAW on the same

lattice.

• The polygon version of this problem was first considered by

Conway, Delest and Guttmann in 1997.

• They gave a polynomial time algorithm for generating such

polygons, and demonstrated this by generating polygons with

perimeter up to 506 steps (250 coefficients).

• The 3-choice rule generates staircase polygons with multiplicity

2n, and imperfect staircase polygons with multiplicity 2 as they

can be rotated through 180 deg .
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• Let T (x, y) =
∑

m≥0,n≥0 tm,nxnym be the o.g.f. of 3-choice

polygons by semi-perimeter.

• Then T (x, y) =
∑

n≥0 xnTn(y) where the generating function

for 3-choice polygons with 2n vertical bonds, Tn = Pn(y)
Qn(y) is

rational.

• Then we observed, and later M. Bousquet-Mélou proved, that

Qn(y) = (1 − y)2n−1(1 + y)(2n−7)+ n even

Qn(y) = (1 − y)2n−1(1 + y)(2n−8)+ n odd

.
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• Unfortunately, we don’t know the numerators, apart from their

value at 0 and −1 (MBM).

• The enumeration of imperfect staircase polygons can be set up

as a sum over determinants, using the Gessel-Viennot idea, but

it is a five-fold sum, with constraints over three additional

indices, and so is entirely unmanageable.
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• However, the fact that it is a finite determinant (4 by 4) means

that the generating function corresponding to each determinant

in the sum is D-finite, and by the closure properties of D-finite

functions under addition, so is the solution.

• But a search for the generating o.d.e. based on 250 terms was

not successful.

• One of the problems was the lack of adequate software to

search for huge, large order, o.d.e’s.

• Solved by a MMA routine written by Jean-Marie Maillard and

colleagues, and some inspired guesswork.
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3-choice polygons may be staircase polygons (occurring with

multiplicity 2n) or imperfect staircase polygons, occurring with

multiplicity 2, illustrated below:

The generating function satisfies an 8th order homogeneous, linear

o.d.e., which is Fuchsian,

8
∑

i=0

Pi(x)f (i)(x) = 0,

1
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where

P8(x) = 32x8(1 + x)(4 + x2)(16 + 4x + 7x2)(x − 1)8Q
(8)
[25](x)

P7(x) = 16x7(x − 1)7Q
(7)
[31](x)

P6(x) = 16x6(x − 1)6Q
(6)
[32](x)

P5(x) = 24x5(x − 1)5Q
(5)
[33](x)

P4(x) = 30x4(x − 1)4Q
(4)
[34](x)

P3(x) = 15x3(x − 1)4Q
(3)
[34](x)

P2(x) = 90x2(x − 1)4Q
(2)
[34](x)

P1(x) = 180x(x − 1)4Q
(1)
[34](x)

P0(x) = 180x(x − 1)4Q
(0)
[33](x)

and Q[n] denotes a polynomial of degree n and we’ve normalized

the growth constant to 1.
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• The 25 zeros of Q
(8)
[25](x) are apparent singularities.

• The indicial equation at x = 1 gives exponents

-1/2, -1/2, 0, 1/2, 1, 3/2, 2, 3

and at x = −1

0, 1, 2, 3, 4, 5, 6, 13/2.

• Analysis of such high order ODEs, given indicial equations

with repeated roots, with roots separated by integers, and with

integer values, is enormously cumbersome.

• Even after the correct singularity structure is identified, to

determine the amplitude of the singularity is a very complex

task.
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• We can simplify the 8th order differential operator.

• We first found three solutions of the ODE, each corresponding

to an order one differential operator.

• We denote these L
(1)
i , with i = 1..3.

• We found that our 8th order differential operator can be

decomposed as L(8) = L(5)L
(1)
1 L

(1)
2 L

(1)
3 .

• Calculating the Wronskian of L(5) shows that it is further

decomposable, and we find L(5) = L(3)L(2).

• This then allows us to write down the form, in an appropriate

global basis of solutions, of the 8 × 8 matrix representing the

differential Galois group of L(8).

• To determine the asymptotics one would need to calculate

non-local connection matrices between solutions at different

points. This is a huge task for such a large differential operator.
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• Instead, we have developed a numerical technique that avoids

all these difficulties.

• We assume the most general form allowable by the indicial

equation, with all possible powers of logarithms.

• Then we generate a large number of coefficients (100,000 to

start with).

• Then we fit successive k−tuples of coefficients to the k

unknowns in the general fit, and observe the convergence.

• Then we discard the absent terms and repeat the process,

giving better convergence for the remainder.

1
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Analysis of the indicial equation, coupled with the numerical

technique described, enabled us to give the asymptotic form of the

coefficients

tn =
1√
n

∑

i≥0

(

ai log n + bi

ni
+ (−1)n

( ci

n7+i

)

)

.

The first two amplitudes ai and bi correspond to the “physical”

singularity, the third, ci corresponds to a non-physical singularity,

analogous to the anti-ferromagnetic singularity seen in

combinatorial magnetic models (e.g. the Ising model, or SAW) on

loose-packed lattices.
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We have obtained the amplitudes ai, bi and ci for i ≤ 16 with a

precision of at least 60 digits, based on a careful analysis of the first

100,000 terms of the generating function. These can be generated

by Mathematica in less than 10 minutes.

In CDG the authors gave a combinatorial argument that suggested

that the dominant term is O(log n/
√

n) and further that

a0 = const./π3/2. A numerical study, based on 250 terms, led to the

conjecture that the constant was 12
√

3. The numerical study above

confirms all these conclusions with a precision of 100 decimal digits.

1
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• Is it a proof? No.

• But since we’ve proved the solution is D-finite, if we could

bound the degree of the ODE from the determinantel

formulation, we would have a proof.

• Is it correct? Indubitably. We have 200 independent

confirmations.

1
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• We have also looked at the area generating function. For

staircase polygons the area generating function is given by

A(q) =
∑

n≥1

anqn =
J1(1, 1, q)

J0(1, 1, q)
,

where Ji =
∑

n≥0
(−1)nq(n+i)(n+i+1)/2

(q)2n(1−qn+1)i , i = 0, 1.

• Based on a 500 term series, our analysis suggests that the

solution is of the form F (q)+G(q)/
√

1−qη
[J0(1,1,q)]2 . That is to say, the

leading singularity occurs at q = 1/η, where η is the first zero

of J0(1, 1, q), and F and G are regular in the neighbourhood of

q = 1/η.

• The solution is not, however, of the simple product form as

found for staircase polygons.

• We can see this by constructing Padé approximants of steadily

increasing order, which don’t stabilise.

1
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Prudent SAW.

A (regular) SAW never revisits a previously visited lattice site. To

reduce the danger of this potentially calamitous event prudent

SAW never try to even walk towards a previously visited site. That

is to say, if the extension of a proposed step would intersect a

previously visited site, the step is forbidden. This ensures that such

a walk is self-avoiding.

Figure 3: A prudent SAW

2
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We can also define a polygon version of prudent SAW by defining a

prudent SAP to be a prudent SAW whose end-point is adjacent to

its starting point.

Figure 4: A prudent SAP

The key aspect of this definition is that the end point of the walk is

always on the perimeter of the minimal bounding rectangle.

2
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• The model was introduced in the physics literature by Löıc

Turban and Jean-Marc Debierre in 1987.

• They called it a self-directed walk.

• Their Monte Carlo studies convincingly showed that ν = 1/2,

where ν is the exponent defining the mean-square end-to-end

distance, through 〈R2〉n ∼ const.n2ν .

• They also gave an argument that the exponent γ = 1, where γ

is the exponent governing the sub-dominant growth of the

number of such walks, cn ∼ const.µnnγ−1. This implies a

simple pole for the dominant singularity of the generating

function.

2
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• The model was introduced independently in the mathematics

“literature”, in an unpublished manuscript by Pascal Préa, in

the ’90s.

• It was recently (FPSAC2005) taken up by Enrica Duchi

(Université Paris 7).

• She considered two simplifications.

• In the first, the subsequence of steps WS and SW is forbidden.

Such walks always end on the north or east edge of the

bounding rectangle.

• Duchi obtained the generating function, which is rational.

2
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• The number of such SAW are found to grow as µnng with

µ = 2.48119... (the root of 1 − 2t − 2t2 + 2t3) and g = 0

(equivalently, γ = 1 as argued for the unsimplified model by

Turban and Debierre), so the generating function has a simple

pole.

2
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• A less restrictive simplification, in which a WS sequence is

forbidden if the walk visits the top of its bounding box, or a

WN sequence if the walk visits the bottom of its bounding box,

is also solved by Duchi.

• A much uglier algebraic generating function (of degree 4) is

obtained, but it still has a simple pole, with µ = 2.498785..

2
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• The unrestricted problem has not been solved, though Duchi

obtained a pair of functional equations which can be iterated to

produce the series coefficients in polynomial time.

• A very preliminary series analysis suggests that the number of

such walks behaves as µnng with µ = 2.5... and g ≥ 0. It should

be possible to significantly improve these estimates!

2
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• No series for prudent SAP has yet been generated, though this

is under development.

2
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• We have also calculated the anisotropic generating function Let

P (x, y) =
∑

m≥0,n≥0 tm,nxnym be the o.g.f. of prudent SAW

by perimeter.

• Then P (x, y) =
∑

n≥0 xnRn(y) where the generating function

for prudent SAW with n vertical bonds, Rn = Pn(y)
Qn(y) is rational.

2
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• We find that Qn(y) is given by a product of cyclotomic

polynomials.

• As n increases, so does the degree of the largest occurring

cyclotomic polynomial.

• If this behaviour persists, the generating function P cannot be

D-finite.

• We believe that this is the case.

2
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• Turning now to staircase polygons with an arbitrary staircase

hole, these are staircase polygons which contain a (fully

enclosed) staircase polygon.

3
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• It is clear that these can be viewed as two 3-choice polygons

with common bonds deleted. Thus it is not surprising that

their generating o.d.e. is similar in size and structure, and even

analytic properties.

• The generating function was also found to satisfy an 8th order

homogeneous, linear o.d.e.

8
∑

i=0

Pi(x)f (i)(x) = 0,

3
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where

P8(x) = 32x8(1 + x)(4 + x2)(16 + 4x + 7x2)(x − 1)8Q
(8)
[22](x)

P7(x) = 16x7(x − 1)7Q
(7)
[28](x)

P6(x) = 48x6(x − 1)6Q
(6)
[29](x)

P5(x) = 24x5(x − 1)5Q
(5)
[30](x)

P4(x) = 30x4(x − 1)4Q
(4)
[31](x)

P3(x) = 15x3(x − 1)3Q
(3)
[32](x)

P2(x) = 45x2(x − 1)2Q
(2)
[33](x)

P1(x) = 90x(x − 1)Q
(1)
[34](x)

P0(x) = 90xQ
(0)
[34](x)

and Q[n] denotes a polynomial of degree n.

3
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A similar factorization of the 8th order differential operator into a

third order, a second order and three first order differential

operator as was obtained for three-choice polygons has been found

for this problem too.

3
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A similar analysis of the indicial equation enabled us to give the

asymptotic form of the coefficients

sn = 1024 +
1√
n

∑

i≥0

(

ai log n + bi

ni
+ (−1)n

( ci

n7+i

)

)

.

The singularity structure is similar to that of 3-choice polygons,

apart from the leading constant, corresponding to a dominant

simple pole singularity. The next term has amplitude

a0 = −6144
√

3/π3/2.

In this case too we have estimated the amplitudes ai, bi and ci for

i ≤ 16 with a precision of at least 60 digits, based on a similar

analysis of the first 100,000 terms of the generating function.
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• We have also performed a similar analysis of the area

generating function.

• Based on a 500 term series, our analysis suggests that the

solution is of the form F (q)+G(q)
√

1−qη
[J0(1,1,q)]2 .

• That is to say, the leading singularity occurs at q = 1/η, where

η is the first zero of J0(1, 1, q), and F and G are regular in the

neighbourhood of q = 1/η.

3
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The motivation for studying punctured staircase polygons is to

proceed iteratively toward the scaling function of polyominoes.

They have a perimeter ogf with zero radius of convergence.

• We review the situation for staircase polygons with holes

(Guttmann, Jensen, Wong, Enting 2000) and the two-variable

area-perimeter generating function and scaling function for

staircase polygons and SAP (Richard, Guttmann and Jensen

2004).

3
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• van Rensburg and Whittington studied the area generating

function of SAP in Z
2 with k punctures. Writing the area

generating function

A(k)(q) =
∑

n>0

a(k)
n qn ∼ D(k)(q) + E(k)(q)(1 − κ(k)q)−βk ,

for a k-punctured SAP, they proved that κ(k) = κ(0) = κ, and

that if the exponent exists, βk = β0 + k.

3
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• In GJWE, the perimeter o.g.f. was considered,

P (k)(x) =
∑

n>0

p
(k)
2n xn ∼ B(k)(x) + C(k)(x)(1 − (µ(k))2x)2−αk .

• They proved that µ(k) = µ(0) = µ, and that if the exponent

exists, αk = α0 + 1.5k, though this was not proved, just

conjectured on the basis of an heuristic argument.

3
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• For polyominoes, if one classifies them by the number of

punctures, it can be proved that the growth constant is

κ ≈ 3.97087 < τ ≈ 4.06259, where κ is the growth constant for

SAP enumerated by area, and τ is the growth constant for

polyominoes, enumerated, of course by number of cells (i.e.

area).

• For k-punctured polyominoes we find

a(k)
n = [qn]A(k)(q) = κnnk−1

∑

i≥0

a
(k)
i /ni.

• We also proved that, if the exponent exists, it increases by 1

per puncture.

• Notice too that the correction terms go down by a whole

power, unlike the situation for punctured polygons.

3
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• For regular polyominoes, we proved in GJO that the perimeter

generating function has zero radius of convergence.

• The perimeter is defined to be the perimeter of the boundary

plus the perimeter of any holes.

• If p2n denotes the number of polyominoes, d.u.t.a.t, with

perimeter 2n, we proved that p2n = (2n)n/2+o(n).

• In fact we prove

lim
n→∞

log p2n

2n log 2n
=

1

4
.

• An attempt to study the quasi-exponential generating function

with coefficients rn = pn/(n/4)! was equivocal.

• For that reason, studying punctured staircase polygons was

considered a controlled route to determine the two-variable,

area-perimeter generating function of polyominoes.

4
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We briefly review the properties of the two-variable area-perimeter

generating function for both staircase polygons and SAP.

• Let pm(n) be the number of staircase polygons or rooted SAP

per site on an infinite lattice, with perimeter m enclosing area

n. In 1991 Fisher, Guttmann and Whittington proved that the

free energy

lim
m→∞

1

m
log

∑

n

pm,nqn := κ(q)

exists and is finite for all values of q ≤ 1.

• Further, κ(q) is log-convex and continuous for these values of q

and is infinite for q > 1.

4
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• The two-variable generating function is

P (x, q) =
∑

x,q

pm,nxmqn,

• It was proved that for q < 1, P (x, q) converges for x < e−κ(q).

• For q > 1, P (x, q) converges only for x = 0. The expected

phase diagram is shown below:

4
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0
0

x2

q

x2
c

1

Figure 5: The phase diagram showing the phase boundary xc(q).

• Below the phase boundary, the polygons are ramified objects,

closely resembling branched polymers.

• As q approaches unity, they fill out more, and become less

string-like. At q = 1 one has pure SAP.

4
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• For q > 1 the polygons become “fat”, indeed they become

convex polygons (OP) ’99, with their average area scaling as

the square of their perimeter.

• Fisher et al. obtained rigorous upper and lower bounds on the

shape of the phase boundary, and the locus of the actual phase

boundary was estimated numerically from extrapolation of

SAP enumerations by area and perimeter.

• The corresponding phase diagram for staircase polygons can be

determined exactly, and is qualitatively similar.

• In the extended phase q = 1, the mean area of polygons 〈a〉m of

perimeter m grows asymptotically like m3/2, whereas it grows

like m in the deflated phase q < 1.

• In the limit q → 0 the generating function is dominated by

polygons of minimal area.

4
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• Since for SAPs these polygons may be viewed as branched

polymers, the phase q < 1 is also referred to as the branched

polymer phase.

• This change of asymptotic behaviour is reflected in the singular

behaviour of the perimeter and area generating function.

• Typically, the line q = 1 is a line of finite essential singularities

for x < xc.

• The line xc(q), where P (x, q) is singular for q < 1, is typically a

line of logarithmic singularities.

• For branched polymers in the continuum limit, the logarithmic

singularity has been recently proved by Bridges and Imrie.

4
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• Of special interest is the point (xc, 1) where these two lines of

singularities meet. The behaviour of the singular part of the

perimeter and area generating function about (xc, 1) is

expected to take the special form

P (x, q) ∼ P (reg)(x, q) + (1 − q)θF ((xc − x)(1 − q)−φ), (x, q) ր,

(1)

where F (s) is a scaling function of combined argument

s = (xc − x)(1 − q)−φ, commonly assumed to be regular at the

origin, and θ = 1/3 and φ = 2/3 are critical exponents.

• The scaling function and exponents are provably correct for

staircase polygons and universally accepted for rooted SAP.

• For unrooted SAP θ = 1, and we must add a q dependent

constant of integration, C(q) = 1
6σπ (1 − q) log(1 − q), recently

discovered by Richard et al.
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• For staircase polygons, we have

F (s) =
1

8

d

ds
log Ai

(

(4
√

2)
2
3 s

)

(2)

• Working with rooted SAP, the conjectured form of the scaling

function is

F (r)(s) =
xc

πσ

d

ds
log Ai

(

π

xc
(2E0)

2
3 s

)

(3)

• The conjectured form of the scaling function is then obtained

by integration and is

F (s) =
1

πσ
log Ai

(

π

xc
(2E0)

2
3 s

)

(4)

with exponents θ = 1 and φ = 2/3.
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• The parameters for the square lattice are σ = 2 and

xc = 0.379052277757(5). The parameters for the hexagonal

lattice are σ = 2 and xc = 1/
√

(2 +
√

2) (known exactly from

the work of Nienhuis) and for the triangular lattice σ = 1 and

xc = 0.2409175745(3).
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• We still have some way to go to understand the polyomino

phase diagram, but feel this is the correct route.

• In conclusion, we have obtained the o.d.e. for the generating

function, by perimeter, of 3-choice and 1-punctured staircase

polygons.

• We have obtained some numerical estimates of the critical

properties of prudent polygons, and indicated that the

generating function is not D-finite.

• It still remains to obtain results for the area generating

function, and to unravel the phase diagram of polyominoes.
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