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MCF of closed embedded hyper-surfaces in Rn+1.

A one-parameter family of smooth embedded hypersur-
faces Mt in Rn+1 flow by mean curvature if

∂tx
⊥ = H̄ .

Here x is the position vector, n is the unit normal to
the hyper-surface,

H̄ = −H n .

and
H = div(n) .
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The unit sphere moves through round concentric spheres
and the flow stays smooth until the sphere disappears in
a point.

Precisely: round concentric spheres with radii
√
−2nt

(for t < 0) flow by mean curvature and disappear at
t = 0.

Planes (and, more generally, minimal surfaces) are static
under the MCF.

Cylinders Sk×Rn−k with radii
√
−2kt flow by MCF until

they become extinct in an (n− k)-dimensional plane.
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Huisken’s monotonicity.

Suppose now that the hyper-surfaces Mt are closed and
define a non-negative function on Rn+1 × (−∞, 0) by

Φ(x, t) = (−4πt)−
n
2 e
|x|2
4t .

The Huisken volume is ∫
Mt

Φ .

A computation shows

d

dt

∫
Mt

Φ = −
∫
Mt

∣∣∣∣Hn +
x⊥

2t

∣∣∣∣2 Φ = −
∫
Mt

∣∣∣∣H +
〈x,n〉

2t

∣∣∣∣2 Φ .

Hence, the Huisken volume is monotone non-increasing
under the MCF.
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Similarly, for t0 ∈ R and x0 ∈ Rn+1 if we define a
non-negative function Φx0,t0 on Rn+1 × (−∞, t0) by

Φx0,t0(x, t) = Φ(x− x0, t− t0) ,

then ∫
Mt

Φx0,t0

defines a volume ‘centered’ at (x0, t0) instead of at (0, 0).

We have the monotonicity

d

dt

∫
Mt

Φx0,t0 = −
∫
Mt

∣∣∣∣H − 〈x− x0,n〉
2(t0 − t)

∣∣∣∣2 Φx0,t0 .
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Self-similar shrinkers.

A MCF is said to be a self-similar shrinker if Mt =√
−tM−1 for t < 0. This can easily be seen to be equiv-

alent to that Σ = M−1 satisfies the equation

(0.1) H =
〈x,n〉

2
.

That is, if Mt =
√
−tM−1, then M−1 satisfies (0.1) and

conversely if Σ is a hyper-surface satisfying (0.1), then
Mt =

√
−tΣ flow by mean curvature.

Self-shrinkers are exactly the hyper-surfaces where there
is equality in Huisken’s monotonicity formula.
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Examples of self-similar shrinkers:

Hyperplanes.

Round spheres.

General cylinders Rk × Sn−k.

Angenent’s shrinking donut.

Numerical examples of Angenent, Ilmanen, Chopp, Nguyen,
Sethian, and others.



8

The F functional - critical points are self-shrinkers.

Suppose that Σ ⊂ Rn+1 is a hyper-surface with Eu-
clidean volume growth (or more generally polynomial vol-
ume growth). That is,

Vol(Br ∩ Σ) ≤ Crn .

For t0 > 0 and x0 ∈ Rn+1 we define an Fx0,t0 functional
by

Fx0,t0 = Fx0,t0(Σ) = (4πt0)−n/2
∫

Σ

e
− |x−x0|2

4t0 dµ

=

∫
Σ

Φx0,t0(·, 0) .

F = F0,1



9

The following gives a useful way of thinking of a self-
shrinker:

Lemma 0.2. Σ is a self-shrinker
⇐⇒
Σ is a critical point of the F functional
⇐⇒
Σ is a minimal surface in the metric gij = e−

|x|2
2n δij.

Proof. Suppose that Σs is a variation of Σ with normal
variational field f n where f is compactly supported.
Then an easy computation gives

d

ds
F (Σs) = (4π)−

n
2

∫
Σ

f

(
〈x,n〉

2
−H

)
e−
|x|2

4 .

�
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Smooth compactness theorem for self-shrinkers.

The following smooth compactness theorem for self-shrinkers
in R3 will be useful later on.

Theorem 0.3. (C-Minicozzi).

Given an integer g ≥ 0 and a constant V > 0, the space
of smooth complete embedded self-shrinkers Σ ⊂ R3 with
genus at most g, ∂Σ = ∅, and the scale-invariant area
bound

Area (BR(x0) ∩ Σ) ≤ V R2

for all x0 ∈ R3 and all R > 0 is compact.

Namely, any sequence has a subsequence that converges
in the topology of Ck convergence on compact subsets for
any k ≥ 2.
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Self-shrinkers model singularities in mean curvature flow
(“MCF”) so this compactness theorem gives some control
over the possible singularities.

The genus bound and scale-invariant local area bound
will automatically come from corresponding bounds on
the initial surface in a MCF.

This compactness theorem will play an important role
in understanding generic mean curvature flow.
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Tangent flows.

Self-shrinkers play an important role in the study of
mean curvature flow, not least because they describe all
possible blow ups at a given singularity of a mean curva-
ture flow.

To explain this, we will need the notion of a tangent flow,
which generalizes the tangent cone construction from min-
imal surfaces.
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Tangent flows continued.

The basic idea is that we can rescale a MCF in space
and time to obtain a new MCF thereby expanding a small
neighborhood of the point that we want to focus on.

Huisken’s monotonicity gives uniform control over these
rescalings and a standard compactness theorem then gives
a subsequence converging to a limiting solution of the
MCF. This limit is called a tangent flow.

A tangent flow will achieve equality in Huisken’s mono-
tonicity formula and, thus, must be a self-shrinker.
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Tangent flows; precise definition.

The precise definition of a tangent flow at a point (x0, t0)
in space-time of a MCF Mt is as follows:

First translateMt in space-time to move (x0, t0) to (0, 0)
and then take a sequence of parabolic dilations (x, t) →
(cj x, c

2
j t) with cj →∞ to get MCF’s

M j
t = cj

(
Mc2j(t−t0) − x0

)
.
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Using Huisken’s monotonicity formula, and Ilmanens
compactness theorem for Brakke flows, White and Il-
manen show that a subsequence of the M j

t ’s converges
weakly to a limiting flow Tt that we will call a tangent
flow at (x0, t0).

Another application of Huisken’s monotonicity shows
that Tt is a self-shrinker.

Uniqueness of Tt is unknown. That is, whether differ-
ent sequences of dilations might lead to different tangent
flows.



16

Conjecture about regularity of tangent flows.

Ilmanen: in R3 tangent flows at the first singular time
must be smooth.

Conjecture 0.4. (Ilmanen). For a smooth one-parameter
family of closed embedded surfaces in R3 flowing by mean
curvature, every tangent flow at the first singular time has
multiplicity one.

If this conjecture holds, then it would follow from Brakke’s
regularity theorem that near a singularity the flow can be
written as a graph of a function with small gradient over
the tangent flow.
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Smooth up to the first singular time

We will say that a MCF is smooth up to and including
the first singular time if every tangent flow at the first
singular time is smooth and has multiplicity one.

Conjecturally, all MCF in R3 are smooth up to the first
singular time.
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Regularity conjecture in higher dimension.

It is a well-known conjecture that the space-time singu-
lar set of any (non-fattening) MCF starting at a closed
smooth embedded n-dimensional hypersurface has codi-
mension at least three (recall that time is counted as if it
had dimension two, so that the space-time track that the
hyper-surface fan-out has space-time dimension n + 2).

Similarly, it is conjectured that any time slice of a tan-
gent flow is an n-dimensional self-shrinker with singular
set of dimension at most n− 3; this is equivalent to that
the singular set of the tangent flow has dimension at most
n− 1.

Conjecture 0.5. For a smooth closed embedded hyper-
surface M0 in Rn+1. A time slice of any tangent flow
of the MCF starting at M0 has multiplicity one and the
singular set is of dimension at most n− 3.
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Back to MCF starting at a smooth closed hyper-surface.

Results of Grayson, Huisken, Hamilton, Gage, White,
Huisken-Sinestrari.
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Examples

The snake, the dumbbell.
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Virtually no hope of general classification.

Virtually no hope of general classification of tangent
flows and self-shrinkers.

Recall Angenent’s shrinking donut, numerical examples
of Angenent, Ilmanen, Chopp, Nguyen, Sethian, and oth-
ers.
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Recall the F functional. The entropy.

Given x0 ∈ Rn+1 and t0 > 0, define the functional Fx0,t0

by

Fx0,t0(Σ) = (4πt0)−n/2
∫

Σ

e
−|x−x0|2

4t0 dµ .

The entropy λ = λ(Σ) of Σ will be the supremum of
the Fx0,t0 functionals

λ = sup
x0,t0

Fx0,t0(Σ) .

The key properties of the entropy λ are:

• λ is non-negative and invariant under dilations, ro-
tations, or translations of Σ.
• λ(Mt) is non-increasing in t if the hypersurfaces Mt

flow by mean curvature or by the rescaled mean cur-
vature flow.
• The critical points of λ are self-shrinkers for the mean

curvature flow.
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Entropies

In R3 we have the following entropies:

The plane has entropy 1.

The sphere has entropy 4
e = 1.4715 . . . .

The cylinder has entropy
√

2π
e = 1.5203 . . . .
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F -stability.

The main point of these functionals is that Σ is a critical
point of Fx0,t0 precisely when it is the time t = −t0 slice of
a self-shrinking solution of the mean curvature flow that
becomes extinct at x = x0 and t = 0. It turns out that
every critical point Σ is unstable in the usual sense; i.e.,
there are always nearby hypersurfaces where the Fx0,t0

functional is strictly less. This is because translating a
self-shrinker in space (or time) lowers the functional.

The stability that we are interested in, which we will
call F -stability, mods out for these translations:

A critical point Σ for Fx0,t0 is F -stable if for every
bounded variation Σs with Σ0 = Σ, there exist variations
xs of x0 and ts of t0 that make F ′′ = (Fxs,ts(Σs))

′′ ≥ 0 at
s = 0.

A bounded variation Σs over Σ is a one-parameter fam-
ily of graphs over Σ given by {x + s f (x) n(x) |x ∈ Σ}
where n is the unit normal and f is a bounded function
on Σ.
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Entropy stability.

Recall that the key properties of the entropy λ are:

• λ is non-negative and invariant under dilations, ro-
tations, or translations of Σ.
• λ(Mt) is non-increasing in t if the hypersurfaces Mt

flow by mean curvature or by the rescaled mean cur-
vature flow.
• The critical points of λ are self-shrinkers for the mean

curvature flow.

These properties are the main advantages of the entropy
functional over the F functionals. The main disadvantage
of the entropy is that it need not depend smoothly on Σ.

To deal with this, we will say that a self-shrinker is en-
tropy stable if it is a strict local minimum for the entropy
functional.
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Classification of entropy stable self-shrinkers.

To illustrate our results, we will first specialize to the
case where n = 2, that is to mean curvature flow of sur-
faces in R3.

Theorem 0.6. (C-Minicozzi).

Suppose Σ ⊂ R3 is a self-shrinker with polynomial vol-
ume growth, but is not a sphere, a plane, or a cylinder.

Then Σ can be perturbed to an arbitrarily close hyper-
surface Σ̃ where the entropy is strictly less.

In particular, Σ cannot arise as a tangent flow to the
MCF starting from Σ̃.
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F -stable in R3.

The next theorem will play a key role in the proof of the
previous theorem (Theorem 0.6).

Theorem 0.7. (C-Minicozzi).

The sphere and the plane are the only smooth self-
shrinkers in R3 with polynomial volume growth that are
F -stable with respect to variations with compact support.
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Piecewise MCF.

A piece-wise MCF is a finite collection of MCF’s M i
t

on time intervals [ti, ti+1] so that each M i+1
ti+1

is the graph

over M i
ti+1

of a function ui+1 and

Area
(
M i+1

ti+1

)
= Area

(
M i

ti+1

)
,

λ
(
M i+1

ti+1

)
≤ λ

(
M i

ti+1

)
.

With this definition, area and entropy are non-increasing
in t even across the jumps.

We will define a piece-wise rescaled MCF similarly, ex-
cept that each M i

t moves by a rescaled mean curvature
flow.
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Generalization of Huisken and Grayson’s theorems.

For simplicity, we assume in below that the MCF is
smooth up to and including the first singular time. As
mentioned, this would be the case for any MCF in R3 if
the multiplicity one conjecture holds.
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Generalization of the results of
Gage-Hamilton, Grayson, and Huisken.

Theorem 0.8. (C-Minicozzi).

For any closed embedded surface Σ ⊂ R3, there exists a
piece-wise MCF Mt starting at Σ and defined up to time
t0 where the surfaces become singular. Moreover, Mt can
be chosen so that if

lim inf
t→t0

diamMt√
t0 − t

<∞ ,

then Mt becomes extinct in a round point.
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One consequence of this theorem (Theorem 0.8) is that
if the initial surface is topologically not a sphere, then
the piece-wise flow must develop a non-compact (after
rescaling) singularity.

Remember the example of a dumbell.
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Higher dimensions

The next two theorems are the first steps for the higher
dimensional version.

Theorem 0.9. (C-Minicozzi).

Suppose Σ is a smooth self-shrinker with polynomial
volume growth, but is not a sphere and does not split off
a line isometrically.

Then Σ can be perturbed to a graph Σ̃ over Σ of a
function with arbitrarily small Ck norm (for any fixed k)
so that the entropy of Σ̃ is strictly less than the entropy
of Σ.

In particular, Σ cannot arise as a tangent flow to the
MCF starting from Σ̃.
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Higher dimensions continued.

The next theorem will be a key step in the proof of the
previous theorem; Theorem 0.9.

Theorem 0.10. (C-Minicozzi).

If Σ is a smooth self-shrinker in Rn+1 with polynomial
volume growth that is F -stable with respect to compactly
supported variations, then it is either the round sphere or
a hyperplane.



34

Regularity of tangent flows.

As mentioned above, it is conjectured that the space-
time singular set of any MCF starting at a closed smooth
embedded n-dimensional hypersurface has codimension
at least three (recall that time is counted as if it had
dimension two, so that the space-time track that the hy-
persurface fan-out has space-time dimension n + 2).

Similarly, it is conjectured that the singular set of a tan-
gent flow has dimension at most n − 1. Thus, in partic-
ular, since any tangent flow is self-similar it follows that
any time slice of a tangent flow is an n-dimensional self-
shrinker with singular set of dimension at most n− 3.
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Regularity of tangent flows continued.

In both theorems from two slides ago if n ≤ 6, then
we only need to assume that Σ is an oriented integral
varifold that is smooth off of a singular set with locally
finite (n− 2)-dimensional Hausdorff measure.


