Turkish Journal of Mathematics

Turkish Journal

of
Mathematics
Evidence for a conjecture of Pandharipande

Jim Bryan
Department of Mathematics, Tulane University
E-mail address:jbryan@math.tulane.edu

Abstract

In his paper "'Hodge integrals and degenerate contributions", Pandharipande studied the relationship between the enumerative geometry of certain 3 -folds and the Gromov-Witten invariants. In some good cases, enumerative invariants (which are manifestly integers) can be expressed as a rational combination of Gromov-Witten invariants. Pandharipande speculated that the same combination of invariants should yield integers even when they do not have any enumerative significance on the 3-fold. In the case when the 3 -fold is the product of a complex surface and an elliptic curve, Pandharipande has computed this combination of invariants on the 3-fold in terms of the Gromov-Witten invariants of the surface. This computation yields surprising conjectural predictions about the genus 0 and genus 1 Gromov-Witten invariants of complex surfaces. The conjecture states that certain rational combinations of the genus 0 and genus 1 Gromov-Witten invariants are always integers. Since the Gromov-Witten invariants for surfaces are often enumerative (as oppose to 3 -folds), this conjecture can often also be interpreted as giving certain congruence relations among the various enumerative invariants of a surface. In this note, we state Pandharipande's conjecture and we prove it for an infinite series of classes in the case of $C P^{2}$ blown-up at 9 points. In this case, we find generating functions for the numbers appearing in the conjecture in terms of quasi-modular forms. We then prove the integrality of the numbers by proving a certain a congruence property of modular forms that is reminiscent of Ramanujan's mod 5 congruences of the partition function.

Turk. J. Math., 26, (2002), 69-74.
Full text: pdf
Other articles published in the same issue:Turk. J. Math.,vol.26,iss.1.

