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LEGENDRIAN GRONWALL CONJECTURE

JOE S. WANG

ABSTRACT. The Gronwall conjecture states that a planar 3-web oftfolia which admits more than one distinct
linearizations is locally equivalent to an algebraic webe jgvopose an analogue of the Gronwall conjecture for the
3-web of foliations by Legendrian curves in a contact thremifiold. The Legendrian Gronwall conjecture states that a
Legendrian 3-web admits at most one distinct local linedidmn, with the only exception when it is locally equivalent
to the dual linear Legendrian 3-web of the Legendrian twiistgbic in P3. We give a partial answer to the conjecture
in the affirmative for the class of Legendrian 3-webs of maximrank. We also show that a linear Legendrian 3-web
which is sufficiently flat at a reference point is rigid undecdl linear Legendrian deformation.

1. INTRODUCTION

Let M be a connected contact three manifold. A Legenddaneb on M is by definition a set ofd pairwise
transversal foliations of\/ by Legendrian curves. The Legendrian web was introduceiV?] for a second
order generalization of the classical planar web.

Abelian relations and rank, two of the central concepts ib geometry, are analogously defined for the Leg-
endrian web. The main result of [Wa2] was that the rank of aebegan d-web admits the optimal bound
pd = w. We also gave an analytic characterization of the Legend@iarebs of maximum rank
three.

In this paper we study the linearization problem for the llyean 3-webs with a more algebro-geometric
perspective. As described in [Wa?2], the algebraic modetHerLegendrian web theory is provided by the pro-
jective duality associated with the simple Lie group,SpFigure[1.1, see Sectidn 1.1, [Br]. By the standard
dual construction, a null degreé surface ¥ ¢ Q2 induces the duaki-web of Legendrian lines on a generic
small open subset ap3 i Generalizing this, dinearizationof a Legendriand-web on a contact three manifold
M is defined as a contactomorphisid — P2 for which the image of each leaf of the Legendrian foliations
is mapped to a Legendrian line. A natural question arises aghich Legendriand-webs are linearizable, and
how unigue such a linearization is. The linearizability eon for a planar web can be traced back to Balschke,
[BB|/AGL| IGL| IPE[Pir] and the references therein. See [Wal }lie references on the Gronwall conjecture.

It is the uniqueness part of the linearization problem thatare interested in. In planar web geometry, the
Gronwall conjecture states that a planar 3-web admits mwae bne distinct linearizations (uniqueness fails)
whenever the 3-web is locally equivalent to an algebraic.wkbother words, the conjecture claims that the
failure of unique linearization, or equivalently the limekeformability, implies that the planar 3-web is esseltial
algebraic.

One of the motivations for the present work was thereforeidba that the condition for linear deformability
may lead to a special, possibly algebraic, class of linegehdrian 3-webs. Through these examples one might
hope to gain an insight on the analogues of Abel’s theorenitarmnverse in our setting, Sectioh 4.

For the Legendriani-webs, d > 4, the uniqueness of linearization follows from the localmal form for the
projectively flat third order ODE's| [SlY, Corollary 4.2]. €case of Legendrian 3-webs on the other hand is not
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1an analytic surfacex ¢ Q* C P* has null degreel when it intersects a generic null line @° at d points. Hence it has degrexi
as a surface iP*,
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Figure 1.1. Projective duality associated with Sp

obvious. We shall employ the method of moving frames and dballdifferential analysis to analyze the linear
Legendrian deformation and rigidity of the linear LegeadrB-webs on an open subset®f.

Main results.

1. The number of distinct local linearizations of a Legeadr3-web is uniformly bounded, Theordm 3114 (the
bound is far from being optimal).

2. A linear Legendrian 3-web on a connected open subs& a$ rigid under linear Legendrian deformation
when it is sufficiently flat at a single point, Theorém 3.16.

3. We propose the Legendrian analogue of the Gronwall cangcConjecturé 511. The conjecture claims
that a Legendrian 3-web on a connected contact three mdmitirhits at most one distinct linearization, with the
only exception when the 3-web is locally equivalent to thaldimear Legendrian 3-web of the Legendrian twisted
cubic curve inP? (in which case it has exactly two distinct local linearipag). We verify the conjecture for the
class of Legendrian 3-webs of maximum rank three, Theardn 4.

Let us give a description of the deformable Legendrian 3-ind¥ain results 3. Let v C P3 be the Legendrian
twisted cubic. Take a generic point & P3. Let P2 be the contact 2-plane at x, which is the union of the
Legendrian lines through x. Sincgis a curve of degree 32 intersectsy at 3 points. By definition ofP? these
points determine the corresponding 3 Legendrian linesutiirox. It is clear that as x varies this construction
defines a linear LegendriaB-web )V, on a generic small open subset Bf. Our analysis shows thawV,
admits another (exactly one more) distinct linearizatemg that it is the unique such linear Legendrian 3-web of
maximum rank.

The three Abelian relations ofV, admit the following geometrical interpretation as a geliezd addition
law for the Legendrian twisted cubic. Take a set of 3 geneviatp p, ¢ = 1, 2, 3, on 7. Then the 3 planes
IP2 intersect at a single point, and one consequently gets & Setancurrent Legendrlan lines. The choice of
three points on a given curve depends on three one-dimensional parameters. Once thiege a@ fixed, the
choice of a Legendrian line through each of these pointsddgpends on three one-dimensional param@tﬁres
evident from the above incidence relation that, roughlyakpey, the latter three parameters are functions of the
former three parameters. The three Abelian relation®lafimplies that in fact there exist three additive form of
functional relations among the total six one-dimensiorzbmeters.

Considering the obvious analogue of the converse of Ableésiem, Sectiohl 4, the relevant point here would
be that the incidence geometry described above manifest$ tihrough theadditive functional equations among
the related geometric quantities which by constructiortiadirst integrals of the foliations ofV,. As is the case
with the planar web geometry, perhaps this additivity pilegi a concrete evidence to infer, and in turn it would
imply via the converse of Abel’s theorem, the underlyingesigaic structure.

There is another algebro-geometric implication of theghkeelian relations oV, on the degeneration of K3
surfaces inP* in the context of the presumed Legendrian analogue of Atissrem and its converse. Consider
the surfacey, = 7 o 7, ' () C Q3. Since~ is Legendrian,%,, is the tangent developable of the Gauss map of
~, which is a null rational normal curve 9. Via the converse of Legendrian Abel's theorem, the threeliab
relations of YW, would then imply that>, supports three generalized closed holomorphic 1-formsth@mther
hand, 3, lies in the intersection of2® with a cubic hypersurface dP*. A smooth complete intersection of type
(2, 3) in P* is a K3 surface, which has no nonzero holomorphic 1-formse dimalytic surfacez,, represents in

2Here we mean a choice of a section dPa x P* x P*-bundle overy x v x 7.
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this way a degeneration of K3 surfaces where the dimensitimeecafpace of closed holomorphic 1-forms jumps by
three.

Let us give an outline of the paper. In Sectlon]1.1, we recheldgeneralities on the duality between the
projective spacéP? and the 3-quadridQ? c P*. In Sectior 2, the moving frame method is applied to deteemin
a normalized frame bundle associated with a linear Legandiweb on an open subset Bf. The normalized
frame bundle serves as a base point for the linear Legendefmmmation of the 3-web. In Sectiéh 3, the standard
deformation analysis in terms of the deformed Maurer-@agquation leads to the closed structure equation
for the deformation parameters. The differential comglégibconditions among these parameters imply a set of
polynomial equations that they must satisfy. The rigidégults Theoremn 3.14 and Theorem 3.16 are the immediate
consequences of the analysis of the root structure of thddirslow degree polynomial compatibility equations.
In Section 4, we implement the procedure established in@g8tto the class of maximum rank Legendrian 3-
webs. Drawing from [Wa2] the analytic characterization wfts 3-webs, we first observe that a Legendrian 3-web
of maximum rank always admits a linearization as the duak®-of a union of three hyperplane sectionsgn.

A further analysis of the polynomial compatibility equattoshows that there exists a unique linear Legendrian 3-
web of this kind which is contact equivalent (and not prajedy equivalent) to the dual 3-web of the Legendrian
twisted cubic described above, and that otherwise theseli®are rigid under linear Legendrian deformation.
Based on this analysis, we propose the Legendrian analdghe oonverse of Abel’s theorem. In Sectidn 5, we
state the Legendrian Gronwall conjecture, and present adarks on the related problems.

We assume the complex analytic category. The analysis aodtsere valid within the real smooth category
with only minor modifications. The moving frame method, ahd tver-determined PDE machinery are used
throughout the paper. We refer the readef to [BCG3][IL] for standard references.

1.1. Projective duality. Let V = C* be the four dimensional complex vector space. kete the standard
symplectic 2-form onV/. Let P3 = P(V') be the projectivization equipped with the induced contacicture. The
contact 2-plane field4 on P? is defined by

(1.1) Hx = P((xaw)t), for x € P,

wherex € V is any de-projectivization of x. Sincer is non-degeneratdx.w)- C V is a codimension one
subspace containirg and its projectivizatiorP((Xuw)*) c P? is a hyperplane at x. The symplectic groupSp
acts transitively oriP? as a group of contact transformation.

Let AoV = (w )+ c A*V be the five dimensional subspace of isotropic 2-vectors. ILgj(V) be the set
of two dimensional Lagrangian subspacesiaf Lag(V') is identified with the 3-quadri@)® ¢ P* = P(A\2 V)
via the Plucker embedding. 8P acts transitively onQ?, and Q? inherits the SpC invariant non-degenerate
conformal structure.

Let Z = P(H) — P2 be the bundle of Legendriaf{(-horizontal) line elements. It can be defined as the
incidence space

Z={(x,L)eP*xQ® | xAL=0 }.

The projective duality in Figure_1.1 represents the follogvBp C equivariant incidence double fibration, Figure
[1.2. By definition of Z, it is clear that both fibers of,, 71 are isomorphic toP!. A fiber of =, the set of
Legendrian lines through a point i3, projects to a null line ofQ?3, and dually a fiber ofr;, the set of null lines
through a point inQ?, projects to a Legendrian line @?3. The duality correspondence can be summarized by;

P3 is the space of null lines i3, and dually Q? is the space of Legendrian lines 7.

There exists an immediate application of the duality ppleci Let v C P3 be a Legendrian #-horizontal)
curve. The Gauss map C Q? is defined as the tangent map of By duality, 4 is the envelope of a one
parameter family of null lines. Hencg itself is a null curve inQ3.

To fix the notation, let us define the projection mapsmy, and 71 explicitly. Let Z = (Zy, Z1, Zs, Zs3)
denote the S C SL4C frame of V such that the 2-vectoto, = Zy A Zs + Z1 A Z3 is dual to the symplectic
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Figure 1.2. Incidence double fibration

form w. Define

(1.2) m(Z) = ([Zo], [Z0 N Z1]),
mo([Zo], [Zo N Z1]) = [Zo],
71([20], [Zo N Z1]) = [Zo N Z1].

In this formulation, the stabilizer subgroup P in Figurd is.Bf the form

(L3) P={ (‘f‘ ( Afi_l)},

where (A~'B)! = A~'B, and
X ok
i
Here "’ denotes 0 and«’ is arbitrary.

The SpC-frame 7 satisfies the structure equation

(1.4) Az =7 ¢
for the Maurer-Cartan formy of Sp,C. ¢ satisfies the structure equation
(1.5) dp+oNep=0.
The components of are denoted by

o of o
1.6 o= (5 )= 5 2% Zhl

0
5(% 5% —04(1) —oq

where { o, 3, v } are 2-by-2 matrix 1-forms such that = 3, 4* = .

2. LINEAR LEGENDRIAN 3-WEBS

Let W be a Legendriani-web on a contact three manifold/, [WaZ2]. A linearization of W is a contacto-
morphism M < P2 such that each leaf of the foliations is mapped to a Legendime. Two linearizations
are equivalent when they are isomorphic up to projectivesfiamation by SpC, and otherwise distinct. More
specifically;

Definition 2.1. Let P2 be equipped with the standat®p,C invariant homogeneous contact structure, Sedfioh 1.1.
Let M c P3 be a connected open subsetlidear Legendriand-webon M is a set ofd pairwise transversal
foliations of M by Legendrian lines.

There exists a distinguished class of linear LegendriarswBecall that an analytic surfacé ¢ Q2 has null
degreed when it intersects a generic null line §f° at d points.
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Definition 2.2. Let W be a linear Legendriani-web on an open subset Bf. W is algebrai¢ and is denoted by
Ws;, when it is induced from a null degreganalytic surfaceX ¢ Q? by the standard dual construction.

Let us give a description of a particular class of algebragdndrian webs induced from a curveli. Let
v C P3 be a degreed-curve. Take a generic point ® P3. The contact 2-planéH, intersects~ at d points
p;(x), i = 1, 2, ...d. By definition of Hy, (1.1), one gets a set af Legendrian lines through x. It is clear then
that this incidence construction defines a linear Legenddiaveb 1V, on a generic small open subset®f. Note
from Figurel L2 thabVy, = W_ -1,

The dual Legendrian webV,, obtained in this way inherits a set of Abelian relations frtra holomorphic
1-forms on~. Let Q € H(y, Q') be a holomorphic 1-form. By Hartogs’ theorem, the traceXf

TrQ=> pQ,

is a holomorphic 1-form orP?, and hence must vanish identicﬁl}Each 1-form pQ trivially vanishes on the
Legendrian line determined by,.pThis implies that there exists a linear map fraf (v, Q') to the space of
Abelian relations of\V,.

Consider the special case whers itself a Legendrian curve. The associated surface ! () becomes the
tangent developable of the Gauss mapyofVe shall see that in this case there are Abelian relationg’ofvhich
do not come fromH (v, Q'), Sectior{ 4.

2.1. Equivalence problem. Let W be a linear Legendrian 3-web. For definiteness, we assuminithe Leg-
endrian foliations of)V are ordered, and denote them by = U?_, 7. Note by duality Figur€1]1 that each
foliation F* corresponds to a (possibly singular) surface ¢ Q3. An immersed surface in the three manifold
Q? is locally described as a graph of one scalar function of tesdables. One may argue that the local moduli
space of linear Legendrian 3-webs depends on three arbitrary scalar functions of two vargble

In this section, we apply the method of moving frames andraete the SpC invariant structure equation for
a linear Legendrian 3-web. The analysis will result in a @ipal bundle B — M equipped with a normalized
sp,C-valued Maurer-Cartan formp. The functional relations among the coefficients of the congmts of¢ are
the basic local invariants of a linear Legendrian 3-webc&ithe data( 3, ¢ ) are canonically associated with the
given linear Legendrian 3-web, they will serve as a refezquaint for the problem of deformation and rigidity to
be discussed in Sectidh 3.

Let W be a linear Legendrian 3-web on an open subketC P3. Let B ¢ Sp,C — M denote the induced
principal right P-bundle. We continue the analysis fromt®a¢l.1.

Step Q From [1.6), seto} = w!, B3 = w?; B = 20; a = py. The Maurer-Cartan forng is written as

R

_ v @ 7 M

(23) 525 — 20 w2 —po —O.)l
w? B -} —al

From the general theory of moving frames, one may apply tre fioup action by R- Sp,C to arrange so that
the three linear Legendrian foliations are defined by

(2.4) Fi=(uw'0)t i=1,2 3,

where w? = —(w! + w?).

3The trace is obtained by the pull back of the migih~ y — ~(@.
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Let By € B — M be the sub-bundle defined Hy (2.4). Assuming that the foliatiare ordered, the structure
group Py C P of By is reduced to

* * * *
+1 *
Py = { * . }7
* *1
where ’- ' denotes 0. OnBy, — M, the 1-formsp;}, v1; o are semi-basic, and one may write
(2.5) 511 = 610.)1 + 62&)2 + A0,

711 = 63w1 + eqw?® + Asf,
oz% = esw! + egw? + Agf,
for the coefficientse;; Ay.
Step 1 The condition thad/V is linear imposes a set of relations eyis. By (1.4), [2.4), one must have
dZy, dZy =0, mod Zy, Z1; w20,
dZy, dZ3 =0, mod Zy, Z3; w0,
dZy, d(Z1 — Z3) =0, mod Zy, Z1 — Z3; w3, 6.
A computation shows that this implies [n_(R.5)
(2.6) €1=0, ¢4=0, 2(e5 —€g) — €3 — €3 =0.
Step 2 ¢ satisfies the structure equatidp+¢A¢ = 0. For a notational purpose, dencte= d¢-+¢pAp, which
must vanish identically. For instanc@&}, ®3; ®3 give the formulae for the exterior derivativeko®, dw?; db,

etc.
P AW? NG, &3 Aw! A6 show that

1
1

2
) w27 97 P0,
, W, 97 Po-

dey =20y, mod w
des =297, mod w

One may apply the fiber group action @ to translate so that

2.7) €2, €3 = 0.

From [2.6), denotes = ¢ = Ag. The exterior derivative of4 is written as
dAg = —Aopo + Aoaw' + Agow? + Agof.

We shall adopt the similar notation for the covariant ddiieaof a coefficient for the rest of the paper.
Let B, C By be the sub-bundle defined y (2.7). The structure gréup- Py of B; is reduced to the form

* . *
.o+l
+1
On B; — M, the 1-formsay, ) are semi-basic®i A 6, &3 A § show that one may write
A
(2.8) o) = 71w1 + e7w? + B0,

A
’y? = 680.)1 — 720.)2 + BQH,

for the coefficientser, es; B1, Bs.
®1 A 6 with this relation givesAdg = —e7 — es — Ag1 + Aga — 2A3.
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Step 3 w! A 99 + @I A w? gives
d(e; —eg) = =270, mod w', w?, 6, po.

One may translate, and denote
(2.9) €7 = €g = By.

Let B C B; be the sub-bundle defined by (2.9). The structure grbug P, of B is reduced to

x -

(2.10) p—y| * _
+1
On B — M, the 1-form~) is semi-basic. One may write
(2.11) 79 = Crw! + Cow? + Cyb,
for the coefficientsCy, Cs, CgB

Step 4 Differentiating [2.5),[(2.B),[(2.11), and examining thesstr of the components o, one obtains the
following structure equatiorts.

(2.12)
dAO = —Aopo + Ao,lwl + Ao,ng + A0,0G,
dAon =-2A40,1p0 + A071,1w1 + (A071,1 +6ApgAo,1 +4 AyBy + 2A(3) +2A00—-24A1A0-5B1 -2 Cl) w2,
dA072 =-2 AO.,QPO + (A07171 -2 Ol + 4AOB0 +5 A()Ao_’l - A()Aoyg -2 AlAO + 2 Ag + AO,O -5 Bl) wl
+ (Ao,l.,l + 5B2 + 202 + 5A0A072 — 2A0A2 — 201 — 531 + 314070 — 2A1A0 + 5A0A071)w2,
dAoyo =-3 Ao_’opo + (AO,LO + A()Bl — 2A001 —2 A072A1 + 4A07130 — A071A072 +2 AoylA% + A(2J,1) w!
+ (AO.,Q,O — 4A072B0 — 2A071A2 + AOB2 — 2A002 — A071A072 -2 AQQA% + A(QJ,Q) w2,
dAl =-2 AlpO + 2A1A0w1 + (—2 B1 + 2A1A0)w2,
dA2 =-2 Agpo + (—2 A()AQ — 232)&)1 - 2A0A2w2,
dBy = —-2Bopo+ (—C1 — 2Bl)w1 + (Ca 4+ 2 Bs) w2,

dBl = —3 BlpO + (—A072A1 + Ale_’l + 2A1A(2) —+ A()Bl —+ %Al_’()) wl
+ (—4 Bg +2C9 + AgBs + B271 — A1Ay + A()Bl) w2,

dBs = —3 Bsypg + 32710.)1 + (2 A%Ag — AyAp 2 — ApBy — % Az + Ao,lAg) w2,
dCy = -3Cipo + 01,1w1 + (—% Byq 4+ AgCr + A1 Ag — %AoBg —2Cy + 433) w2,
dOQ =-3 CQPO + (—g BQJ - A()CQ — %AOBQ — 309 + 63(2) + %AlAQ) wl + Czyng,
dCy = -4 Cgpo + (—BQAl +2B1Bgy + C170 +4C1By + ClAOJ — 01A072 +2 OlA% -2 CQAl) wl
+ (—2 BoBy — B1As + 0270 —2C1A; —4C5By — AoJCQ + CQAO,Q - QCQA(QJ) WQ,
dB271 =4 Bgylpo + (—2 Bl,O — 4BlAg + 2BlA0_’2 — 20170 — 401143 +2 01A072 — 2B1A0_’1 — 201140_’1

—16 OlBO — 16 BlBO — 4B2A1 - A071B2 - A0B271)w1 + (BQAO_’Q — 2A0_’1B2 + %A()Agyo - 3A%BQ
+4 BQBO + 2 Bgyo - 2A8A2 + 401A2 + 4BlA2 - A()AOJAQ + A0A072A2)w2, mod 6.

The #-derivative terms, e.9.40.1,0, 41,0, Bi 0, ..., are all independent with the one exception that
1
Bo70 =Cy — 233 + AgBy + 3271 — 5 A1 As.

Remark 2.13. In the language of the theory of differential systems, thisof structure equations is involutive
and a general analytic solution (linear Legendrian 3-welthathe given structure equations) depends on three
arbitrary functions of two variables as expected, see timeark at the beginning of this section. JBEG3] for

the details.

4 We use the subscript '9’ ity in place of '0’ to indicate thatCs has the higher scaling weight tharh, C> under the action of the
structure groupP, see[(2.1P).

> The method of differential analysis used here is referreasttheprolongation [BCG3]. It is the process of successively adding the
derivatives as the new variables, under the condition ofazdrwhich indicates that these new variables are the daega It allows one
to access the differential relations (not necessarily ghér order) which are possibly hidden and can only be detdmteexamining the
higher order derivatives. The computation was carried sintgitheMaple.
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Proposition 2.14. Let W be a linear Legendrian 3-web on a connected open subget. P3. There exists a
canonically associated principal bundlB C Sp,C — M with the structure groug2.10) The inducedsp,C-
valued Maurer-Cartan formyp, (2.3), is normalized oni3 such that

£0 %Alwl + Bow2 + B0 C’lwl + ngz + Cy0 B()wl — %A2w2 + By

(2 15) 6= wl qb% Bowl — %A2w2 + B0 A0
' 20 w? —p0 —wl ’
w? A0 —$A1w! — Bow? — By —¢1

where ¢l = —Agw® + (Ao 2 — 2 By — Ao — 242)6. The structure coefficients;, B;, Cj, and their derivatives
satisfy(2.12)

Two linear Legendrian 3-web%V, W are congruent up t&p,C motion whenever the corresponding data
(B, ¢) and (B', ¢') are isomorphic.

Let us rephrase the argument at the beginning of this sewstithna view to applying Proposition 2.114. Given
a linear Legendrian 3-webV on M C P?, it determines 3 sectiond/’ C Z, i = 1, 2, 3, by definition of the
duality in Figurd_L.R. The linearity ofV implies that each\/? is tangent to the fibers of,. Under the projection
by 71, M’ is mapped to a surface’ ¢ Q3. The imagemowo‘l(x) is the dual null line of x¢ M which intersects
¥ = U3, ¥ at 3 points. The local geometry of a linear Legendrian 3-wethis way corresponds to the semi-
global geometry of a union of 3 pieces of surfacegiif. Before we proceed to the problem of deformation, let
us consider an example where this dual interpretation all@wimple description of a class of linear Legendrian
3-webs.

Suppose for a linear Legendrian 3-web the relative invaridgvanishes identically,

AQ =0.
An analysis shows that in this case the Maurer-Cartan formeduces to
po 3Aiw' + Bow? (2B 4 3A149)0 Bow' — §Aw?

wl —2 Byl Bow! — 1 A50? Asf

(216) ¢: 0 0 2412 2 ’
260 w? —po —wt
w2 A19 —%Alwl — Bow2 2309

wheredA; = —2A1p0, dAy = —2A2p0, dBy = —2B0p0.

Choose the Legendrian foliatio! defined by (w?, )+. The corresponding surfacg! c Q3 ¢ P(A; C*)
is described by[Zy A Z1] (here we follow the notation from Sectign 1..1). A direct cartgiion by successively
differentiating [Zo A Z1] shows that:! is a part of a hyperplane sectidi! c Q3. From the similar analysis for
the foliations 72, F2, one concludes that;

Let WV be a linear Legendrian 3-web with vanishing relative ineati A;. Then)V is a part of the algebraic
Legendrian 3-web/Vs, induced by = U3_, H?, a union of 3 hyperplane sections @?.

We shall see in Sectidd 4 that this class of Legendrian 3-vaebsunt for all the linear Legendrian 3-webs of
maximum rank, with the only exception of the dual 3-web ofltegendrian twisted cubic curve.

3. DEFORMATION, AND RIGIDITY

In this section, we establish the fundamental structurataufor the linear Legendrian deformation of a linear
Legendrian 3-web. A variant of the moving frame method idiedpand the analysis leads to the closed structure
equation for the three deformation parameters. The differecompatibility conditions of this structure equation
generate a sequence of polynomial equations that the dafiomparameters must satisfy.

We currently have a partial understanding of the root stinecbf these polynomial equations. An elementary
examination of the first few polynomials shows that; 1) thembar of distinct linearizations of a Legendrigdaveb
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is uniformly bounded, Theorem 3]14, 2) if the Legendrian ébvis sufficiently flat at a point, it admits at most
one distinct local linearization, Theorém 3.16.

Let W be a linear Legendrian 3-web on a connected open subset P3. Let B — M be the associated
adapted bundle with thep,C-valued normalized Maurer-Cartan forgy, Propositior 2.14. LetM — P3 be
another distinct linearization ofV. Let B — M be the associated B P-bundle with the Maurer-Cartan form
¢'. We employ the method of moving frames to normalize the fraomelle B based at3. The structure equation
for the difference¢’ — ¢ then gives the aforementioned polynomial compatibilityaepns.

Set

(3.1) ¢ = o+ 5o
The components of¢ are denoted by
[0 Oy
09 = (55 —5at> :
For the notational purpose, set
(3.2) A=d(0p)+0d NP+ PN+ dp A dp.

Maurer-Cartan equations fa¥’ and ¢ imply that A must vanish identically.
Step 0. Applying the fiber group action by’R- Sp,C as inStep Oof Sectior{ 2, one may translate

(3.3) Sag =0, 685 =0; 680 = 0.
Under these relations, the structure group is reduced to
1 - =%
1.
Po = {=+ o1 2
|

A2 givesda] A § = 0. Applying the fiber group action by jPone may translate
(3.4) 5ad = 0.

Under this relation, the structure group is reduced to tmeceof SpC, Z(Sp,C) = { 14 }. Thesp,C-valued
deformation 1-formé¢ becomes

LR S

Starting from this initial state, by successive applicasiof [3.2), we intend to find the compatibility equations for
the linear Legendrian deformation.

Differentiating [3.3),[(3.4), one gets
dai  onf 207
—6p1 dal 26af
daf 67y 2074

By the Cartan’s lemma, one may write

i p1o pe2 o 2pg
o1 M2 f4 2410 Wl
Yeh M5 —p1 —2p7 2

7 M7 po 2011 ’

§

Mo p1o 2H12
o M1l p12 H11,0
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for the coefficientsy;.

Step 1. The condition that it is a linear Legendrian deformatiopases a set of relations qi,’s. A compu-
tation similar as irStep 1of Sectior 2 shows that, = 0, us = 0, u1 — ue = 0. We set accordingly

50&% ag aq 2b0

o ap - 203 1
35 5,811 . . —a —2[)1 w2
( ' ) (504(1) o bl bo 261 u;

(5"}/? b(] bg 262

578 c1 ¢ Cy

The derivatives of these coefficients will be denoted siryilas before, e.gdag = —agpo + ao,lwl + a072w2 +
CL0709.

Step 2. ALAG, A3 NG, Al A0 give

ap1 = —4 b1 -+ avo + 2 a%,
(36) ap2 = 4[)3 - CLQAQ — 2&%,
bo :bl—i-bg—avo—%a%.

The remaining equations from}, A3, Al give

bin =2Apb1 —2Ara0 + 2bao,
b172 =2c + 2A0a(2) + %ag — 2agbs — %AQQCLO + 2 Agby + % Ao’lao — A1a0 + A%ao + % ap,0,

1)371 = -2 Cy — 2140@% - %CL% + 2b1a0 — A%CLO — 2A0b3 — AQCLO — % Ao,lao + %AQQCLQ + %CLO’(),
(3.7) 1)372 = -2 Aobg — 2A2a0 -2 bgao,
c1 =2 a% — 1—21 Aoa% + 3biag + % Apby + % Agbs + 6 agbs — 314%(10 — %AOJCLO
+3 Ap a9 — 2 Boag + %Alao,
&) =c1 — 3agbs — %Aobg — % Asag — %Ao,lao — % A(]’Qa(] + 3brag + %Aobl — %Alao.
The compatibility equations frord(d(ag)) = 0 give
aopy = —% Ag1ao — 1 Ag2ag + 5 Aghy — § Agbs,
(3.8) bio =5 Aoag + (—% A072 +TA;+ A+ % A071 +2 BO) CL% + O(blao, bsao; agp, b, b3),
b370 =-5 Aoag + (—% AO,I — 7A(2) + Ag + %AO’Q — QB()) a(z) + O(blao, bgao; ap, bl, bg)

Here O(byag, bsao; ag, by, bs) means the terms that are linear combinatior{ &f a, bsao; ag, b1, bs } with the
coefficients in4;, B;, C}’s and their derivatives.
At this stage, there are three component$ AY; A left to be checked.

Step 3. A} A w! finally gives

cg = % aé‘ + 19140(18 + (—26A2 +27b1 —4 A7 — 105b3 — gAO’Q —19By — %AOJ + 5A(2)) (Lg
+2 b% + 50 b% + 26 b1 b3 + O(blao, bsag; ag, b1, bg)

It follows that 6¢ = 0, mod ayg, b1, b3, and that the structure equations foiy, b1, b3 } are closed, i.e., their
derivatives are expressed as the functions of themselekd@not involve any new variables.

Remark 3.10. Note that

(3.9)

dag = —4(byw! — b3w?), mod 6; ao.
Hence if ag vanishes up to order one at a point on a connected open suldsehe uniqueness theorem of ODE
implies thatag, b1, b3 = 0 identically. Hence in this caséy = 0 and the deformation is trivial.

Proposition 3.11. Let W be a linear Legendrian 3-web on a connected open subget P3. Consider a linear
Legendrian deformation ofV represented by thep,C-valued 1-formd¢ satisfying the initial conditiong3.3),

(3.4). Then the components 6 are given by, and satisfy the structure equati@g), (3.6), (3.7), (3.8), (3.9).
Supposedy =0, mod 6 ata pointin M. Thende vanishes identically and the deformation is trivial.
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Proof. If 6¢ =0, mod 6 at a point,[(3.b) shows that, b, b3 = 0 at the given point. The rest follows from
Remark3.1D0.0J

3.1. Bound on the number of distinct linearizations. The remaining compatibility conditions from
AL A AY; d(d(br)) = 0, d(d(bs)) = 0, impose a set of polynomial equations (and their succesiviva-
tives) on the deformation parametefrs, b1, bs }. The analysis of the root structure of these equations tizielyi
leads to a variety of case by case analysis problems degeaodithe relative invariants of the original 3-weéW,
e.g., the resultants of a set of polynomial compatibility&tipns for{ ag, b1, b3 } are expressed in terms of the
local invariants ofW.

Due to the complexity and size of the algebraic analysisluady we shall consider the first few lowest order
compatibility equations. In this section, we examine thegeations without any extra conditions on the local
invariants of the original webV, and determine an upper bound on the number of distinctrizegéons.

We continue the analysis frotep 3’
The identitiesd(d(b1)) A0 = 0, d(d(bs)) A 8 = 0 give a set of two compatibility equations which must vanish
identically for a linear Legendrian deformation.

(3.12) Eqi = b? + 2bybs,
Eq3 = b3 + 2byb3, mod {terms at most linear i, b3}.

Eqi, Eqs are polynomials of degree 4 ifiag, b1, bs }. One computes then that{, A = 0 modulo Eq;, Eqgs.
AJ modulo Eq;, Eqs gives another set of two equations

14
(3.13) Eqy = ag + %Aoaé,

Eqy = Agag, mod {terms at most linear i, b3, and of degreec 3 in ay }.
Eqq, Eq9 are polynomials of degree 5, 4 ifag, b1, bs } respectively.

Theorem 3.14.Let W be a Legendrian 3-web on a connected contact three maniféldThen it admits at most
4-4.-541 = 81 distinct local linearizations. If the local invariantly of a linearization ofWW is nonzero, it admits
atmost4 -4 -4+ 1 = 65 distinct local linearization&

Proof. Itis clear thatEq; and Eq3 cannot have a common linear factor. The rest follows by dogrihe degrees
of the polynomials{ Eq1, Eqs, Eqv}, and {Eqi1, Eqs, Eqy}. O

It is unlikely that this is the optimal bound. We suspect ttie optimal bound on the number of distinct
local linearizations is two, see Conjectlire]5.1 in Sedtioteoreni 3.14 shows that the number of distinct local
linearizations of a Legendrian 3-web is uniformly bounded.

3.2. Rigidity of the linear Legendrian 3-webs with a flat point. Remark3.1ID implies that a linear Legendrian
3-web is rigid under linear Legendrian deformation whengmsous compatibility equations force the deformation
parametersag, b1, b3} to vanish at a single point. In this section we exam{tey,, Fqs, Fqo} in (3.12), [3.18),
and show that this occurs in ca3® is sufficiently flat at a point.

Fix a reference point x<c M. Assume all the coefficients!;, B;, C}'s and their derivatives of sufficiently
high order vanish at x The compatibility equationg’q,, Eqs3, Eqo in (3.12), [3.18) evaluated at) ecome (up
to scaling by constants)

(Eq1 — Eq3)lx, = (b1 — bs)(4by + 4b3 — 11ad),
(3.15) Eqilx, = (4by + 5a3)(2by + 4b3 — 3ad),
Eqoly, = ao (185aj — 60adbs — 220b1a3 — 208b1b3) .
Itis easily checked that the only root to this system of eiquatfor { ag, b1, b3 } iS ao, b1, bs|p, = 0. By Remark
[3.10, in this cas€ ag, b1, bs } vanish identically and the deformation is trivial.

6in case the invariantly = 0 identically, the linear Legendrian 3-web admits at most dliginct local linearizations, see Sect[dn 4.
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The following theorem describes up to which order the caefiits A;, B;, C}’s should vanish at the reference
point to put the equation&'q;, Eq3, Eqq into the reduced forn (3.15).

Theorem 3.16.Let W be a linear Legendrian 3-web on a connected open subset P3. Let A;, B;, Cy be
the structure coefficients ofy, (2.18) Let xo € M be a reference point. Suppose

Ao vanishes to order 3 ayp
Ay, Ay, By, By, C1, C5 vanish to order 1 at
By, Cy vanish at p.

Then W is rigid and does not admit any nontrivial local linear Legkian deformations.

Proof. Examining the equation#q;, Eq3, Eqo, the vanishing conditions onl;, B;, C}, are sufficient to imply
B.I5). The rest follows from Remalrk 3110
This agrees with the partial proof of the Gronwall conjeettor the planar 3-webs obtained In [Wal].

4. LINEARIZATION OF THE LEGENDRIAN 3-WEBS OF MAXIMUM RANK

Theoreni 3.16 states that a linear Legendrian 3-web is rigehvit is sufficiently flat at a point. A question arises
as to which abstract Legendrian 3-webs are such that timgarizations are likely to have the similar property.
The first candidates would be the Legendrian 3-webs of maximank three [[Wa2]. The following refinement of
Theoren 3.16 gives a partial proof of the Legendrian Groh@ahjecture, Sectiol] 5, for this class of Legendrian
3-webs.

Theorem 4.1. Let W be a Legendrian 3-web on a connected contact three maniféld SupposeWV has the
maximum rank three.

a) W admits a local linearization)/ — P?3 as the dual Legendrian 3-web of an analytic surfacec Q?
which is the union of three hyperplane sectiofs= U3_, H', H' C Q2. Conversely, for any set of three distinct
hyperplane sectiongf? in Q?, the dual Legendrian 3 WGD’VUS H has the maximum rank.

b) The linearization oflV in a) is unique up to motion by §3@ with the only exception when the structure
invariants of W in (A-1) satisfy the relation

(4.2) S=-T=2R+0.

In this case, the Legendrian 3-web admits exactly one maitindi local linearization as the dual Legendrian
3-web of the Legendrian twisted cubic.

Corollary 4.3. A Legendrian 3-web of maximum rank is algebraic.

Proof of Theorerh 4]1.
a) Let W be a Legendrian 3-web of maximum rank three. Then the steigtvariants of)V in (A-1)) satisfy
the relations

dR, dS, dT =0, mod p,
L=K=0.

Recall [2.16) in Sectionl 2 for the linear Legendrian 3-welth the vanishing local invariantly. Substituting

R T S
4’ 1 97 2 2’ Po P

one hasd¢ + ¢ A ¢ = 0, and it induces a local linearization o%.

b) Given the linearization oV defined by¢ in (2.18), [4.4), the deformation analysis as in Sedfion @&wsh
that the various compatibility equations foréeé = 0, except whenS = —T = 2R # 0 (this requires a long but

(4.4) By =
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straightforward case by case analysis). In this clg@admits exactly one more distinct linearization induced by
the (deformed) Maurer-Cartan form

—p  3Rw'+ 2Rw? —Z R%) 2Rw! + 3 Rw?
.5) o = w! %RH + agw' + agw? %Rwl + %sz RO + agw!
) o 2 1 )
260 w p w
w? —RO — apw? —%Rwl — %Rw2 —%RH — aow! — agw?

wherea? = 2R.

We claim that this describes the dual 3-web of the Legendiiasted cubic. Choose the linear Legendrian
foliation F! defined by(w?, 6)* via ¢'. The corresponding surface! ¢ Q? is described by[Zy A Z1]. The
conformal structure of? is represented by the quadratic forsfj 31 — (53)?, whose restriction ort! becomes
the perfect squaréw? — a0)?. Differentiating Zy A Z1, one gets that the two dimensional subspace spanned by
{Z0NZ1, (271 — a0 Zo) N(Z2+ % Z3) } is constant along the leaves of the foliation BA defined by(w?— agf)™*.

By duality, X! is ruled by the null line dual to p= [2Z; — apZy] € P3. The similar analysis for the foliations
F2, F3 shows that the corresponding surfacés >3 are ruled by the null lines dual to, p= [2Z3 + agZy], p3 =
2(Z1 — Z3) + aoZo) respectively. Note that,P = [Zo).

Our claim is that the loci of p p,, p;, all lie in the same Legendrian twisted cubic. A short corapah
shows that each ;glescribes a Legendrian curve. One may then verify by directputation that the following
three quadratic polynomials generate the well defined, remvaconstant, three dimensional space of quadratic
polynomials in a neighborhood d#] which vanish simultaneously on'se. Here W = (Wy, Wy, Wa, W3)t is
the dual frame ofZ = (Zy, Z1, Z, Z3) that satisfies the structure equatidi’ = —¢'W.

Qo = —RWE— RW W5+ 2W¢ — RW2 + ZR*W2,
Q1 = CLQW12 + 2WoW1 — 3BRWoW3 + 2a0 W1 W3 — %RW1W2,
Q3 = —2agW W3 — (IQW32 + 2WoWs3 + %RWQWg + 3SRW W5

It is clear that these polynomials define the Legendriantégisubic inP? that connects the three arcs traversed
by p’s. O

The analysis in the proof of b) above has the following algaigometric implication. LevV be the dual 3-web
of the Legendrian twisted cubic just described. Since thesSanap of the Legendrian twisted cubiclid is the
null rational normal curve inQ3 c P4, W is also the dual 3-web of the analytic surfatec Q3 which is the
tangent developable of the null rational normal curve.

Consider the following analogue of the converse of Abeksotiem, [CG|, HP].

| Legendrian analogue of the converse of Abel's thegrem

Let xo € P? be a reference point. Le¥, c Q3 be the null line dual to x Let ¥ c Q3,4 =1, 2, ...d,
be a set ofd distinct pieces of local analytic surfaces each of whicbrsgcts N, transversally at a single
point q(Xo). Let ©; be a meromorphic 1-form o’ which is regular at gxo). Suppose the following
local trace vanishes in a neighborhood @f x

Tr(Q) =Y g =0.

Then there exists a null degrelanalytic surface®, and a meromorphic 1-forrf2 on ¥, which analytically
extends the given data; ( X*, €2;).

Assuming this is true, the relevant observation is it tangent developable of the null rational normal curve
lies in the intersection of)? with a cubic hypersurface aP4[1 It is known that a smooth complete intersection

’Let V,, be the irreducible SLC-module of dimensionn + 1. By Clebsch-Gordan, the symmetric cubic tensor producbuiposes
into S3(V) = Vi @ Vs @ Vs @ Va @ Vo. The 1 piece vanishes on the tangent developable of the null rticormal curve.
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of type (2, 3) in P* is a K3 surface, which has no nonzero holomorphic 1-formscofding to Theoreri 411,
when this complete intersection degenerate&fat supports three closed generalized holomorphic 1-foivide
currently do not have any purely algebro-geometric exgianaf this phenomenon.

5. CONCLUDING REMARKS
1. The Legendrian analogue of the Gronwall conjecture castdied as follows.

Conjecture 5.1 (Legendrian Gronwall conjecture).et W be a Legendrian 3-web on a connected contact three
manifold. Then it admits at most one distinct local lineatian in P2, with the only exception wheWw is locally
equivalent to the dual 3-web of the Legendrian twisted caobiwe in P? (in which case)V admits exactly two
distinct linearizations).

Note the discrepancy when compared with the planar web daselgebraic planar 3-web admits infinitely
many distinct local linearizations.

From the analysis carried out in this paper, one suspectatfaneric Legendrian 3-web admits at most one
distinct linearization, although we did not write down thandition for rigidity explicitly. Since the other extreme
case of the maximum rank Legendrian 3-webs are treated tio8&L; the next step toward the proof of the Leg-
endrian Gronwall conjecture would be to consider the clddsegendrian 3-webs with one, or two independent
Abelian relations. One may then attempt to show that a Leggemd-web with two distinct linearizations nec-
essarily possesses at least one Abelian relation. It appedre a difficult problem to directly analyze the root
structure of the polynomial integrability equations foe finear Legendrian deformation discussed in Sec¢fion 3.

2. Let ¥ c Q3 be anull degreel surface. We say that is extremalwhen the associated dual linear Legendrian
d-web Ws, has the maximum rank; = w, [Wa2]. Theoreni 4]1 implies that the only null degree
3 extremal surfaces are the union of three hyperplane ssctand the tangent developable to the null rational
normal curve. Can one give an algebro-geometric proof etfihe direct differential analysis for the Legendrian
d-webs of maximum rank for the casé> 4 is complicated. One may hope to generalize the algebro-g&imm
classification of the extremal null degree 3 surfaces to xtremal null degreel surfaces in general.

One may start by considering the following sub-problem. fet P3 be a degreel curve. We say thaty is
extremalwhen the associated dual linear Legendriagweb WV, has the maximum rank,. Theoreni4.]l shows
that it is possible for)V, to have an Abelian relation which is not induced from a holgoha 1-form on~.

We suspect that this kind of auxiliary Abelian relationsseéxinly when-y is itself Legendrian. Can one give an
algebro-geometric classification of the extremal Legemddurves? As mentioned in Sect[dn 1, such an extremal
Legendrian curve is tightly controlled by a large number erfigralized addition laws.

3. As discussed briefly in [Waz2], the geometry of a Legend&ameb is locally equivalent to the geometry of a
single scalar second order ODE up to point transformatiompatticular, the structure of a Legendrian 2-web has
local invariants, and not every two of them are locally eglent, [Ca].

A guestion arises as to the geometric meaning of the ling#wiz of a Legendrian 2-web. Can the linearizability
be considered as a local counterpart of the notion of compdssts of the associated projective connection discussed
in [McK]?

APPENDIX

Let W be a Legendrian 3-web on a contact three maniftidd There exists a sub-bundIB of the GL;C prin-
cipal frame bundle of}/ on which the tautological 1-form8; w', i = 1, 2, 3, > w® = 0, satisfy the following
structure equations.

w! p - w! O A (Rw! + Sw?)
(A-1) dl{? == p - | AP+ |0AN(Tw! —RW?) |,
0 - - 2p 0 wl A w?

dp=0A(Lw' + Kw?).
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Here R, S, T, L, K are torsion coefficients. The contact structure /ahis defined by (6 )+. W is defined by
the three line fieldg w?, 6 )*. See[Wa?] for the derivation of this structure equation.
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