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LEGENDRIAN GRONWALL CONJECTURE

JOE S. WANG

ABSTRACT. The Gronwall conjecture states that a planar 3-web of foliations which admits more than one distinct
linearizations is locally equivalent to an algebraic web. We propose an analogue of the Gronwall conjecture for the
3-web of foliations by Legendrian curves in a contact three manifold. The Legendrian Gronwall conjecture states that a
Legendrian 3-web admits at most one distinct local linearization, with the only exception when it is locally equivalent
to the dual linear Legendrian 3-web of the Legendrian twisted cubic in P3. We give a partial answer to the conjecture
in the affirmative for the class of Legendrian 3-webs of maximum rank. We also show that a linear Legendrian 3-web
which is sufficiently flat at a reference point is rigid under local linear Legendrian deformation.

1. INTRODUCTION

Let M be a connected contact three manifold. A Legendriand-web onM is by definition a set ofd pairwise
transversal foliations ofM by Legendrian curves. The Legendrian web was introduced in [Wa2] for a second
order generalization of the classical planar web.

Abelian relations and rank, two of the central concepts in web geometry, are analogously defined for the Leg-
endrian web. The main result of [Wa2] was that the rank of a Legendrian d-web admits the optimal bound
ρd = (d−1)(d−2)(2d+3)

6 . We also gave an analytic characterization of the Legendrian3-webs of maximum rank
three.

In this paper we study the linearization problem for the Legendrian 3-webs with a more algebro-geometric
perspective. As described in [Wa2], the algebraic model forthe Legendrian web theory is provided by the pro-
jective duality associated with the simple Lie group Sp2C, Figure 1.1, see Section 1.1, [Br]. By the standard
dual construction, a null degreed surfaceΣ ⊂ Q3 induces the duald-web of Legendrian lines on a generic
small open subset ofP3.1 Generalizing this, alinearizationof a Legendriand-web on a contact three manifold
M is defined as a contactomorphismM →֒ P3 for which the image of each leaf of the Legendrian foliations
is mapped to a Legendrian line. A natural question arises as to which Legendriand-webs are linearizable, and
how unique such a linearization is. The linearizability problem for a planar web can be traced back to Balschke,
[BB, AGL, GL, PP, Pir] and the references therein. See [Wa1] for the references on the Gronwall conjecture.

It is the uniqueness part of the linearization problem that we are interested in. In planar web geometry, the
Gronwall conjecture states that a planar 3-web admits more than one distinct linearizations (uniqueness fails)
whenever the 3-web is locally equivalent to an algebraic web. In other words, the conjecture claims that the
failure of unique linearization, or equivalently the linear deformability, implies that the planar 3-web is essentially
algebraic.

One of the motivations for the present work was therefore theidea that the condition for linear deformability
may lead to a special, possibly algebraic, class of linear Legendrian 3-webs. Through these examples one might
hope to gain an insight on the analogues of Abel’s theorem andits converse in our setting, Section 4.

For the Legendriand-webs,d ≥ 4, the uniqueness of linearization follows from the local normal form for the
projectively flat third order ODE’s, [SY, Corollary 4.2]. The case of Legendrian 3-webs on the other hand is not

2000Mathematics Subject Classification.53A60.
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1An analytic surfaceΣ ⊂ Q3

⊂ P4 has null degreed when it intersects a generic null line ofQ3 at d points. Hence it has degree2d
as a surface inP4.
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Figure 1.1. Projective duality associated with Sp2C

obvious. We shall employ the method of moving frames and the local differential analysis to analyze the linear
Legendrian deformation and rigidity of the linear Legendrian 3-webs on an open subset ofP3.

Main results.
1. The number of distinct local linearizations of a Legendrian 3-web is uniformly bounded, Theorem 3.14 (the

bound is far from being optimal).
2. A linear Legendrian 3-web on a connected open subset ofP3 is rigid under linear Legendrian deformation

when it is sufficiently flat at a single point, Theorem 3.16.
3. We propose the Legendrian analogue of the Gronwall conjecture, Conjecture 5.1. The conjecture claims

that a Legendrian 3-web on a connected contact three manifold admits at most one distinct linearization, with the
only exception when the 3-web is locally equivalent to the dual linear Legendrian 3-web of the Legendrian twisted
cubic curve inP3 (in which case it has exactly two distinct local linearizations). We verify the conjecture for the
class of Legendrian 3-webs of maximum rank three, Theorem 4.1.

Let us give a description of the deformable Legendrian 3-webin Main results 3. Let γ ⊂ P3 be the Legendrian
twisted cubic. Take a generic point x∈ P3. Let P2

x be the contact 2-plane at x, which is the union of the
Legendrian lines through x. Sinceγ is a curve of degree 3,P2

x intersectsγ at 3 points. By definition ofP2
x these

points determine the corresponding 3 Legendrian lines through x. It is clear that as x varies this construction
defines a linear Legendrian3-web Wγ on a generic small open subset ofP3. Our analysis shows thatWγ

admits another (exactly one more) distinct linearization,and that it is the unique such linear Legendrian 3-web of
maximum rank.

The three Abelian relations ofWγ admit the following geometrical interpretation as a generalized addition
law for the Legendrian twisted cubic. Take a set of 3 generic points pi, i = 1, 2, 3, on γ. Then the 3 planes
P2

p
i

intersect at a single point, and one consequently gets a set of 3 concurrent Legendrian lines. The choice of
three points on a given curveγ depends on three one-dimensional parameters. Once these points are fixed, the
choice of a Legendrian line through each of these points alsodepends on three one-dimensional parameters.2 It is
evident from the above incidence relation that, roughly speaking, the latter three parameters are functions of the
former three parameters. The three Abelian relations ofWγ implies that in fact there exist three additive form of
functional relations among the total six one-dimensional parameters.

Considering the obvious analogue of the converse of Abel’s theorem, Section 4, the relevant point here would
be that the incidence geometry described above manifests itself through theadditive functional equations among
the related geometric quantities which by construction arethe first integrals of the foliations ofWγ . As is the case
with the planar web geometry, perhaps this additivity provides a concrete evidence to infer, and in turn it would
imply via the converse of Abel’s theorem, the underlying algebraic structure.

There is another algebro-geometric implication of the three Abelian relations ofWγ on the degeneration of K3
surfaces inP4 in the context of the presumed Legendrian analogue of Abel’stheorem and its converse. Consider
the surfaceΣγ = π1 ◦ π

−1
0 (γ) ⊂ Q3. Sinceγ is Legendrian,Σγ is the tangent developable of the Gauss map of

γ, which is a null rational normal curve inQ3. Via the converse of Legendrian Abel’s theorem, the three Abelian
relations ofWγ would then imply thatΣγ supports three generalized closed holomorphic 1-forms. Onthe other
hand,Σγ lies in the intersection ofQ3 with a cubic hypersurface ofP4. A smooth complete intersection of type
(2, 3) in P4 is a K3 surface, which has no nonzero holomorphic 1-forms. The analytic surfaceΣγ represents in

2Here we mean a choice of a section of aP1
× P1

× P1-bundle overγ × γ × γ.
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this way a degeneration of K3 surfaces where the dimension ofthe space of closed holomorphic 1-forms jumps by
three.

Let us give an outline of the paper. In Section 1.1, we record the generalities on the duality between the
projective spaceP3 and the 3-quadricQ3 ⊂ P4. In Section 2, the moving frame method is applied to determine
a normalized frame bundle associated with a linear Legendrian 3-web on an open subset ofP3. The normalized
frame bundle serves as a base point for the linear Legendriandeformation of the 3-web. In Section 3, the standard
deformation analysis in terms of the deformed Maurer-Cartan equation leads to the closed structure equation
for the deformation parameters. The differential compatibility conditions among these parameters imply a set of
polynomial equations that they must satisfy. The rigidity results Theorem 3.14 and Theorem 3.16 are the immediate
consequences of the analysis of the root structure of the first few low degree polynomial compatibility equations.
In Section 4, we implement the procedure established in Section 3 to the class of maximum rank Legendrian 3-
webs. Drawing from [Wa2] the analytic characterization of such 3-webs, we first observe that a Legendrian 3-web
of maximum rank always admits a linearization as the dual 3-web of a union of three hyperplane sections inQ3.
A further analysis of the polynomial compatibility equations shows that there exists a unique linear Legendrian 3-
web of this kind which is contact equivalent (and not projectively equivalent) to the dual 3-web of the Legendrian
twisted cubic described above, and that otherwise these 3-webs are rigid under linear Legendrian deformation.
Based on this analysis, we propose the Legendrian analogue of the converse of Abel’s theorem. In Section 5, we
state the Legendrian Gronwall conjecture, and present a fewremarks on the related problems.

We assume the complex analytic category. The analysis and results are valid within the real smooth category
with only minor modifications. The moving frame method, and the over-determined PDE machinery are used
throughout the paper. We refer the reader to [BCG3][IL] for the standard references.

1.1. Projective duality. Let V = C4 be the four dimensional complex vector space. Let̟ be the standard
symplectic 2-form onV . Let P3 = P(V ) be the projectivization equipped with the induced contact structure. The
contact 2-plane fieldH on P3 is defined by

(1.1) Hx = P((x̂y̟)⊥), for x ∈ P3,

wherex̂ ∈ V is any de-projectivization of x. Since̟ is non-degenerate,(x̂y̟)⊥ ⊂ V is a codimension one
subspace containinĝx, and its projectivizationP((x̂y̟)⊥) ⊂ P3 is a hyperplane at x. The symplectic group Sp2C

acts transitively onP3 as a group of contact transformation.
Let

∧2
0 V = 〈̟ 〉⊥ ⊂

∧2 V be the five dimensional subspace of isotropic 2-vectors. LetLag(V ) be the set
of two dimensional Lagrangian subspaces ofV . Lag(V ) is identified with the 3-quadricQ3 ⊂ P4 = P(

∧2
0 V )

via the Plücker embedding. Sp2C acts transitively onQ3, and Q3 inherits the Sp2C invariant non-degenerate
conformal structure.

Let Z = P(H) → P3 be the bundle of Legendrian(H-horizontal) line elements. It can be defined as the
incidence space

Z = {(x, L) ∈ P3 ×Q3 | x̂ ∧ L̂ = 0 }.

The projective duality in Figure 1.1 represents the following Sp2C equivariant incidence double fibration, Figure
1.2. By definition of Z, it is clear that both fibers ofπ0, π1 are isomorphic toP1. A fiber of π0, the set of
Legendrian lines through a point inP3, projects to a null line ofQ3, and dually a fiber ofπ1, the set of null lines
through a point inQ3, projects to a Legendrian line ofP3. The duality correspondence can be summarized by;

P3 is the space of null lines inQ3, and duallyQ3 is the space of Legendrian lines inP3.

There exists an immediate application of the duality principle. Let γ ⊂ P3 be a Legendrian (H-horizontal)
curve. The Gauss map̂γ ⊂ Q3 is defined as the tangent map ofγ. By duality, γ̂ is the envelope of a one
parameter family of null lines. Hencêγ itself is a null curve inQ3.

To fix the notation, let us define the projection mapsπ, π0, and π1 explicitly. Let Z = (Z0, Z1, Z2, Z3)
denote the Sp2C ⊂ SL4C frame of V such that the 2-vector̟ ♭ = Z0 ∧ Z2 + Z1 ∧ Z3 is dual to the symplectic
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Sp2C
π↓

Z = Sp2C/P
ցւ

Q3 = Lag(V )P3

π1π0

Figure 1.2. Incidence double fibration

form ̟. Define

π(Z) = ([Z0], [Z0 ∧ Z1]),(1.2)

π0([Z0], [Z0 ∧ Z1]) = [Z0],

π1([Z0], [Z0 ∧ Z1]) = [Z0 ∧ Z1].

In this formulation, the stabilizer subgroup P in Figure 1.2is of the form

(1.3) P= {

(

A B
· (At)−1

)

},

where (A−1B)t = A−1B, and

A = {

(

∗ ∗
· ∗

)

}.

Here ’·’ denotes 0 and ’∗’ is arbitrary.
The Sp2C-frame Z satisfies the structure equation

(1.4) dZ = Z φ

for the Maurer-Cartan formφ of Sp2C. φ satisfies the structure equation

(1.5) dφ+ φ ∧ φ = 0.

The components ofφ are denoted by

(1.6) φ =

(

α γ
β −αt

)

=









α0
0 α0

1 γ00 γ01
α1
0 α1

1 γ10 γ11
β0
0 β0

1 −α0
0 −α1

0

β1
0 β1

1 −α0
1 −α1

1









,

where{α, β, γ } are 2-by-2 matrix 1-forms such thatβt = β, γt = γ.

2. LINEAR LEGENDRIAN 3-WEBS

Let W be a Legendriand-web on a contact three manifoldM , [Wa2]. A linearization ofW is a contacto-
morphism M →֒ P3 such that each leaf of the foliations is mapped to a Legendrian line. Two linearizations
are equivalent when they are isomorphic up to projective transformation by Sp2C, and otherwise distinct. More
specifically;

Definition 2.1. Let P3 be equipped with the standardSp2C invariant homogeneous contact structure, Section 1.1.
Let M ⊂ P3 be a connected open subset. Alinear Legendriand-web on M is a set ofd pairwise transversal
foliations of M by Legendrian lines.

There exists a distinguished class of linear Legendrian webs. Recall that an analytic surfaceΣ ⊂ Q3 has null
degreed when it intersects a generic null line ofQ3 at d points.
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Definition 2.2. Let W be a linear Legendriand-web on an open subset ofP3. W is algebraic, and is denoted by
WΣ, when it is induced from a null degreed analytic surfaceΣ ⊂ Q3 by the standard dual construction.

Let us give a description of a particular class of algebraic Legendrian webs induced from a curve inP3. Let
γ ⊂ P3 be a degreed-curve. Take a generic point x∈ P3. The contact 2-planeHx intersectsγ at d points
pi(x), i = 1, 2, ... d. By definition of Hx, (1.1), one gets a set ofd Legendrian lines through x. It is clear then
that this incidence construction defines a linear Legendrian d-web Wγ on a generic small open subset ofP3. Note
from Figure 1.2 thatWγ = Wπ1◦π

−1
0 (γ).

The dual Legendrian webWγ obtained in this way inherits a set of Abelian relations fromthe holomorphic
1-forms onγ. Let Ω ∈ H0(γ, Ω1) be a holomorphic 1-form. By Hartogs’ theorem, the trace ofΩ,

TrΩ =
∑

p∗iΩ,

is a holomorphic 1-form onP3, and hence must vanish identically.3 Each 1-form p∗iΩ trivially vanishes on the
Legendrian line determined by pi. This implies that there exists a linear map fromH0(γ, Ω1) to the space of
Abelian relations ofWγ .

Consider the special case whenγ is itself a Legendrian curve. The associated surfaceπ1 ◦π
−1
0 (γ) becomes the

tangent developable of the Gauss map ofγ. We shall see that in this case there are Abelian relations ofWγ which
do not come fromH0(γ, Ω1), Section 4.

2.1. Equivalence problem. Let W be a linear Legendrian 3-web. For definiteness, we assume thethree Leg-
endrian foliations ofW are ordered, and denote them byW = ∪3

i=1F
i. Note by duality Figure 1.1 that each

foliation F i corresponds to a (possibly singular) surfaceΣi ⊂ Q3. An immersed surface in the three manifold
Q3 is locally described as a graph of one scalar function of two variables. One may argue that the local moduli
space of linear Legendrian 3-webs inP3 depends on three arbitrary scalar functions of two variables.

In this section, we apply the method of moving frames and determine the Sp2C invariant structure equation for
a linear Legendrian 3-web. The analysis will result in a principal bundleB → M equipped with a normalized
sp2C-valued Maurer-Cartan formφ. The functional relations among the coefficients of the components ofφ are
the basic local invariants of a linear Legendrian 3-web. Since the data(B, φ ) are canonically associated with the
given linear Legendrian 3-web, they will serve as a reference point for the problem of deformation and rigidity to
be discussed in Section 3.

Let W be a linear Legendrian 3-web on an open subsetM ⊂ P3. Let B ⊂ Sp2C → M denote the induced
principal right P-bundle. We continue the analysis from Section 1.1.

Step 0. From (1.6), setα1
0 = ω1, β1

0 = ω2; β0
0 = 2θ; α0

0 = ρ0. The Maurer-Cartan formφ is written as

(2.3) φ =









ρ0 α0
1 γ00 γ01

ω1 α1
1 γ10 γ11

2θ ω2 −ρ0 −ω1

ω2 β1
1 −α0

1 −α1
1









.

From the general theory of moving frames, one may apply the fiber group action by P⊂ Sp2C to arrange so that
the three linear Legendrian foliations are defined by

(2.4) F i = 〈ωi, θ 〉⊥, i = 1, 2, 3,

whereω3 = −(ω1 + ω2).

3The trace is obtained by the pull back of the mapP3 r γ → γ(d).
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Let B0 ⊂ B → M be the sub-bundle defined by (2.4). Assuming that the foliations are ordered, the structure
group P0 ⊂ P of B0 is reduced to

P0 = {









∗ ∗ ∗ ∗
· ±1 ∗ ·
· · ∗ ·
· · ∗ ±1









},

where ’· ’ denotes 0. OnB0 → M , the 1-formsβ1
1 , γ

1
1 ; α

1
1 are semi-basic, and one may write

β1
1 = ǫ1ω

1 + ǫ2ω
2 +A1θ,(2.5)

γ11 = ǫ3ω
1 + ǫ4ω

2 +A2θ,

α1
1 = ǫ5ω

1 + ǫ6ω
2 +A9θ,

for the coefficientsǫj ; Ak.

Step 1. The condition thatW is linear imposes a set of relations onǫj ’s. By (1.4), (2.4), one must have

dZ0, dZ1 ≡ 0, mod Z0, Z1; ω2, θ,

dZ0, dZ3 ≡ 0, mod Z0, Z3; ω1, θ,

dZ0, d(Z1 − Z3) ≡ 0, mod Z0, Z1 − Z3; ω3, θ.

A computation shows that this implies in (2.5)

(2.6) ǫ1 = 0, ǫ4 = 0, 2(ǫ5 − ǫ6)− ǫ2 − ǫ3 = 0.

Step 2. φ satisfies the structure equationdφ+φ∧φ = 0. For a notational purpose, denoteΦ = dφ+φ∧φ, which
must vanish identically. For instance,Φ1

0, Φ
3
0; Φ

2
0 give the formulae for the exterior derivativesdω1, dω2; dθ,

etc.
Φ1
3 ∧ ω2 ∧ θ, Φ3

1 ∧ ω1 ∧ θ show that

dǫ2 ≡ 2α0
1, mod ω1, ω2, θ, ρ0,

dǫ3 ≡ 2γ01 , mod ω1, ω2, θ, ρ0.

One may apply the fiber group action byP0 to translate so that

(2.7) ǫ2, ǫ3 = 0.

From (2.6), denoteǫ5 = ǫ6 = A0. The exterior derivative ofA0 is written as

dA0 = −A0ρ0 +A0,1ω
1 +A0,2ω

2 +A0,0θ.

We shall adopt the similar notation for the covariant derivative of a coefficient for the rest of the paper.
Let B1 ⊂ B0 be the sub-bundle defined by (2.7). The structure groupP1 ⊂ P0 of B1 is reduced to the form

P1 = {









∗ · ∗ ·
· ±1 · ·
· · ∗ ·
· · · ±1









}.

On B1 → M , the 1-formsα0
1, γ

0
1 are semi-basic.Φ1

3 ∧ θ, Φ3
1 ∧ θ show that one may write

α0
1 =

A1

2
ω1 + ǫ7ω

2 +B1θ,(2.8)

γ01 = ǫ8ω
1 −

A2

2
ω2 +B2θ,

for the coefficientsǫ7, ǫ8; B1, B2.
Φ1
1 ∧ θ with this relation givesA9 = −ǫ7 − ǫ8 −A0,1 +A0,2 − 2A2

0.
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Step 3. ω1 ∧ Φ0
1 +Φ0

3 ∧ ω2 gives

d(ǫ7 − ǫ8) ≡ −2γ00 , mod ω1, ω2, θ, ρ0.

One may translate, and denote

(2.9) ǫ7 = ǫ8 = B0.

Let B ⊂ B1 be the sub-bundle defined by (2.9). The structure groupP ⊂ P1 of B is reduced to

(2.10) P = {









∗ · · ·
· ±1 · ·
· · ∗ ·
· · · ±1









}.

On B → M , the 1-formγ00 is semi-basic. One may write

γ00 = C1ω
1 + C2ω

2 + C9θ,(2.11)

for the coefficientsC1, C2, C9.4

Step 4. Differentiating (2.5), (2.8), (2.11), and examining the rest of the components ofΦ, one obtains the
following structure equations.5

(2.12)
dA0 = −A0ρ0 +A0,1ω

1 +A0,2ω
2 +A0,0θ,

dA0,1 ≡ −2A0,1ρ0 +A0,1,1ω
1 +

(

A0,1,1 + 6A0A0,1 + 4A0B0 + 2A3

0
+ 2A0,0 − 2A1A0 − 5B1 − 2C1

)

ω2,
dA0,2 ≡ −2A0,2ρ0 +

(

A0,1,1 − 2C1 + 4A0B0 + 5A0A0,1 −A0A0,2 − 2A1A0 + 2A3

0
+A0,0 − 5B1

)

ω1

+(A0,1,1 + 5B2 + 2C2 + 5A0A0,2 − 2A0A2 − 2C1 − 5B1 + 3A0,0 − 2A1A0 + 5A0A0,1)ω
2,

dA0,0 ≡ −3A0,0ρ0 +
(

A0,1,0 +A0B1 − 2A0C1 − 2A0,2A1 + 4A0,1B0 −A0,1A0,2 + 2A0,1A
2

0
+A2

0,1

)

ω1

+
(

A0,2,0 − 4A0,2B0 − 2A0,1A2 +A0B2 − 2A0C2 −A0,1A0,2 − 2A0,2A
2

0
+A2

0,2

)

ω2,
dA1 ≡ −2A1ρ0 + 2A1A0ω

1 + (−2B1 + 2A1A0)ω
2,

dA2 ≡ −2A2ρ0 + (−2A0A2 − 2B2)ω
1 − 2A0A2ω

2,
dB0 ≡ −2B0ρ0 + (−C1 − 2B1)ω

1 + (C2 + 2B2)ω
2,

dB1 ≡ −3B1ρ0 +
(

−A0,2A1 +A1A0,1 + 2A1A
2

0
+ A0B1 +

1

2
A1,0

)

ω1

+
(

−4B2

0
+ 2C9 +A0B2 +B2,1 −A1A2 +A0B1

)

ω2,
dB2 ≡ −3B2ρ0 +B2,1ω

1 +
(

2A2

0
A2 −A2A0,2 −A0B2 −

1

2
A2,0 +A0,1A2

)

ω2,
dC1 ≡ −3C1ρ0 + C1,1ω

1 +
(

− 5

2
B2,1 +A0C1 +A1A2 −

5

2
A0B2 − 2C9 + 4B2

0

)

ω2,
dC2 ≡ −3C2ρ0 +

(

− 5

2
B2,1 −A0C2 −

5

2
A0B2 − 3C9 + 6B2

0
+ 3

2
A1A2

)

ω1 + C2,2ω
2,

dC9 ≡ −4C9ρ0 +
(

−B2A1 + 2B1B0 + C1,0 + 4C1B0 + C1A0,1 − C1A0,2 + 2C1A
2

0
− 2C2A1

)

ω1

+
(

−2B2B0 −B1A2 + C2,0 − 2C1A2 − 4C2B0 −A0,1C2 + C2A0,2 − 2C2A
2

0

)

ω2,
dB2,1 ≡ −4B2,1ρ0 + (−2B1,0 − 4B1A

2

0
+ 2B1A0,2 − 2C1,0 − 4C1A

2

0
+ 2C1A0,2 − 2B1A0,1 − 2C1A0,1

−16C1B0 − 16B1B0 − 4B2A1 −A0,1B2 −A0B2,1)ω
1 + (B2A0,2 − 2A0,1B2 +

1

2
A0A2,0 − 3A2

0
B2

+4B2B0 + 2B2,0 − 2A3

0
A2 + 4C1A2 + 4B1A2 −A0A0,1A2 +A0A0,2A2)ω

2, mod θ.

The θ-derivative terms, e.g.,A0,1,0, A1,0, B1,0, ... , are all independent with the one exception that

B0,0 = C9 − 2B2
0 +A0B2 +B2,1 −

1

2
A1A2.

Remark 2.13. In the language of the theory of differential systems, this set of structure equations is involutive
and a general analytic solution (linear Legendrian 3-web with the given structure equations) depends on three
arbitrary functions of two variables as expected, see the remark at the beginning of this section. See[BCG3] for
the details.

4 We use the subscript ’9’ inC9 in place of ’0’ to indicate thatC9 has the higher scaling weight thanC1, C2 under the action of the
structure groupP , see (2.12).

5 The method of differential analysis used here is referred toas theprolongation, [BCG3]. It is the process of successively adding the
derivatives as the new variables, under the condition of contact which indicates that these new variables are the derivatives. It allows one
to access the differential relations (not necessarily of higher order) which are possibly hidden and can only be detected by examining the
higher order derivatives. The computation was carried out using theMaple.
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Proposition 2.14. Let W be a linear Legendrian 3-web on a connected open subsetM ⊂ P3. There exists a
canonically associated principal bundleB ⊂ Sp2C → M with the structure group(2.10). The inducedsp2C-
valued Maurer-Cartan formφ, (2.3), is normalized onB such that

(2.15) φ =













ρ0
1
2A1ω

1 +B0ω
2 +B1θ C1ω

1 + C2ω
2 + C9θ B0ω

1 − 1
2A2ω

2 +B2θ

ω1 φ1
1 B0ω

1 − 1
2A2ω

2 +B2θ A2θ

2 θ ω2 −ρ0 −ω1

ω2 A1θ −1
2A1ω

1 −B0ω
2 −B1θ −φ1

1













,

whereφ1
1 = −A0ω

3 + (A0,2 − 2B0 −A0,1 − 2A2
0)θ. The structure coefficientsAi, Bj, Ck and their derivatives

satisfy(2.12).
Two linear Legendrian 3-websW, W ′ are congruent up toSp2C motion whenever the corresponding data

(B, φ) and (B′, φ′) are isomorphic.

Let us rephrase the argument at the beginning of this sectionwith a view to applying Proposition 2.14. Given
a linear Legendrian 3-webW on M ⊂ P3, it determines 3 sectionsM i ⊂ Z, i = 1, 2, 3, by definition of the
duality in Figure 1.2. The linearity ofW implies that eachM i is tangent to the fibers ofπ1. Under the projection
by π1, M i is mapped to a surfaceΣi ⊂ Q3. The imageπ1◦π

−1
0 (x) is the dual null line of x∈ M which intersects

Σ = ∪3
i=1Σ

i at 3 points. The local geometry of a linear Legendrian 3-web in this way corresponds to the semi-
global geometry of a union of 3 pieces of surfaces inQ3. Before we proceed to the problem of deformation, let
us consider an example where this dual interpretation allows a simple description of a class of linear Legendrian
3-webs.

Suppose for a linear Legendrian 3-web the relative invariant A0 vanishes identically,

A0 ≡ 0.

An analysis shows that in this case the Maurer-Cartan formφ reduces to

(2.16) φ =













ρ0
1
2A1ω

1 +B0ω
2 (2B2

0 +
1
2A1A2)θ B0ω

1 − 1
2A2ω

2

ω1 −2B0θ B0ω
1 − 1

2A2ω
2 A2θ

2 θ ω2 −ρ0 −ω1

ω2 A1θ −1
2A1ω

1 −B0ω
2 2B0θ













,

wheredA1 = −2A1ρ0, dA2 = −2A2ρ0, dB0 = −2B0ρ0.
Choose the Legendrian foliationF1 defined by〈ω2, θ 〉⊥. The corresponding surfaceΣ1 ⊂ Q3 ⊂ P(

∧2
0C

4)
is described by[Z0 ∧ Z1] (here we follow the notation from Section 1.1). A direct computation by successively
differentiating [Z0 ∧ Z1] shows thatΣ1 is a part of a hyperplane sectionH1 ⊂ Q3. From the similar analysis for
the foliationsF2, F3, one concludes that;

Let W be a linear Legendrian 3-web with vanishing relative invariant A0. ThenW is a part of the algebraic
Legendrian 3-webWΣ induced byΣ = ∪3

i=1H
i, a union of 3 hyperplane sections inQ3.

We shall see in Section 4 that this class of Legendrian 3-websaccount for all the linear Legendrian 3-webs of
maximum rank, with the only exception of the dual 3-web of theLegendrian twisted cubic curve.

3. DEFORMATION, AND RIGIDITY

In this section, we establish the fundamental structure equation for the linear Legendrian deformation of a linear
Legendrian 3-web. A variant of the moving frame method is applied, and the analysis leads to the closed structure
equation for the three deformation parameters. The differential compatibility conditions of this structure equation
generate a sequence of polynomial equations that the deformation parameters must satisfy.

We currently have a partial understanding of the root structure of these polynomial equations. An elementary
examination of the first few polynomials shows that; 1) the number of distinct linearizations of a Legendrian3-web
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is uniformly bounded, Theorem 3.14, 2) if the Legendrian 3-web is sufficiently flat at a point, it admits at most
one distinct local linearization, Theorem 3.16.

Let W be a linear Legendrian 3-web on a connected open subsetM ⊂ P3. Let B → M be the associated
adapted bundle with thesp2C-valued normalized Maurer-Cartan formφ, Proposition 2.14. LetM →֒ P3 be
another distinct linearization ofW. Let B′ → M be the associated P′ ≃ P-bundle with the Maurer-Cartan form
φ′. We employ the method of moving frames to normalize the framebundle B′ based atB. The structure equation
for the differenceφ′ − φ then gives the aforementioned polynomial compatibility equations.

Set

(3.1) φ′ = φ+ δφ.

The components ofδφ are denoted by

δφ =

(

δα δγ
δβ −δαt

)

.

For the notational purpose, set

(3.2) ∆ = d(δφ) + δφ ∧ φ+ φ ∧ δφ+ δφ ∧ δφ.

Maurer-Cartan equations forφ′ and φ imply that ∆ must vanish identically.

Step 0′. Applying the fiber group action by P′ ⊂ Sp2C as inStep 0of Section 2, one may translate

(3.3) δα1
0 = 0, δβ1

0 = 0; δβ0
0 = 0.

Under these relations, the structure group is reduced to

P′

0 = {±









1 · ∗ ·
· 1 · ·
· · 1 ·
· · · 1









}.

∆2
0 givesδα0

0 ∧ θ = 0. Applying the fiber group action by P′0, one may translate

(3.4) δα0
0 = 0.

Under this relation, the structure group is reduced to the center of Sp2C, Z(Sp2C) = {±I4 }. Thesp2C-valued
deformation 1-formδφ becomes

δφ =









· ∗ ∗ ∗
· ∗ ∗ ∗
· · · ·
· ∗ ∗ ∗









.

Starting from this initial state, by successive applications of (3.2), we intend to find the compatibility equations for
the linear Legendrian deformation.

Differentiating (3.3), (3.4), one gets




δα1
1 δγ11 2δγ01

−δβ1
1 δα1

1 2δα0
1

δα0
1 δγ01 2δγ00



 ∧





ω1

ω2

θ



 = 0.

By the Cartan’s lemma, one may write
















δα1
1

δγ11
δβ1

1

δα0
1

δγ01
δγ00

















=

















µ1 µ2 2µ9

µ2 µ4 2µ10

µ5 −µ1 −2µ7

µ7 µ9 2µ11

µ9 µ10 2µ12

µ11 µ12 µ11,0





















ω1

ω2

θ



 ,
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for the coefficientsµl.

Step 1′. The condition that it is a linear Legendrian deformation imposes a set of relations onµk’s. A compu-
tation similar as inStep 1of Section 2 shows thatµ4 = 0, µ5 = 0, µ1 − µ2 = 0. We set accordingly

(3.5)

















δα1
1

δγ11
δβ1

1

δα0
1

δγ01
δγ00

















=

















a0 a0 2b0
a0 · 2b3
· −a0 −2b1
b1 b0 2c1
b0 b3 2c2
c1 c2 c9





















ω1

ω2

θ



 .

The derivatives of these coefficients will be denoted similarly as before, e.g.,da0 = −a0ρ0 + a0,1ω
1 + a0,2ω

2 +
a0,0θ.

Step 2′. ∆1
3 ∧ θ, ∆3

1 ∧ θ, ∆1
1 ∧ θ give

(3.6)
a0,1 = −4 b1 + a0A0 + 2 a20,
a0,2 = 4 b3 − a0A0 − 2 a20,
b0 = b1 + b3 − a0A0 −

3
4 a

2
0.

The remaining equations from∆1
3, ∆

3
1, ∆

1
1 give

(3.7)

b1,1 = 2A0b1 − 2A1a0 + 2 b1a0,
b1,2 = 2 c1 + 2A0a

2
0 +

3
2 a

3
0 − 2 a0b3 −

1
2 A0,2a0 + 2A0b1 +

1
2 A0,1a0 −A1a0 +A2

0a0 +
1
2 a0,0,

b3,1 = −2 c2 − 2A0a
2
0 −

3
2 a

3
0 + 2 b1a0 −A2

0a0 − 2A0b3 −A2a0 −
1
2 A0,1a0 +

1
2 A0,2a0 +

1
2 a0,0,

b3,2 = −2A0b3 − 2A2a0 − 2 b3a0,
c1 = −9

2 a
3
0 −

11
2 A0a

2
0 + 3 b1a0 +

2
3 A0b1 +

10
3 A0b3 + 6 a0b3 − 3A2

0a0 −
4
3 A0,1a0

+5
3 A0,2a0 − 2B0a0 +

1
2 A1a0,

c2 = c1 − 3 a0b3 −
8
3 A0b3 −

1
2 A2a0 −

1
3 A0,1a0 −

1
3 A0,2a0 + 3 b1a0 +

8
3 A0b1 −

1
2 A1a0.

The compatibility equations fromd(d(a0)) = 0 give

(3.8)
a0,0 = −1

3 A0,1a0 −
1
3 A0,2a0 +

8
3 A0b1 −

8
3 A0b3,

b1,0 = 5A0a
3
0 +

(

−2
3 A0,2 + 7A2

0 +A1 +
1
3 A0,1 + 2B0

)

a20 +O(b1a0, b3a0; a0, b1, b3),
b3,0 = −5A0a

3
0 +

(

−2
3 A0,1 − 7A2

0 +A2 +
1
3 A0,2 − 2B0

)

a20 +O(b1a0, b3a0; a0, b1, b3).

Here O(b1a0, b3a0; a0, b1, b3) means the terms that are linear combination of{ b1a0, b3a0; a0, b1, b3 } with the
coefficients inAi, Bj, Ck’s and their derivatives.

At this stage, there are three components∆0
1, ∆

0
3; ∆

0
2 left to be checked.

Step 3′. ∆0
1 ∧ ω1 finally gives

(3.9)
c9 = 81

8 a40 + 19A0a
3
0 +

(

−26A2 + 27 b1 − 4A1 − 105 b3 −
5
2 A0,2 − 19B0 −

19
2 A0,1 + 5A2

0

)

a20
+2 b21 + 50 b23 + 26 b1b3 +O(b1a0, b3a0; a0, b1, b3).

It follows that δφ ≡ 0, mod a0, b1, b3, and that the structure equations for{ a0, b1, b3 } are closed, i.e., their
derivatives are expressed as the functions of themselves and do not involve any new variables.

Remark 3.10. Note that
da0 ≡ −4(b1ω

1 − b3ω
2), mod θ; a0.

Hence if a0 vanishes up to order one at a point on a connected open subsetM , the uniqueness theorem of ODE
implies thata0, b1, b3 ≡ 0 identically. Hence in this caseδφ = 0 and the deformation is trivial.

Proposition 3.11. Let W be a linear Legendrian 3-web on a connected open subsetM ⊂ P3. Consider a linear
Legendrian deformation ofW represented by thesp2C-valued 1-formδφ satisfying the initial conditions(3.3),
(3.4). Then the components ofδφ are given by, and satisfy the structure equations(3.5), (3.6), (3.7), (3.8), (3.9).

Supposeδφ ≡ 0, mod θ at a point in M . Thenδφ vanishes identically and the deformation is trivial.
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Proof. If δφ ≡ 0, mod θ at a point, (3.5) shows thata0, b1, b3 = 0 at the given point. The rest follows from
Remark 3.10.�

3.1. Bound on the number of distinct linearizations. The remaining compatibility conditions from
∆0

1, ∆
0
3,∆

0
2; d(d(b1)) = 0, d(d(b3)) = 0, impose a set of polynomial equations (and their successivederiva-

tives) on the deformation parameters{ a0, b1, b3 }. The analysis of the root structure of these equations inevitably
leads to a variety of case by case analysis problems depending on the relative invariants of the original 3-webW,
e.g., the resultants of a set of polynomial compatibility equations for{ a0, b1, b3 } are expressed in terms of the
local invariants ofW.

Due to the complexity and size of the algebraic analysis involved, we shall consider the first few lowest order
compatibility equations. In this section, we examine theseequations without any extra conditions on the local
invariants of the original webW, and determine an upper bound on the number of distinct linearizations.

We continue the analysis fromStep 3’.
The identitiesd(d(b1)) ∧ θ = 0, d(d(b3)) ∧ θ = 0 give a set of two compatibility equations which must vanish

identically for a linear Legendrian deformation.

Eq1 ≡ b21 + 2b1b3,(3.12)

Eq3 ≡ b23 + 2b1b3, mod {terms at most linear inb1, b3}.

Eq1, Eq3 are polynomials of degree 4 in{ a0, b1, b3 }. One computes then that∆0
1, ∆

0
3 ≡ 0 moduloEq1, Eq3.

∆0
2 modulo Eq1, Eq3 gives another set of two equations

Eq0 ≡ a50 +
314

111
A0a

4
0,(3.13)

Eq9 ≡ A0a
4
0, mod {terms at most linear inb1, b3, and of degree≤ 3 in a0 }.

Eq0, Eq9 are polynomials of degree 5, 4 in{ a0, b1, b3 } respectively.

Theorem 3.14.Let W be a Legendrian 3-web on a connected contact three manifoldM . Then it admits at most
4 ·4 ·5+1 = 81 distinct local linearizations. If the local invariantA0 of a linearization ofW is nonzero, it admits
at most4 · 4 · 4 + 1 = 65 distinct local linearizations.6

Proof. It is clear thatEq1 andEq3 cannot have a common linear factor. The rest follows by counting the degrees
of the polynomials{Eq1, Eq3, Eq0}, and {Eq1, Eq3, Eq9}. �

It is unlikely that this is the optimal bound. We suspect thatthe optimal bound on the number of distinct
local linearizations is two, see Conjecture 5.1 in Section 5. Theorem 3.14 shows that the number of distinct local
linearizations of a Legendrian 3-web is uniformly bounded.

3.2. Rigidity of the linear Legendrian 3-webs with a flat point. Remark 3.10 implies that a linear Legendrian
3-web is rigid under linear Legendrian deformation when thevarious compatibility equations force the deformation
parameters{a0, b1, b3} to vanish at a single point. In this section we examine{Eq1, Eq3, Eq0} in (3.12), (3.13),
and show that this occurs in caseW is sufficiently flat at a point.

Fix a reference point x0 ∈ M . Assume all the coefficientsAi, Bj , Ck ’s and their derivatives of sufficiently
high order vanish at x0. The compatibility equationsEq1, Eq3, Eq0 in (3.12), (3.13) evaluated at x0 become (up
to scaling by constants)

(3.15)
(Eq1 −Eq3)|x0 = (b1 − b3)(4b1 + 4b3 − 11a20),

Eq1|x0 = (4b1 + 5a20)(2b1 + 4b3 − 3a20),
Eq0|x0 = a0

(

185a40 − 60a20b3 − 220b1a
2
0 − 208b1b3

)

.

It is easily checked that the only root to this system of equations for { a0, b1, b3 } is a0, b1, b3|p0 = 0. By Remark
3.10, in this case{ a0, b1, b3 } vanish identically and the deformation is trivial.

6In case the invariantA0 ≡ 0 identically, the linear Legendrian 3-web admits at most twodistinct local linearizations, see Section 4.
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The following theorem describes up to which order the coefficients Ai, Bj, Ck ’s should vanish at the reference
point to put the equationsEq1, Eq3, Eq0 into the reduced form (3.15).

Theorem 3.16. Let W be a linear Legendrian 3-web on a connected open subsetM ⊂ P3. Let Ai, Bj , Ck be
the structure coefficients ofW, (2.15). Let x0 ∈ M be a reference point. Suppose

A0 vanishes to order 3 at p0,
A1, A2, B1, B2, C1, C2 vanish to order 1 at p0,

B0, C9 vanish at p0.

ThenW is rigid and does not admit any nontrivial local linear Legendrian deformations.

Proof. Examining the equationsEq1, Eq3, Eq0, the vanishing conditions onAi, Bj , Ck are sufficient to imply
(3.15). The rest follows from Remark 3.10.�

This agrees with the partial proof of the Gronwall conjecture for the planar 3-webs obtained in [Wa1].

4. LINEARIZATION OF THE LEGENDRIAN 3-WEBS OF MAXIMUM RANK

Theorem 3.16 states that a linear Legendrian 3-web is rigid when it is sufficiently flat at a point. A question arises
as to which abstract Legendrian 3-webs are such that their linearizations are likely to have the similar property.
The first candidates would be the Legendrian 3-webs of maximum rank three, [Wa2]. The following refinement of
Theorem 3.16 gives a partial proof of the Legendrian Gronwall Conjecture, Section 5, for this class of Legendrian
3-webs.

Theorem 4.1. Let W be a Legendrian 3-web on a connected contact three manifoldM . SupposeW has the
maximum rank three.

a) W admits a local linearizationM →֒ P3 as the dual Legendrian 3-web of an analytic surfaceΣ ⊂ Q3

which is the union of three hyperplane sectionsΣ = ∪3
i=1H

i, H i ⊂ Q2. Conversely, for any set of three distinct
hyperplane sectionsH i in Q3, the dual Legendrian 3-webW∪3

i=1H
i has the maximum rank.

b) The linearization ofW in a) is unique up to motion by Sp2C, with the only exception when the structure
invariants ofW in (A-1) satisfy the relation

(4.2) S = −T = 2R 6= 0.

In this case, the Legendrian 3-web admits exactly one more distinct local linearization as the dual Legendrian
3-web of the Legendrian twisted cubic.

Corollary 4.3. A Legendrian 3-web of maximum rank is algebraic.

Proof of Theorem 4.1.
a) Let W be a Legendrian 3-web of maximum rank three. Then the structure invariants ofW in (A-1) satisfy

the relations

dR, dS, dT ≡ 0, mod ρ,

L = K = 0.

Recall (2.16) in Section 2 for the linear Legendrian 3-webs with the vanishing local invariantA0. Substituting

(4.4) B0 =
R

4
, A1 = −

T

2
, A2 = −

S

2
; ρ0 = −ρ,

one hasdφ+ φ ∧ φ = 0, and it induces a local linearization ofW.

b) Given the linearization ofW defined byφ in (2.16), (4.4), the deformation analysis as in Section 3 shows
that the various compatibility equations forceδφ = 0, except whenS = −T = 2R 6= 0 (this requires a long but
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straightforward case by case analysis). In this caseW admits exactly one more distinct linearization induced by
the (deformed) Maurer-Cartan form

(4.5) φ′ =













−ρ 3
2Rω1 + 3

4Rω2 −27
8 R

2θ 3
4Rω1 + 3

2Rω2

ω1 1
2Rθ + a0ω

1 + a0ω
2 3

4Rω1 + 3
2Rω2 Rθ + a0ω

1

2 θ ω2 ρ −ω1

ω2 −Rθ − a0ω
2 −3

2Rω1 − 3
2Rω2 −1

2Rθ − a0ω
1 − a0ω

2













,

wherea20 = 2R.
We claim that this describes the dual 3-web of the Legendriantwisted cubic. Choose the linear Legendrian

foliation F1 defined by〈ω2, θ 〉⊥ via φ′. The corresponding surfaceΣ1 ⊂ Q3 is described by[Z0 ∧ Z1]. The
conformal structure ofQ3 is represented by the quadratic formβ0

0β
1
1 − (β1

0)
2, whose restriction onΣ1 becomes

the perfect square(ω2 − a0θ)
2. Differentiating Z0 ∧ Z1, one gets that the two dimensional subspace spanned by

{Z0∧Z1, (2Z1−a0Z0)∧(Z2+
a0
2 Z3)} is constant along the leaves of the foliation onΣ1 defined by(ω2−a0θ)

⊥.
By duality, Σ1 is ruled by the null line dual to p1 = [2Z1 − a0Z0] ∈ P3. The similar analysis for the foliations
F2, F3 shows that the corresponding surfacesΣ2, Σ3 are ruled by the null lines dual to p2 = [2Z3+a0Z0], p3 =
[2(Z1 − Z3) + a0Z0] respectively. Note that∩iP

2
p
i
= [Z0].

Our claim is that the loci of p1, p2, p3, all lie in the same Legendrian twisted cubic. A short computation
shows that each pi describes a Legendrian curve. One may then verify by direct computation that the following
three quadratic polynomials generate the well defined, covariant constant, three dimensional space of quadratic
polynomials in a neighborhood of[Z0] which vanish simultaneously on pi’s. HereW = (W0, W1, W2, W3)

t is
the dual frame ofZ = (Z0, Z1, Z2, Z3) that satisfies the structure equationdW = −φ′W .

Q0 = −RW 2
1 −RW1W3 + 2W 2

0 −RW 2
3 + 27

8 R
2W 2

2 ,
Q1 = a0W

2
1 + 2W0W1 − 3RW2W3 + 2a0W1W3 −

3
2RW1W2,

Q3 = −2a0W1W3 − a0W
2
3 + 2W0W3 +

3
2RW2W3 + 3RW1W2.

It is clear that these polynomials define the Legendrian twisted cubic inP3 that connects the three arcs traversed
by pi’s. �

The analysis in the proof of b) above has the following algebro-geometric implication. LetW be the dual 3-web
of the Legendrian twisted cubic just described. Since the Gauss map of the Legendrian twisted cubic inP3 is the
null rational normal curve inQ3 ⊂ P4, W is also the dual 3-web of the analytic surfaceΣ ⊂ Q3 which is the
tangent developable of the null rational normal curve.

Consider the following analogue of the converse of Abel’s theorem, [CG, HP].

Legendrian analogue of the converse of Abel’s theorem

Let x0 ∈ P3 be a reference point. LetN0 ⊂ Q3 be the null line dual to x0. Let Σi ⊂ Q3, i = 1, 2, ... d,
be a set ofd distinct pieces of local analytic surfaces each of which intersectsN0 transversally at a single
point qi(x0). Let Ωi be a meromorphic 1-form onΣi which is regular at qi(x0). Suppose the following
local trace vanishes in a neighborhood of x0.

Tr (Ωi ) =
∑

i

q∗iΩ
i = 0.

Then there exists a null degreed analytic surfaceΣ, and a meromorphic 1-formΩ on Σ, which analytically
extends the given data∪i(Σ

i, Ωi).

Assuming this is true, the relevant observation is thatthe tangent developable of the null rational normal curve
lies in the intersection ofQ3 with a cubic hypersurface ofP4.7 It is known that a smooth complete intersection

7Let Vm be the irreducible SL2C-module of dimensionm + 1. By Clebsch-Gordan, the symmetric cubic tensor product decomposes
into S3(V4) = V12 ⊕ V8 ⊕ V6 ⊕ V4 ⊕ V0. The V0 piece vanishes on the tangent developable of the null rational normal curve.
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of type (2, 3) in P4 is a K3 surface, which has no nonzero holomorphic 1-forms. According to Theorem 4.1,
when this complete intersection degenerates toΣ, it supports three closed generalized holomorphic 1-forms. We
currently do not have any purely algebro-geometric explanation of this phenomenon.

5. CONCLUDING REMARKS

1. The Legendrian analogue of the Gronwall conjecture can bestated as follows.

Conjecture 5.1 (Legendrian Gronwall conjecture). Let W be a Legendrian 3-web on a connected contact three
manifold. Then it admits at most one distinct local linearization in P3, with the only exception whenW is locally
equivalent to the dual 3-web of the Legendrian twisted cubiccurve in P3 (in which caseW admits exactly two
distinct linearizations).

Note the discrepancy when compared with the planar web case.An algebraic planar 3-web admits infinitely
many distinct local linearizations.

From the analysis carried out in this paper, one suspects that a generic Legendrian 3-web admits at most one
distinct linearization, although we did not write down the condition for rigidity explicitly. Since the other extreme
case of the maximum rank Legendrian 3-webs are treated in Section 4, the next step toward the proof of the Leg-
endrian Gronwall conjecture would be to consider the class of Legendrian 3-webs with one, or two independent
Abelian relations. One may then attempt to show that a Legendrian 3-web with two distinct linearizations nec-
essarily possesses at least one Abelian relation. It appears to be a difficult problem to directly analyze the root
structure of the polynomial integrability equations for the linear Legendrian deformation discussed in Section 3.

2. Let Σ ⊂ Q3 be a null degreed surface. We say thatΣ is extremalwhen the associated dual linear Legendrian
d-web WΣ has the maximum rankρd = (d−1)(d−2)(2d+3)

6 , [Wa2]. Theorem 4.1 implies that the only null degree
3 extremal surfaces are the union of three hyperplane sections, and the tangent developable to the null rational
normal curve. Can one give an algebro-geometric proof of this? The direct differential analysis for the Legendrian
d-webs of maximum rank for the cased ≥ 4 is complicated. One may hope to generalize the algebro-geometric
classification of the extremal null degree 3 surfaces to the extremal null degreed surfaces in general.

One may start by considering the following sub-problem. Letγ ⊂ P3 be a degreed curve. We say thatγ is
extremalwhen the associated dual linear Legendriand-web Wγ has the maximum rankρd. Theorem 4.1 shows
that it is possible forWγ to have an Abelian relation which is not induced from a holomorphic 1-form on γ.
We suspect that this kind of auxiliary Abelian relations exist only whenγ is itself Legendrian. Can one give an
algebro-geometric classification of the extremal Legendrian curves? As mentioned in Section 1, such an extremal
Legendrian curve is tightly controlled by a large number of generalized addition laws.

3. As discussed briefly in [Wa2], the geometry of a Legendrian2-web is locally equivalent to the geometry of a
single scalar second order ODE up to point transformation. In particular, the structure of a Legendrian 2-web has
local invariants, and not every two of them are locally equivalent, [Ca].

A question arises as to the geometric meaning of the linearization of a Legendrian 2-web. Can the linearizability
be considered as a local counterpart of the notion of completeness of the associated projective connection discussed
in [McK]?

APPENDIX

Let W be a Legendrian 3-web on a contact three manifoldM . There exists a sub-bundleB of the GL3C prin-
cipal frame bundle ofM on which the tautological 1-formsθ; ωi, i = 1, 2, 3,

∑

ωi = 0, satisfy the following
structure equations.

d





ω1

ω2

θ



 = −





ρ · ·
· ρ ·
· · 2ρ



 ∧





ω1

ω2

θ



+





θ ∧ (Rω1 + S ω2)
θ ∧ (T ω1 −Rω2)

ω1 ∧ ω2



 ,(A-1)

dρ = θ ∧ (Lω1 +K ω2 ).
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Here R, S, T, L, K are torsion coefficients. The contact structure onM is defined by〈 θ 〉⊥. W is defined by
the three line fields〈ωi, θ 〉⊥. See [Wa2] for the derivation of this structure equation.
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