Mathematics > Differential Geometry

Dyck's surfaces, systoles, and capacities

Mikhail G. Katz, Stephane Sabourau
(Submitted on 1 May 2012)
We prove an optimal systolic inequality for nonpositively curved Dyck's surfaces. The extremal surface is flat with eight conical singularities, six of angle theta and two of angle 9?pi - theta, for a suitable theta with cos(theta) Q (sqrt\{19\}). Relying on capacity estimates, we also show that the extremal surface is not conformally equivalent to the hyperbolic surface with maximal systole, yielding a first example of systolic extremality with this behavior.

Comments: 26 pages, 7 figures
Subjects: Differential Geometry (math.DG); Geometric Topology (math.GT); Metric Geometry (math.MG)
MSC classes: 53C23, 30F10, 58J60
Cite as: arXiv:1205.0188 [math.DG] (or arXiv:1205.0188v1 [math.DG] for this version)

Submission history

From: Mikhail G. Katz [view email]
[v1] Tue, 1 May 2012 15:07:37 GMT (62kb)
Which authors of this paper are endorsers?

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.DG
< prev | next >
new | recent | 1205
Change to browse by: math
math.GT
math.MG
References \& Citations

- NASA ADS

Bookmark(what is this?)

Link back to: arXiv, form interface, contact.

