Mathematics＞Algebraic Topology

n－Nilpotent Obstructions to pi＿1 Sections of $P^{\wedge} 1-\{0,1$, infty $\}$ and Massey Products

Kirsten Wickelgren

（Submitted on 9 Jul 2011）
Let pi be a pro－I completion of a free group，and let G be a profinite group acting continuously on pi．First suppose the action is given by a character． Then the boundary maps delta＿n： $\mathrm{H}^{\wedge} 1\left(\mathrm{G}, \mathrm{pi} /[\mathrm{pi}] _n\right)->\mathrm{H}^{\wedge} 2\left(\mathrm{G},[\mathrm{pi}] _\mathrm{n} /[\mathrm{pi}] _\{\mathrm{n}+1\}\right)$ are Massey products．When the action is more general，we partially compute these boundary maps．Via obstructions of Jordan Ellenberg，this implies that pi＿1 sections of $\mathrm{P}^{\wedge} 1 _k-\{0,1$, infty $\}$ satisfy the condition that associated nth order Massey products in Galois cohomology vanish．For the pi＿1 sections coming from rational points，these conditions imply that $<(1-x)^{\wedge}\{-1\}, x^{\wedge}\{-1\}, x^{\wedge}\{-$ $1\}, \ldots, x^{\wedge}\{-1\}>=0$ where x in $H^{\wedge} 1$（Gal＿k，$Z _l($ chi）$)$ is the image of an element of $k^{\wedge *}$ under the Kummer map．

Comments： 20 pages
Subjects：Algebraic Topology（math．AT）；Algebraic Geometry （math．AG）；Number Theory（math．NT）
MSC classes：55S30，11S25，14H30
Cite as：arXiv：1107．1790［math．AT］ （or arXiv：1107．1790v1［math．AT］for this version）

Download：

－PDF
－PostScript
－Other formats

Current browse context：

 math．AT＜prev｜next＞ new｜recent｜ 1107

Change to browse by： math
math．AG
math．NT
References \＆Citations
－NASA ADS
Bookmark（what is this？）

Submission history

From：Kirsten Wickelgren［view email］
［v1］Sat， 9 Jul 2011 15：20：53 GMT（18kb）
Which authors of this paper are endorsers？

Link back to：arXiv，form interface，contact．

