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Abstract

We prove an extension to the simplicial Nerve Lemma whichl@ishes
isomorphism of persistent homology groups, in the case evtier covering
spaces are filtered. While persistent homology is now widshd in topo-
logical data analysis, the usual Nerve Lemma does not peas@morphism
of persistent homology groups. Our argument involves soomedhogical
algebra: the key point being that although the maps produncthé standard
proof of the Nerve Lemma do not commute as maps of chain comgl¢he
maps they induce on homology do.

Persistent homology has become a central tool in topolbgata analysis
(TDA). The purpose of the present paper is to update the Negw@ma accord-
inglyd. Specifically we prove an extension to the (finite) simpligixrsion of the
Nerve Lemma, which is sufficient for the usual TDA applicago Our proof is
self-contained and elementary. After the writing of thip@a it was brought to
our attention that Chazal and Oudbot [6] have proved an anal®gesult in the
topological category, however their proof is more invohaed relies on earlier
work. In this light we feel there is merit in publishing our ov@rgument for two
reasons: 1. it provides a proof in the simplicial categoryhig basic result (up-
dating the semi-classical Nerve Lemma) and 2. its simpligitows one to see
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1This result was announced in the tech regort [12], which sisueys relevant recent work in
TDA; however, the sketch of proof suggested there did naeotly anticipate the issue discussed
in Remark%.
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explicitly why the relevant chain maps must commute on hagyllevel (see
RemarK 4 for a discussion of this issue).
Our main result is the following.

Proposition 1. Let A be a simplicial complex andiA‘},¢, a filtration of A, as
a topological space, such that eath is also a simplicial complex. For each
lel, suppose(Af)ig is a locally finite family of subcomplexesAf. such that

A = UI A and every nonempty finite intersectiafy N --- ,NA{ is contractible.
le

Suppose now fof,¢/ +p e |, p > 0we have
A! is a subcomplex af P (1)

Then for each k N,
HP(A%) = HP(A(4))),

wheref?\[(Af) is the nerve of the collectio(mf)ie . In other words the p-persistent
homology groups coincide at levélin the filtrationsA’ ¢ AP and N(Af) C

(L),

We define persistent homology below. For more detail theaeiadeferred to
Weinberger’s short expository article [17], or Zomorodsahesis [18].

APPLICATION TO TOPOLOGICAL DATA ANALYSIS Much recent TDA workl[2,
9,110,3/4,5,77,18, 16, 18, 19] usescomplexes to recover topological invariants
of a submanifold c RN from a point cloudZ associated té\ while [14,[15]
(in the case of smootfM) usesCech complexes and addresses more general sam-
pling.

Given a (finite) point clou® c RY, denoteK (Z, a) the a-complex, first de-
fined by Edelsbrunner in 1995, [11]; denote(ﬁgc}‘(Z,a) the Cech complex. In
each case, vertices are pointsZofThe Cech complexis defined by:

p
0 =[22...2p] is ap-simplex ff (] B(zj,a) # 0
j=0

Thea-complexA(Z,a) is defined by:

2Warning: usually the notatioA(Z,a) is used to denote the analogous complex obtained
using balls of radiusi/2 intersected with Voronoi cells.



p
0 = [221...2p] is ap-simplex iff () [B(zj,a) NVj] #0,
j=0
whereVj = {xe RN : vz Z, d(x,zj) < d(x,2)} is the Voronoi cell o € Z.

LetU be the union of balls of radius around points oZ. Both of the collec-
tions of sets {B(z;j,a) : zj € Z} and{B(zj,a) NV; : z; € Z} — are finite covers of
U and the complexes just defined are threrves(see Hatcher [13] or Bjoerner
[1]). Moreover the sets in these covers are convex. The Nezwema [1] there-
fore implies the nerves are homotopy equivalent{and hence to each other.

Proposition 1L, as an extension of the simplicial Nerve Lemsfows that
the persistent homology groups coincide. Indeed@ech complexes we may
triangulate the collection of larger badlso that the smaller balls and intersections
are subcomplexes, and similarly fmfrcomplexes; their union in either caseJs

PERSISTENTHOMOLOGY Using the standard notati@y(X), Zx(X), Bk(X) for
k-chains,k-cycles andk-boundaries respectively of a simplicial compl€xwe
recall:

Definition 2 (Persistent Homology)Given integers gk > 0, and a filtered topo-

logical space X= |J X with¢ < ¢/ = X! X! The p-persistent k-th homology
(=0

of X! is the image of R(X¢) in H(X‘*P) induced by inclusion. Equivalently, it

may be defined as

Z(X")
Bk(X“FP) N Z(XE)

HP(X") ==

DETAILS OF THE SIMPLICIAL NERVE LEMMA: POSETS AND ORDER COM-
PLEXES This section is a summary of the relevant exposition in Bjeer1].
We useposetas a shorthand fgrartially ordered set

Theface posetP(A) of a simplicial complex is the set of faces (simplices)
of A ordered by inclusion. Therder complex A(P) of a posetP with partial
order< is the simplicial complex with vertex sBtsuch thafxg. . . xn] ak-simplex
ifand only if Xg < ... < Xx. Given a simplicial complea, the simplicial complex

3The radiusx plays the role of in the Proposition.



A(P(A)) is called thebarycentric subdivision of A; it is homeomorphic ta\
(using geometric realizations). For readability we wAif(A) .

From now on, weassume the hypotheses of Propositidd IThe simplicial
version of the Nerve Lemma is proved in [1] by showing thatraie continuous
map

0" : AP(A) — AP(A(AD))
is a homotopy equivalence, €8 and A (Af) are homotopy equivalent. In par-
ticular, © induces an isomorphism between homology groups. The @faip
defined starting with the poset mép: P(A%)) — P(A((A!)) given by

m— {iel: mel}.
This is an order-reversing poset map and so induces a siaiphiap,
O': AP(AY) — AP(A(A))),

whose effect on vertices is given Y. In fact®’ can also be defined in this way
on all of AP(A*P), and we will assume this.

Remark 3. We remark tha\P(A!) is a subcomplex ahP(A+P) becausé\’ is a
subcomplex of\‘*P (hence any face d&’ is a face ofA’*P and moreover nested
facesxg < ... < xc of A’ are nested faces @& P). Also, AP(A((A!)) is a sub-
complex ofAP(?\[(Af+ P)) by the same reasoning, singg4) is a subcomplex of
A(ATP) by Equation[(lL). Indeed, bffl(1), a nonempty intersecigm ... NA[
implies a nonempty intersecti(ﬂrfjpﬁ .. mAﬁjp. We will not write these sub-

complex inclusions explicitly; as commented earlier, weuase©’ is defined on
all of AP(AP),

Remark 4. Giveno € AP(A"), it is not truein general tha®“*P(g) = ©(0). In
other words the following diagram does not commute:

AP(A"HP) o AP(A(8{P))

C C

0

AP(A') AP(A(AY)).




Indeed, this may be seen already at vertex level: the pogef ftakes a simplex
tof A to the set of all indicesuch thattis a subsimplex of!, while f*P takes

Tt to the set of all such thatrtis a subsimplex oﬁf*p. The second set contains
the first by Equatiori{1), but may be strictly larger. In thase®’ and®‘*P map
the vertextt of AP(A’) c AP(AHP) to distinct vertices oAP(A(A!P)).

We will, however, show that the induced chain maps and OLP differ
on k-cycles of AP(A“"P) by boundaries oﬂP(?\[(Af+p)). In other words, the
homology-level diagram induced by the above diag@mescommute, giving
an isomorphism of the respectiyepersistent homology grouthf(AP(Af)) =
HP (AP(A(4Y))), and thereforéd?(AY) = HP(AL(A)).

TECHNICAL LEMMA  Given twok-simpliceso andt with a fixed ordering of
the vertices of each, we define a preferred simplicial de@sitipn of the map-
ping cylinder of the simplicial map that sends one simplethoother preserving
vertex order. Each of the original simplices belongs to #ibstract simplicial
complex.

Remark 5. This is a simpler version of the usual simplicial mappingrayér, as
we do not take a barycentric subdivision of one of the singslic

We write [Vovy . . . V] to denote thd-simplex|vovs . . . v] with this explicit vertex
ordering and refer to it as ardered simplex

Definition 6 (Simplicial Mapping Cylinder) Given two ordered k-simplices=
[Vovi ... w]° andt = [wows ... w]°, define

Cyl(o,1) := i(—l)t“[vo...vtwt...Wk],
t=

aformal linear combination of abstra¢k+1)-simplices on the vertex sfly, . .., i} L
{wo,...,Wk}. Let w, M2 be k-chains of a simplicial complex X with vertex set V.

If we have
m m
W= aoiand =) aT|
2, %0 2,21

then we say pand |p are compatibleand define (for a fixed ordering of the ver-
tices of eaclo; andr;)

Cyl(iiaioi,iia;ti) = iiai Cyl(oi, Ti)
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as a formal linear combination of abstrack + 1)-simplices on the vertex set
VUuVv.

In fact, Cyl(o, 1) in the definition, provides a simplicial decomposition of th
topological mapping cylinder of the map giveny— w;. We will only need the
following (which we prove in the Appendix):

Lemma 7. Given two compatible k-chaing @and p,

0Cyl(p1, M) = M — Lz — Cyl (0, Op2).
Therefore,

Corollary 8. If 4y and |p are compatible k-cycles,

0CyI(Ha, o) = . — Ha.

The reason for defining Cyl in this manner is its well-behaved interaction
with @° and©®‘*P which we now describe. Lat be the vertex set diP(AP).
Suppose we use apostrophes to indicate the elemektsi® which come from
the second factor; 8LV =V U{V: veV}. Letpc Z(AP(AFP)) be ak-cycle.
Denote by the correspondinkg-cycle using the vertices. These are compatible
k-chains and so Cyl, |¥) is well-defined (for any fixed ordering of the vertices
of simplices ofy). It is a linear combination of abstragt + 1)-simplices on the
vertex seV LIV and so we may apply to it the chain m@pnduced by

vies T4v), V = T57P(v).
Both of these images are verticesﬂxff(?\[(Af+ P)). By Corollary(8, we have

00 Cyl(, 1) = $aCyl(k 1)
=o(u—1)
= 0L (w) — 0. P(u),

where®! and®."P are the chain maps induced 8 and®’*P respectively. The
latter, we assume, are both defined on al\BfA“*P), mapping intcAP(ﬁ\[(Ai”p))
(see Remarkl3). HergCyl(p, 1) is a formal linear combination afbstract(k+
1)-simplices on the vertex set AP(?\[(A?“’)); none of thes¢k + 1)-simplices
need a priori be actual simplicesblP(?\[(Aerp)). The following techical lemma

shows, however, that they are, assuming a natural ordefithg wertices in each
simplex of .



Lemma 9. Leto be a k-simplex dhP(A)), with the canonical vertex order inher-
ited from the underlying poset. ThérCyl(o,0) € Ck+1(AP(£7\[(Af+p))). Hence,
for any pe Z(AP(A*P)), O/ (W) ~ ©L () € B(AP(A(AP))).

Proof. Note that ifx is a vertex ofAP(A’) thenx is a simplex ofA’ and by Re-
marki4,f‘(x) < f*P(x). Suppose thk-simplexa of AP(A?)) is defined by nested
simplicea X < ... <X of A’ and take any, 1 < t < k. We have

f(x0) < ... < (%) < F7P(x) < ... F7FP(x).
Therefore, foralt, 1 <t <k,
{£00),..., 0, F7P0x), .., T P(x0)}

is a simplex 0fAP(9\[(Af+p)) (possibly of dimension less thad). And so, in the
sum for Cylo,0), the abstrack-simplices[xg...%X ...X] which are not killed
off by the chain ma will be mapped to actud-simplices

[f°(%).. £/ () FFP(x) ... £ P(x0)]

of AP(?\[(A?“’)) (apostrophes denoting vertices in the second factos oV,
as before). The final statement of the Lemma follows immediait suffices to
assume the above-mentioned canonical vertex order in @aghes of L. O

PROOF OF THEPROPOSITION

Proof of Proposition [L.We now consider the homology level diagram induced by
the diagram of Remaik 4. By the proof of the Nerve Lemma, tteércimaps

O : C(BP(A")) — Cu(AP(N((&)))

and
0L P G (AP(ATP)) — Ce(AP(A((AP)))

descend to isomorphisms on homology (we retain the sames@méhe new

4The indexing is done this way to make order-reversed imaiges\and f‘+P easier to read.



maps). So we have,

oltP
H(AP(ATP)) — s H (AP(AL(AP)))

>~

Oé
H(AP(A")) ——— AHk(P(N(A))),

>~

where the vertical maps are those induced by inclusion. Bwrha[9,this di-
agram commutesindeed, given a homology clag§g in the bottom left corner,
with [ a cycle representing it, the Lemma implies tB4i{p) and@ﬁ*p(u) differ
by a boundary in the top right corner.

Therefore, the image dfi (AP(A?)) in H(AP(A*P)) is isomorphic to the
image ofHi(P(A((AY))) in H(AP(AL(AP))); e,

HP(AP(AY)) 22 HP(AP(A(A)))).

O
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APPENDIX
Proof of Lemmal7 Recall that

k .
Ovovi... W =S (=) [vo...Vj... w].
% ’



We prove the Lemma fdt-simplices; it follows for compatibl&-chains.

ACyl([vo. .. vk, [Wo-..Wk])

=0 % Hl S VEWE . Wi

—[Vowo . .. Wi] + (—1)*a[vo vkwk+zl D 0vo. . ek - . W]
= —Wo...wi] + (—1)2* Y vp... v
k .
+ % I[VoWo . . W . .. W] +(—1)k+1j;(—1)1[v0...vj VW]
+Zx i 1) vo...9j .. W . .. W]
+Z ”12 1) vo. . viwe W i
=[vo...vi —[wo.. _] Cyl(0[vo- .- W], 0[wo.. .. wi])
because
Cyl(d[Vo. . - Vi, O[Wo.. . .Wi])
:ji(—l)jCyl([vo...Oj...vk],[wo...wj...wk])
:_k(_l)i{jz:(—l)‘“[ VeWE .. W) L W] i (—1)t[vo...\7]...vtwt...wk]}
= = =T
szi(—l)’ k (=) Vo . Wk - VW i
t= j=t+1
k t-1
W]



k-1 K .
==5 5 (1o vew.. Wi
t=0 j=t+1
K t-1

~
I
Il

k-1 k , k-1
=_ { % (=) vo. . vewe . W . W] — %(—1)Z[vo...thtH...wk]}
=0 = =
K o 1 241
- Z (=) v 05w ] — Z(—l) VoL Ve W W
t=1j= t=
k-1 k k ot ,
S Z} (=) Vo .. Ve .. W W] - Z Z)(—l)t+1+1[vo U . ViWE .. W
=0 = e
k-1 k t k-1 t it
=— (=D vo. . et .. W .. W] + (=D vo. 05 i . W
PP PP
K
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