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Abstract

This paper gives a lot of new Finsler metrics of scalar curvature. In partic-

ular, we show at least there is an "(n;l)-dimensional family of new Finsler
metrics of constant flag curvature.
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1 Introduction

It is one of important problems in Finsler geometry to study and classification Finsler
metrics of constant (or scalar) flag curvature because the flag curvature is the most
important Riemannian quantity in Finsler geometry and it is an analogue of sectional
curvature in Riemannian geometry [1,2]. Furthermore, Finsler metrics of constant
curvature (or scalar curvature and dimension n > 3) are the natural extension of

Riemannian metrics of constant sectional curvature.

*This work is supported by the National Natural Science Foundation of China 10471001



Recently, a significant progress has been made in classifying Randers metrics of
constant flag curvature [2]. Bao-Robles-Shen’ work includes the generalizing Funk
metric and many other classical examples of constant flag curvature Randers metrics
[5,12,13]. In the spirit of Bao-Robles-Shen, many Finslerian geometers have made
efforts in the study of («, #)-metrics (in particular, Randers metrics), of constant
(or scalar) flag curvature. For instance, in [5,6,8], authors locally and globally
classify a large class of Randers metrics of scalar curvature and in [10,11] authors
manufacture («, )-metrics of constant (and scalar) curvature, which include famous
Finsler metric of zero flag curvature due to Berwald [4].

(cv, B)-metrics F' := a¢(g) (for definition, see Section 2) form a special class
of Finsler metrics where « is a Riemannian metric, § is a 1-form and ¢ = ¢(s)
is a positive smooth function. They are “computable” although the computation
sometimes runs into very complicated situation. When ¢ = 1 4+ s, we get Randers
metrics.

The main purpose of this paper is to obtain a lot of new Finsler metrics of
scalar curvature by the shortest time problem (see Theorem 5.1) generalizing result
previously only known in the case of two-dimensional Funk metric [12]. In particular,

n(n—1)
2

we show at least there is an -dimensional family of new Finsler metrics of

constant flag curvature. Precisely we obtain the following:

Theorem 1.1 Let

[+ (a, ) (/A = 2Pyl + (z, )2 + (&, y) + (1 = |2[*){a, y)]”
(1= 222/ (A = 2Pyl + (=, y)?

be an (a, ) metric on the open subsetU at origin in RY. Assume that V is a vector
field on U defined by (4.2) where Q is skew-symmetric and satisfies that (4.3) and
O(z, V) < 1. Then Finsler metric F' given by

P .=

Y
D[ x, +Vx):1, Veeld, yel,U
( F(z, y)

is of zero flag curvature.



2 Preliminaries

Recall that a (local) flow on a manifold M is a map ¢ : (—e€, €) x M — M, also
denoted by ¢ := ¢(t, -), satisfying

e pg=id: M — M

® ¢, 0 ¢ = ¢siy for any s, t € (—¢, €) with s+t € (—¢, €).

Hence, the lift of a flow ¢; on M is again a flow qgt on the tangent bundle 7'M,

i(w, y) == (¢1(x), Pe(v)) (2.1)
By the relationship of vector fields and flows, (2.1) induces a natural way to lift a
vector field © on M to a vector field X,, on T'M. In natural coordinate, we have
0 ;0u' 9

Xu =g+ g g € I(T(T My)) (2.2)

where T'My := T M\{0}.
A vector field V' on a Finsler manifold (M, F') is said to be a Killing field if the

corresponding flow ¢, is isometric, i.e.,
F=F (2.3)

equivalently, Xy (F) =0 (cf.[9]).

Lemma 2.1 Let V be a vector field on a manifold M. For functions f and g on
TM and constant o, the following hold

(i) Xv(fg) = Xv(f)g + f Xv(g), (2.4)

(ii) Xy (f7) = of" Xy (f). (2.5)

Consider the following function

el

F := ag(s), s (2.6)

S

where ¢ = ¢(s) is a positive C*° function on (—b,, b,) satisfying

o(s) — s¢'(s) + (b* — s*)¢" (s) > 0, 5| < b < b,.



Then by Lemma 1.1.2 in [7], F is a Finsler metric if ||5;]|o < b, for any x € M. A

Finsler metric in the form (2.6) is called an (a, §)-metric.

Lemma 2.2 Let V' be a vector field on a manifold M and ® := a¢(f/a) an
(v, B)-metric on M. Then

Xu(®) = (8- 2) X () + 8 (5) .1)

where

=¢(B/a), ¢ =¢'(B/a).

Proof: By a straightforward computation one obtains

o= & [a¢ (2)]

98, dag (2.8)
= ¢ axl +a¢/817 (¢ - _> ozt + ¢,8x1'
Similarly, we have
0P 8\ Oa , 00
- = -, 2.
Ay’ ((b ) ay oy (29)

By using (2.2), (2.8) and (2.9) we have
Xe(@) = V(o= 8) 5 voaa] v (0 2) 6 -0
C (o) () e ()
= (¢-2) Xv(@) + ¢ Xv (D).

3 Some lemmas

In this section, we establish the Lemmas required in next section manufacturing
Killing fields for a large class of («, [3)-metrics.
Let ® = a¢(3/a) be an (a, B)-metric on an open subset U C RY. Define

a:=p(h)a, B := Bp(h)""'dh (3.1)
e VIl + p(l2 Pyl — (2, v)?)

VWP p(aPlyP = (= y

o= 1+ a2 (3.2)
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where

r B2 “
pl0) = [ 2 - )] (33)
I A+ (a, z) + il (3.4)
V14 plal? /Tt pfa?

where A, B, C and 7 are constants (B > 0) and a € R" is a constant vector.

Remark Recently (o, ()-metrics satisfying (3.1) have been used to construct

projectively flat (a, ()-metrics [10, 11, 14].

Lemma 3.1 Let o be a Riemannian metric and 3 a 1-form satisfying (3.1).

Then
a=CiN"ra, B=C)\"5dh (3.5)
e PPl 2]t
R S 1|l S T
A=CF C—’_ w(l +w) 2w? W(l4w) 2w(l4w)? (36)
2 2
gh = (o) 2ley)  pcle ) pnlele y)  pnlele, y>7 (37)
w w(l+w) w3 w31+ w) w?(1+w)?
9rB2\ " 9rB2\ "2
(2 ()
p p
where
=V1+pz)?, (=A+(a, ). (3.9)

Proof: Plugging (3.9) into (3.4) yields

hel <g+M>. (3.10)

w 1+ w

Substituting this into (3.3) we obtain

oy = () oz (c+2E) - g (c+22)] }

1
= 1 |z|? ¢2 pnlz|?¢ L 1
= C1|C+2¢+ T — sy - sl il T — o
(3.11)




Plugging (3.11) into (3.1) we have the first equation of (3.5). Also, from (3.11), ones

obtain
r+1

p(h) Tt =i 2

It follows from (3.1) that

T r+

o dh = Cor™"5 dh.

B = BC7HA™

Hence the second equation of (3.5) holds. Now we are going to prove (3.7). It is

easy to see that

dw = “% v (3.12)
d¢ = {a, y), (3.13)
dlz)? = 2(x, y) (3.14)

from (3.9). Combining with (3.10) we get

dh = d[L(c+ 1)

w 14w
x|? w)d|z|?—|x|? w

i, x|? 2n{x, x| (x,
= e (¢ 3ED) 4 (o) + et o]

Lemma 3.2 Let @ be a Riemannian metric satisfying (3.2). Then

ba _ (2, y)? —o?lylM)at -z, gy (3.16)
ot whV/wy? — pulz, y)?
da Wy -z, y)a
Oyt WSy — i, y)?
where w is defined in (3.9).

(3.17)

Proof: Plugging (3.9) into (3.2) yields

Vwrly? — p(z, y)?

N = 3.18
a - (318)
By simple calculations, we have
B 2 ) ) 2
Y o, Yo, (3.19)

ozt



dly[* dly[* :
— =0, — = 21", 3.20
Bl Dy Y (3.20)
0 , 0 <
57O Y =Y 8—yi<x’ y) =", (3.:21)
By using these formula we obtain
da  _ 8 WylP—ulz,y)?
ozt Ozt w?
_ 1 | patyPplm )yt 2 20,12 _ 2.0
Wt /w2|y\2—u(x,y>2w 2:“’\/("} |y| H<xu y> x
_ M(Q(x,y>2*w2|y\2)x’?w2<w,y>yi
why/w?[y|2—plz, y)?
and
da _ 0 VWyP-uz,y)?
ayi - 8y7l UJ2

— 1.9 _ _ Wyi—play)a’
- F ‘yi \/w2|y|2 - H<x7 y>2 - w2\/w2\y|2—u<ac,y>2 *

Lemma 3.3 Suppose that w and ¢ are defined in (3.9). Then

9 (a,y)  pla, y)a’

o =B (3:22)
d (a,y) d
o= (3.23)
9 (z,y) vy () (14 2w)a
rw(l+w) wl+w) K Ww(l+w)?2 (3:24)
9 _(zy) !
W wl+w) wl+w) (3:25)
d (lxy)  (xya +Cy  3¢(x, y)a’
oxt w3 w3 P (3:26)
9 ((z,y) ¢
B = (3.27)
0 lePley) _ 2t bl B el o
0zt w3 (1 + w) w3(1+w) K w3 (1 4 w)? ’ '
0 oo,y |efe
oy w31 +w)  wi(l+w) (3:29)

ortw?(l+w)2  w2(l+4w)? wi(1l + w)3



o Pz y) ot
Oy w2(1+w)?  w2(1+4w)?’

(3.31)

Proof: We only prove (3.22), (3.24), (3.26), (3.28) and (3.30). The others are
easy to obtain. By using (3.19) we have

9 (a,y) dw™t e, y)a'
o' w {a, ) ori w3

From (3.19) and (3.21) we obtain

0 f{r.y) _ w(l+w)y' = (z,y) [%ﬂ(l-i-w)-i-ul’i]
ortel+w) A +w)?
y' (@, y)(1 + 2w)z’

w(l+w) a w3(1+w)?
It follows that (3.22) and (3.24) holds. Using (3.9) we get

o ¥
=al, > =0. 32
=% g0 (3.32)

A direct calculation using (3.32), (3.19) and (3.21) yields

. . . i i 3 i
aaxz C<f}73y> — % [((x’ y>az +Cyz)w3 _ 3“C<xv y>xz] — <.CC, ?/>Z3+C?/ —1 C<:i;5y>x .

This implies (3.26). By a straightforward computation one obtains

0|z : 0|z
— = 27" _ = 3.33
ox? “ ox? 0 (3:33)
Together with (3.19) and (3.21) we have
o |z|*(x, 2z, y)at x| 2y x| (x, : :
9z |w3!(§+g; = X jﬁ’?(lﬁ‘u)‘ yv - L6|(1<+wy)>2 [Buwa .(1 +w) + pw’e’]
_ 2zyaitlzPyt (AW, y)a’
w3 (1+w) wd (1+4w)?
Finally, using (3.19), (3.21) and (3.33), we obtain
G z|?(z x x4 |z| 2y x|? x, i i
LRt B [0 s e 4 ]
_ 2zyattizlPyt  2p(42w)|z](z,y)a’
- w2 (1+w)? wi(l+w)3 ’

Lemma 3.4 Suppose that A, w and ¢ are defined in (3.6) and (3.9). Then

d ¢ a  ulat
2 = — — 3.34
Ortw w w ( )
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o |z 22 w1+ 2w)|z|?a

driw(l+w) wl+w)  B31+w)? (3:35)
o <2 2Caz‘ ,u(2:ci
orw?  w? W (3:36)
0GP 2w+ laPa p(C+ Bl o
ortw?(1+w)  w?(l+w) wi(l+w)? 7’ '
0 || Az C 2p(+ 2w)|z|*2? (3.38)
0rt w2(1+w)?  w2(l+w)? wi(l+w)? 7’ '
g; 0. (3.39)

Proof: By using (3.19) and (3.32) we have

d ¢ 1 i xt at ot

ot w  w? w w

and hence

0 ¢ 00 (<> | %d

ozt w? w Ozt w w

w
These give (3.34) and (3.36). From (3.19) and (3.33) ones obtain

2 . i .
ot = o (2wl +w) o [E (14 w) + ] |
_ opt p(420)laPd
T w(ltw) w3 (14w)?2
and
4 Az|2z 4 . .
e = e~ oo (201 w) 4 2 (1 + w)a]
. 4)z|2z* 2p(14-2w) |z |*2?
T W(4w)? T A (1Hw)d

These give (3.35) and (3.38). Now we are going to show (3.37). In fact, using (3.19),
(3.32) and (3.33), we get

9 (= 1

A = SR {(290% + |z)2a)w?(1 + w) — |z|*¢ [Q,u:ci(l +w)+ uwxi]}
2¢zi+|z|2a’  pd(243w) )2
w?(14w) wi(l4w)?

Finally, note that A is independent of y. Hence we obtain (3.39).



4 Killing fields of (a, #)-metrics

In [9], authors give flag curvature a changing formula via the shortest time problem
with respect to a homothetic field. In particular, they get scalar flag curvature a
preserving property for navigation problem of a Killing field. In order to producing
new Finsler metrics with scalar (or constant) flag curvature, this section constructs

Killing fields for a large class of («, [3)-metrics.

Lemma 4.1 Let ® = a¢p(f/a) be an («, B)-metric on an open subset U C R™.
Assume that o and (8 satisfying (3.1). Then

2r+1 _3r+1

Xp(@) = [~9A a0 8) + GfleA "5 dn] Xv (M)
+CN T (60— 2) Xy(a) + Cog/ A~ F Xy (dh)

(4.1)
where V' is a vector field on U.

Proof: By using (2.4), (2.5), (2.7) and (3.5) we have

Xp(@) = (6-82) Xy(a)+¢' Xy (8)
= O (¢—2) Xy(\2a) + Cod/ Xy (A~

«

r+1

2r dh)
= C1(o-2 [—Q—ﬁqA—z—i—le(A)a - A_Q_erV(O_é)]
+0a¢! [~ EXTHE T Xy (N)dh + A Xy (dh)
= [a(6-2) (21T a) - G (-5 A ] X ()
+C1 (6= 8) A5 Xy (@) + Cog!A~ 5 Xy (dh)

This gives (4.1).

Proposition 4.2 Let & = a¢(F/a) be an (a, B)-metric on an open subset U C
RN, Assume that o and 3 satisfying (3.1). Let V denote a vector field on U defined

by
Ve=2Q at zel (4.2)

where Q is skew-symmetric and satisfies that
Qa’ =0 (4.3)

10



where a € RY is a constant vector given in (3.4). Then V is of Killing type with

respect to ®.

Proof: Let Q = (¢;;) and a = (a', -+, a"). Since Q is anti-symmetric, we

have

EZ'J.’E .’E]qij = E]”ix].’ﬂ jS = —Zj,i:cj:c Qij = —EL]'.’E .’E]qij.

It follows that

xiquij = 0.
Similarly, we get

y'y’qi; = 0.
The condition (4.3) implies that

Eaiqﬂ =0.

Lemma 4.1 tells us it is sufficient to show

Xv()\) = Xv(@) = Xv(dh) =0.

By (2.2) and (4.2), we have
.0 .0
Xy = quji_@:ci + y]qji—ayi.

Together with (3.6), (4.4), (4.6) and Lemma 3.4 we get

Xv(\) = @ig+ yjq]'ig;\i
= g [%ﬁi% + 1 g w(|it—||—2w) - %%i—z — 5 dal”
= gy — g KO g, | R
— gy, | KaHelel _ Ol
~ o [ - 2] o

Similarly, one obtains Xy (&) = 0 from (4.4), (4.5), (4.8) and Lemma 3.3. Finally,
from (3.7), (4.4), (4.5), (4.6) and Lemma 3.4 we get Xy (dh) = 0. Thus Xy (®) =0,

therefore V is a Killing field of ®.

11

_un® 9

_ p+2w)|z?a’

w3 (1+w)?

|

(4.7)

||t

w?(1+w) 2 027 w2(1+w)?

|



5 New Finsler metrics with scalar flag curvature from
old

In this section we are going to produce new Finsler metrics with scalar flag curvature
from a given Finsler metric.

In [11], authors given an explicit construction of polynomial of arbitrary degree
(a, B)-metrics with scalar flag curvature and determine their scalar flag curvature.

Precisely, they have proved

Theorem 5.1 Let ¢(s) be a polynomial function defined by

3 (_1)k0n7182k+2
-1 9n I 1 k
9(s) = 142" + 205} 0 o ) ok 2)

where
om . m(m—1)---(m—k+1)
koo k! '

Then the following polynomial (cv, 3) metric on an the open subset at origin in RY

(1 [2]*){a, y) + 1+ {a, 2)){z, y) )
(1+{a, 2)/(T = [Pyl + (z, v)?

(1+ (a, z))*"

Fi= o V(L = 2Py + (2, y)%¢
(1 —1z[?)

is of scalar curvature with flag curvature

k - _mH Dl (- D@ y? e

L2w? F2w4 20 F3w?2n+2
+W(2n(a, )0PC + ¢'Y)[4(n + 1) F(x, y>w2" + 3(2"’2]
~(nla, )09¢ + )2 _;quc;;flc%_g
where n € {0, 1,2, ---}, a € RY is a constant vector with |a| < 1 and w and ¢ are

defined in (3.9) and

0: = VA-RPP+ (o)

b= ClyP 2 y)z, y)¢ - wa, y)?

50 ¢<i><<1—rw\2><a, y)+ (1+ (o 2))(a, y>>
(1+ (a, )/ = =Py + @, 9)°

where ¢ denotes i-order derivative for ¢(s).
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Now we take a look at the special case of (3.1)~ (3.4): when A=C =1, B =

_1
2n>

77:07:“:_17T:

a. T 2n
%\/(1 = [zP)y? + (z, y)* (5.2)

a. T 2n—1
(1<1+ . |;c|2>))n+1 (1= [22)(a, y) + (1 + (a, @)z, )] (5.3)

0=

Let ® = a¢(3/a) be an (a, B)-metric on an open subset  C RY. Assume that o
and [ satisfying (5.2) and (5.3). Proposition 4.2 tells us V := z@Q is a Killing field
of ® where Q satisfies Q7 = —Q and Qa’ = 0. Suppose that ¢ is given in (5.1).
Then Theorem 5.1 implies that @ is of scalar curvature. Let V be a Killing field of
® on U with ®(x, V) < 1. Define a new Finsler metric F' by [2,9,12]

Y
D[ x, + Vx> =1, Vxel, e T.U. 5.4
( F(z,y) Y (54)

See [13] for a general account. By using Mo-Huang’ Theorem 1.1 and Corollary 7.1,
we obtain F' is also of scalar curvature. Moreover, its scalar flag curvature Kp is
given by

Kr(z,y) = Ko (z, y — ®(z,y)Vz) - (5.5)

Combining this with Theorem 5.1 we have the following:

Theorem 5.2 Let

a. T 2n
e V= PP T (o % (

b .=

(1— |2 {a, y) + (1 + (a, 2))(z, y) )
(1+ {a. 2) /(1 — 2Py + (z, y)?

be an (a, ) metric on an the open subset U at origin in RN where

B (_1)kcn7182k+2
=1+2"s+2n2""} k .
9(s) = 142" + 208} 0 ) @k 2)

Assume that V is a vector field on U defined by (4.2) where Q is skew-symmetric
and satisfies that (4.3) and ®(z, V3) < 1. Then Finsler metric F given by (5.4) is

13



of scalar curvature with flag curvature

C(n+ 1)y — Pz, y)Val? n (n® = Da, y — Dz, y)Va)* N

Kr = s P22 P24 20 D3 2n+2
+4(I§4w4n+4 (2n<a, Yy — O(z,y)Ve)00C + (b/lb)
x [4(n+ 1)®(z, y — (z,y)Ve)w?™ + 3¢* 2]
i —1 ) Vm 2n—3
~(nla, v — () Va)0C + ¢') BV BV
where
0: = VO-T]zP)]y — (2, y)Va2+ (z, y — ®(z,y)Vi)?
v o= Cly—@(x,y)Val]® —2(a, y — O(x,y)Va) (z, y — D(z,y)Va)C

_w2<a7 Y- @($,y)vx>2
¢(z) . ¢(z) <w2<a7 Yy— @(m,y)Vﬁ + C(CE, Yy— @(m,y)vx>>
: = 0

w and ¢ are defined in (3.9) where ¢\ denotes i-order derivative for ¢(s).

0

—€

Remark Note that whenn =0,a =0, N =2, Q = ( ‘ > we recover

Shen’s construction [12, Theorem 1.3].

Proof of Theorem 1.1: We take n = 1 in Theorem 5.2. Then ® is the Mo-
Shen-Yang metric with zero flag curvature [10]. Together with (5.5) we obtain F is

of zero flag curvature.

Remark We also obtain some other Finsler metrics with scalar flag curvature
by using Theorem 5.4, Theorem 5.5 and Theorem 5.6 in [11] and Proposition 4.2.
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