## **Euler-Lagrange Inclusions and Existence of Minimizers** for a Class of Non-Coercive Variational Problems

## **Graziano Crasta and Annalisa Malusa**

Dip. di Matematica Pura ed Applicata, Via Campi 213/B, 41100 Modena, Italy, <u>crasta@unimo.it</u> and Dip. di Matematica, Univ. Roma I, P.le A. Moro 2, 00185 Roma, Italy, <u>malusa@mat.uniroma1.it</u>

**Abstract:** We are concerned with integral functionals of the form  $J(v)\cdot deta = \frac{R^n}{\left(|x|,|\hat{x}|\right)} + \frac{R^n}{\left(|x|,|\hat{x}|\right)} dx$ , defined on  $W^{1,1}_0(B_R^n, \mathcal{R}^n)$ , where  $B_R^n$  is the ball of  $\alpha$  is the ball of  $R^n$  centered at the origin and with radius R>0. We assume that the functional  $\beta$  is convex, but the compactness of the sublevels of  $\beta$  is not required. We prove that, under suitable assumptions on  $\beta$  and  $\beta$ , there exists a radially symmetric minimizer  $\alpha$  in  $\alpha$  is  $\alpha$  in  $\alpha$ . Moreover, we associate to the functional  $\beta$  a system of differential inclusions of the Euler-Lagrange type, and we prove that the solvability of these inclusions is a necessary and sufficient condition for the existence of a radially symmetric minimizer for  $\beta$ .

**Keywords:** Calculus of variations, existence, Euler-Lagrange inclusions, radially symmetric solutions, non-coercive problems

**Classification (MSC2000):** 49J10, 49K05; 49J30

## Full text of the article:

- Compressed DVI file (30 kilobytes)
- Compressed PostScript file (104 kilobytes)
- PDF file (243 kilobytes)

[Previous Article] [Next Article] [Contents of this Number]

© 2000 <u>ELibM</u> for the EMIS Electronic Edition