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Abstract: We are concerned with integral functionals of the form 
J(v)\doteq \int_{B_R^n} \left[f(|x|,|\nabla v(x)|)+h(|x|,v(x))\right] dx, 
defined on $W^{1,1}_0(B_R^n, \mathbb{R}^m)$, where $B_R^n$ is the ball of $\mathbb{R}^n$ centered at 
the origin and with radius $R>0$. We assume that the functional $J$ is convex, but the compactness of the 
sublevels of $J$ is not required. We prove that, under suitable assumptions on $f$ and $h$, there exists a radially symmetric 
minimizer $v\in W^{1,1}_0(B_R, \mathbb{R}^m)$ for $J$. Moreover, we associate to the functional $J$ a system of differential 
inclusions of the Euler-Lagrange type, and we prove that the solvability of these inclusions is a necessary and sufficient condition for 
the existence of a radially symmetric minimizer for $J$. 
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