On a Non-Standard Convex Regularization and the Relaxation of Unbounded Integral Functionals of the Calculus of Variations

Luciano Carbone and Riccardo De Arcangelis

Universita di Napoli "Federico II", Dip. di Matematica e Applicazioni "R. Caccioppoli", via Cintia, Complesso Monte S. Angelo, 80126 Napoli, Italy, <u>carbone@biol.dbgm.unina.it</u> and <u>dearcang@matna2.dma.unina.it</u>

Abstract: The analysis of the relationships between the functional $F^{(\inf y)}(Omega, cdot) colon u in W^{1,\inf y}(Omega) mapsto inf <math>\delta_{\min_n u_n} = f(abla u_h)dx : \{u_h\}$ subseteq W^{1, infty}(Omega), > u_h to u in weak^\ast- $W^{1,\inf y}(Omega)$, and the sequential weak^{(ast}- $W^{1,\inf y}(Omega)$ -relaxed functional $(\inf F)^{((infty))}(Omega, cdot)$ of the integral $u \in W^{1,\inf y}$

 $\label{eq:linear} $$ (Omega) \ (nabla u)dx $$ is carried out, where $f(colon \mathbb{R}^n \ (0,+\infty]$, $Omega$ is a bounded open subset of \mathbb{R}^n, and $u\in W^{1,\infty}(Omega)$. }$

In [8] it has been proved the existence of $f^{(\inf y)} colon \mathbb{R}^n to [0,+\inf y]$ such that $F^{(\inf y)}(Omega,u) = \inf_Omega f^{(\inf y)}(Omega,u) dx$ for every convex bounded open set Omega, $u \in F^{(\inf y)}(Omega,u) dx$ such that $F^{(\inf y)}(Omega,u) dx$, and this result is exploited there to deduce that $(\inf y)(Omega,u) dx$ for every convex bounded open set Omega, $u \in F^{(\inf y)}(Omega,u) dx$ for every convex bounded open set Omega, $u \in F^{(\inf y)}(Omega,u) dx$ for every convex bounded open set Omega, $u \in F^{(\inf y)}(Omega,u) dx$ for every convex bounded open set Omega, $u \in F^{(\inf y)}(Omega)$, where $f^{(\inf y)}(Omega,u) dx$ is the bipolar of f.

In the present paper it is first proved that $f^{(\infty)}$ is the convex envelope of the lower semicontinuous envelope of \$f\$, and an example is produced showing that $f^{(\infty)}$ may be different from $f^{(\ast)}$. Conditions for their identity are then furnished.

Examples and conditions concerning the coincidence between $F^{(infty)}(Omega,u)$ and $int_Omega f^{(infty)}(nabla u)dx$ for every convex bounded open set Omega, $u\in W^{1,infty}(Omega)$ are also proposed. By such results conditions for the identity between $F^{(infty)}$ and $iot F^{(infty)}$ are deduced.

Full text of the article:

- <u>Compressed PostScript file</u> (115 kilobytes)
- <u>PDF file</u> (253 kilobytes)

[Previous Article] [Next Article] [Contents of this Number]

© 1999--2000 ELibM for the EMIS Electronic Edition