Mathematics > Combinatorics

Polytopes, Hopf algebras and Quasisymmetric functions

Victor M. Buchstaber, Nickolai Erokhovets

(Submitted on 6 Nov 2010)

In this paper we use the technique of Hopf algebras and quasisymmetric functions to study the combinatorial polytopes. Consider the free abelian group \$\mathcal\{P\}\$ generated by all combinatorial polytopes. There are two natural bilinear operations on this group defined by a direct product \$ltimes \$ and a join \$\divideontimes\$ of polytopes. $\$(\backslash$ mathcal\{ $\{\mathrm{P}\}$, ,times) $\$$ is a commutative associative bigraded ring of polynomials, and \$\mathcal\{RP\}=(\mathbb Z\varnothingloplus\mathcal\{P\}, Idivideontimes)\$ is a commutative associative threegraded ring of polynomials. The ring \$\mathcal\{RP\}\$ has the structure of a graded Hopf algebra. It turns out that \$1mathcal $\{P\} \$$ has a natural Hopf comodule structure over \$\mathcal\{RP\}\$. Faces operators \$d_k\$ that send a polytope to the sum of all its $\$(n-k) \$-$ dimensional faces define on both rings the Hopf module structures over the universal Leibnitz-Hopf algebra \$\mathcal\{Z\}\$. This structure gives a ring homomorphism $\$ \backslash R \backslash$ to $\backslash Q s$ lotimes $\backslash \mathrm{R} \$$, where $\$ \backslash \mathrm{R} \$$ is $\$ \backslash m a t h c a l\{P\} \$$ or \$Imathcal\{RP\}\$. Composing this homomorphism with the characters \$P^n\to\alpha^n\$ of \$lmathcal\{P\}\$, \$P^n\tolalpha^\{n+1\}\$ of \$1mathcal $\{R P\}$, and with the counit we obtain the ring homomorphisms \$flcolon\mathcal\{P\}\to\Qs[lalpha]\$, \$f_\{\mathcal\{RP\}\}\colon\mathcal $\{R P\} \backslash t o \backslash Q s[\backslash a l p h a] \$$, and $\left.\$ \backslash\right|^{\wedge *}: \backslash m a t h c a l\{R P\} \backslash t o \backslash Q s \$$, where $\$ F \$$ is the Ehrenborg transformation. We describe the images of these homomorphisms in terms of functional equations, prove that these images are rings of polynomials over \$\mathbb Q\$, and find the relations between the images, the homomorphisms and the Hopf comodule structures. For each homomorphism \$f,\;f_\{\mathcal\{RP\}\}\$, and $\$ \backslash F \$$ the images of two polytopes coincide if and only if they have equal flag $\$$ f\$-vectors. Therefore algebraic structures on the images give the information about flag $\$ \$ \$$-vectors of polytopes.

Download:

- PDF
- PostScript
- Other formats

Current browse context:
math.CO
< prev | next >
new | recent | 1011
Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)

Comments: 61 pages
Subjects: Combinatorics (math.CO)
MSC classes: 05E45, 52B05, 16T05, 57T25
Cite as: arXiv:1011.1536v1 [math.CO]

Submission history

From: Nickolai Erokhovets [view email]
[v1] Sat, 6 Nov 2010 04:24:54 GMT (57kb)

Link back to: arXiv, form interface, contact.

