Cornell University

Mathematics > Classical Analysis and ODEs

Slowly oscillating wavefronts of the KPPFisher delayed equation

Karel Hasik, Sergei Trofimchuk

(Submitted on 3 Jun 2012)

This paper concerns the semi-wavefronts (i.e. bounded solutions $\$ u=1 p h i(x \backslash n u+c t)>0, \$ \$ \mid \operatorname{nu} u=1, \$$ satisfying \$\phi(-linfty)=0\$) to the delayed KPP-Fisher equation \$\$u_t(t,x)=\Delta $u(t, x)+u(t, x)(1-u$ ($\mathrm{t}-\operatorname{ltau}, \mathrm{x})$), $\backslash \mathrm{u} \backslash \mathrm{geq} 0, \backslash x$ lin $\backslash \mathrm{R}^{\wedge} \mathrm{m}$. \eqno(*) $\$ \$$ First, we show that each semi-wavefront should be either monotone or slowly oscillating. Then a complete solution to the problem of existence of semiwavefronts is provided. We prove next that the semi-wavefronts are in fact wavefronts (i.e. additionally $\$ \backslash p h i(+$ linfty $)=1 \$$) if $\$ c$ lgeq $2 \$$ and $\$$ ltau \leq $1 \$$; our proof uses dynamical properties of some auxiliary one-dimensional map with the negative Schwarzian. The analysis of the fronts' asymptotic expansions at infinity is another key ingredient of our approach. It allows to indicate the maximal domain \$\{\mathcal D\}_n\$ of \$(\tau,c)\$ where the existence of non-monotone wavefronts can be expected. Here we show that the problem of wavefront's existence is closely related to the Wright's global stability conjecture.

Comments: 25 pages, submitted
Subjects: Classical Analysis and ODEs (math.CA); Analysis of PDEs (math.AP)
MSC classes: 34K12, 35K57, 92D25
Cite as: arXiv:1206.0484 [math.CA]
(or arXiv:1206.0484v1 [math.CA] for this version)

Submission history

From: Sergei Trofimchuk [view email]
[v1] Sun, 3 Jun 2012 20:18:12 GMT (333kb)
Which authors of this paper are endorsers?

