Turkish Journal of Mathematics

Turkish Journal

of

Mathematics

math@tubitak.gov.tr

On the L^p Solutions of Dilation Equations

İbrahim KIRAT Department of Mathematics Sakarya University, 54140 Sakarya-TURKEY

<u>Abstract:</u> Let A \in M_n ({\Bbb Z}) be an expanding matrix with | {\det (A)} | = q and let K = {k₁ \cdots k_q} \subseteq {\Bbb R}ⁿ be a digit set. The set \cal T =:\cal T(A,K) = {\sum_{i=1} \^{infty} A⁻ⁱ k_{j_i} : k_{j_i} \in K} \subset {\Bbb R}ⁿ is called a {\it self-affine tile} if the Lebesgue measure of \cal T is positive. In this note, we

consider dilation equations of the form $f(x) = \sum_{j=1}^{q} c_j f(Ax-k_j)$ with $q=\sum_{j=1}^{q} \{c_j\}, c_j \in \mathbb{R}$, and prove that this equation has a nontrivial L^p solution (1/leq p /leq \infty) if and only if $c_j=1$ /forall j\in {1,...,q} and \cal T is a tile.

Key Words: Dilation equtions, tiles, wavelets, self-similar measures 433 Zülfigar AKDOĞAN GOP Üniversitesi, Fen Edebiyat Fakültesi, Tokat-TURKEY Abdullah MAĞDEN Atatürk Üniversitesi, Fen Edebiyat Fakültesi, Erzurum-TURKEY Some Characterization of Curves of Constant Breadth in E\(ⁿ \) Space

Scientific Journals Home Page

<u>Abstract:</u> In this paper, the concepts concerning the space of constant breadth were extended to E^n -space. An approximate solution of the equation system which belongs to this curve was obtained. Using this solution vectorial expression of the curves of constant breadth was obtained. The relation $\left(\frac{2\pi}{\theta}\right)$, ds=0 between the curvatures of curves of constant breadth in E^n was obtained. Key Words and Phrases: Curvature, Constant Breadth, Integral Characterization of Curve

Turk. J. Math., **25**, (2001), 427-432. Full text: <u>pdf</u> Other articles published in the same issue: <u>Turk. J. Math.,vol.25,iss.3</u>.