Analysis of the Brinkman-Forchheimer EQUATIONS WITH SLIP BOUNDARY CONDITIONS

J. K. Djokd ${ }^{1}$ \& P. A. Razafimandimby
Department of Mathematics and Applied Mathematics,
University of Pretoria,
Private bag X20, Hatfied 0028, Pretoria, South Africa

Abstract

In this work, we study the Brinkman-Forchheimer equations driven under slip boundary conditions of friction type. We prove the existence and uniqueness of weak solutions by means of regularization combined with the FaedoGalerkin approach. Next we discuss the continuity of the solution with respect to Brinkman's and Forchheimer's coefficients. Finally, we show that the weak solution of the corresponding stationary problem is stable.

Keywords: Brinkman-Forchheimer equations, Slip boundary conditions, Weak solutions, Continuous dependence, Stability.

AMS Subject classification: 35J85, 35Q30, 76D03, 76D07

1 Introduction

We consider the Brinkman-Forchheimer equations for unsteady flows of incompressible fluids, i.e.

$$
\begin{align*}
\frac{\partial \boldsymbol{u}}{\partial t}-\nu \Delta \boldsymbol{u}+a \boldsymbol{u}+b|\boldsymbol{u}|^{\alpha} \boldsymbol{u}+\nabla p & =\boldsymbol{f} \text { in } Q=\Omega \times(0, T), \tag{1.1}\\
\operatorname{div} \boldsymbol{u} & =0 \text { in } Q, \tag{1.2}
\end{align*}
$$

where Ω is the flow region, a bounded domain in \mathbb{R}^{3}. The motion of our incompressible fluid is described by the velocity $\boldsymbol{u}(\boldsymbol{x}, t)$ and pressure $p(\boldsymbol{x}, t)$. In (1.1) and (1.2), \boldsymbol{f} is the external body force per unit volume depending on \boldsymbol{x} and t, while the positive parameters ν, a, b are respectively the Brinkman coefficient, the Darcy coefficient and Forchheimer coefficient, and $\alpha \in[1,2]$ is a given number. Equations (1.1) and (1.2) are supplemented by boundary and initial conditions. As far as the initial condition goes, we assume that

$$
\begin{equation*}
\boldsymbol{u}(\cdot, 0)=\boldsymbol{u}_{0} \text { on } \bar{\Omega}, \tag{1.3}
\end{equation*}
$$

where \boldsymbol{u}_{0} is a given function, that will be made precise later, and $\bar{\Omega}$ is the closure of Ω. Next in order to describe the motion of the fluid at the boundary, we assume that the boundary of Ω, say, $\partial \Omega$ is made of two components S (say

[^0]the outer wall) and Γ (the inner wall), and it is required that $\overline{\partial \Omega}=\overline{S \cup \Gamma}$, with $S \cap \Gamma=\emptyset$. We assume the homogeneous Dirichlet condition on Γ, that is
\[

$$
\begin{equation*}
\boldsymbol{u}=0 \quad \text { on } \Gamma \times(0, T) . \tag{1.4}
\end{equation*}
$$

\]

We have chosen to work with homogeneous condition on the velocity in order to avoid the technical arguments linked to the Hopf lemma (see [15, Chapter 4, Lemma 2.3). On S, we first assume the impermeability condition

$$
\begin{equation*}
u_{N}=\boldsymbol{u} \cdot \boldsymbol{n}=0 \text { on } S \times(0, T), \tag{1.5}
\end{equation*}
$$

where \boldsymbol{n} is the outward unit normal on the boundary $\partial \Omega$, and u_{N} is the normal component of the velocity, while $\boldsymbol{u}_{\boldsymbol{\tau}}=\boldsymbol{u}-u_{N} \boldsymbol{n}$ is its tangential component. In addition to (1.5) we also impose on S, a threshold slip condition [24, 7], which is the main ingredient of this work. The threshold slip condition can be formulated with the knowledge of a positive function $g: S \longrightarrow(0, \infty)$ which is called the barrier of threshold function and the use of sub-differential to link quantities of interest. It is written as

$$
\begin{equation*}
-(\boldsymbol{\sigma} \boldsymbol{n})_{\boldsymbol{\tau}} \in g \partial\left|\boldsymbol{u}_{\boldsymbol{\tau}}\right| \quad \text { on } S \times(0, T) \tag{1.6}
\end{equation*}
$$

where $(\boldsymbol{\sigma} \boldsymbol{n})_{\boldsymbol{\tau}}$ is the tangential component of the Cauchy tensor $\boldsymbol{\sigma}$ given by $\boldsymbol{\sigma}=-p \boldsymbol{I}+2 \nu \boldsymbol{D}(\boldsymbol{u})$ with $\boldsymbol{D}(\boldsymbol{u})=\frac{1}{2}\left[\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right]$, and $\partial|\cdot|$ is the sub-differential of the real valued function $|\cdot|$, with $|\boldsymbol{w}|^{2}=\boldsymbol{w} \cdot \boldsymbol{w}$. We recall that if X is a Hilbert space with $x_{0} \in X$, then

$$
\begin{equation*}
y \in \partial \Psi\left(x_{0}\right) \text { if and only if } \Psi(x)-\Psi\left(x_{0}\right) \geq y \cdot\left(x-x_{0}\right) \quad \forall x \in X \tag{1.7}
\end{equation*}
$$

Without using the sub-differential, the threshold condition (1.6) can be written as 5

$$
\left.\begin{array}{l}
\left|(\boldsymbol{\sigma} \boldsymbol{n})_{\boldsymbol{\tau}}\right| \leq g \tag{1.8}\\
\left|(\boldsymbol{\sigma} \boldsymbol{n})_{\boldsymbol{\tau}}\right|<g \Rightarrow \boldsymbol{u}_{\boldsymbol{\tau}}=\mathbf{0} \\
\left|(\boldsymbol{\sigma} \boldsymbol{n})_{\boldsymbol{\tau}}\right|=g \Rightarrow \boldsymbol{u}_{\boldsymbol{\tau}} \neq \mathbf{0}, \quad-(\boldsymbol{\sigma} \boldsymbol{n})_{\boldsymbol{\tau}}=g \frac{\boldsymbol{u}_{\boldsymbol{\tau}}}{\left|\boldsymbol{u}_{\boldsymbol{\tau}}\right|}
\end{array}\right\} \text { on } \quad S \times(0, T)
$$

One observes that different boundary conditions describe different physical phenomena. In [31, the equations of Brinkman corresponding to (1.1) with $b=0$ have been derived using mixtures theory, in fact a class of approximate models for flows of incompressible fluids passing porous solids have been described. Forchheimer 6] studied flow experiments in sandpacks and came to the conclusion that for small Reynolds numbers ($\operatorname{Re} \approx 0.2$), the diffusion law of Darcy is not significant. Furthermore, he found the relationship between the pressure gradient and the velocity obtained using the law of Darcy to be nonlinear. In fact for a wide range of physical experiments, he found that the nonlinear term should be quadratic. Inertial effects in the porous medium at relatively small Reynolds numbers are the cause of the nonlinear excess pressure drop observed by Forchheimer and others. The slip boundary conditions of friction type (1.6)
can be justified by the fact that frictional effects of the fluid at the pores of the solid can be very important. In fact on the role of the boundary conditions for such problems, Brinkman [3] mentioned that "The flow through this porous media is described by a modification of Darcy's equation. Such modification was necessary to obtain consistent boundary conditions". While there continues to be some debate over the functionality of the Brinkman-Forchheimer model [28, nonlinearity has been verified experimentally [22], and some theoretical results have been obtained in 4, 29, 2, 1, 30. The Brinkman-Forchheimer equation continues to be used for predicting the velocity of the flow in the porous region, while the energy equation for the porous region accounts for the effect of thermal dispersion [23. Since we are well aware that for such flow, there are important features at the boundary, it is therefore important to model Brinkman-Forchheimer flow accurately taking into account the motion at the boundary. This is the driving force behind our work.
Even though flows under boundary conditions of friction type have been considered in various publications ($24, ~ 7, ~ 25, ~ 13, ~ 11, ~ 12, ~ 8, ~ 9, ~ 10, ~ a m o n g ~ o t h e r s), ~ a n d ~$ Brinkman-Forchheimer equations (1.1), (1.2) with non slip boundary conditions has been examined in [4, 29, 2, 1, 30, the combination of (1.1), (1.2) and (1.6) has not been presented in the literature, and it is the object of this work. The novelty of the problem, from the mathematical point of view, derives from the following features; the highly coupled and nonlinear nature of the problem, the incompressibility constraint and related pressure, and the leak boundary conditions (1.5) and (1.6).
Not surprisingly, flows problems involving boundary conditions of friction type offer significant theoretical and computational challenges. With regard to theoretical studies, the work by Hiroshi Fujita and co-authors [7, 13, 11, 12, 8, 9, 10, represent some early, contributions. These authors established existence, and uniqueness of solutions, for the equations corresponding to Stokes equations by means of semi-group approach, regularity of solutions are also examined. An interesting and related work is that by Christiaan Leroux and co-author [24, 25] on Stokes and Navier Stokes equations under more general "friction type boundary conditions". As far as computational studies for flows driven by "friction type boundary conditions" are concerned, it should be mentioned that even though the literature is very rich in problems formulated in terms of variational inequalities [17, 16, 18, 19, not much have been done for the specific case involving mixed coupled problems [18, 26, 14, 33, 21, and we would like to explore that research direction.
Problem (1.1)-(1.6) is a coupled nonlinear system of equations with a nondifferentiable expression (at zero) on S due to the sub-differential term $\partial\left|\boldsymbol{u}_{\boldsymbol{\tau}}\right|$. We propose to solve the resulting system of partial differential equations using the regularization approach [5, 27, which consists of replacing the original problem by a sequence of "better behaved" approximate problems indexed by a small positive parameter ε. We then solve the regularized problems by the Faedo-Galerkin method, and finally, the solution of the original problem is obtained by passage to the limit as ε goes to zero. The difficulty in the algorithm described is to obtain the pressure. Indeed, as the problem in its weak form
is formulated as a variational inequality with only one unknown, the pressure will not be obtained in the usual way (for the classical Navier-Stokes equations see e.g [32], [Theorem 2.5-1, page 54]). But, instead we first construct a regularized pressure by using the classical approach and then pass to the limit as ε goes to zero, after showing that the regularized pressures are bounded in some appropriate function space. After constructing weak solutions of the problem, we analyze some qualitative properties of the solution, namely; the continuous dependence of the solution with respect to the Brinkman and Forchheimer coefficients, and the stability of the stationary solution. The results presented, extend in some sense those obtained in [29, 30] to a family of variational inequalities with non-differentiable functionals.
The remaining part if this work is organized as follows. In section 2, we document the variational formulation associated to the problem and prove its wellposedness. Section 3 is devoted to the stability of the solutions with respect to some data of the problem. The stability of the stationary solutions is analyzed in Section 4.

2 Analysis of the problem: Solvability

We introduce some preliminaries and notation for the mathematical setting of the problem. We write down a variational formulation of problem (1.1)-(1.6). Next we derive some a priori estimates of its solution and obtain the existence of solutions by means of Faedo-Galerkin.

2.1 Preliminaries/Notation

In what follows, for $1 \leq p \leq \infty, L^{p}(\Omega)$, and $L^{p}(\partial \Omega)$ are the usual Lebesgue spaces, with norms denoted by $\|\cdot\|_{L^{p}}$ and $\|\cdot\|_{L^{p}(\partial \Omega)}$ respectively. (of course when $p=2$, we will denoted the norm in $L^{2}(\Omega)$ by $\left.\|\cdot\|\right)$. We shall use the following notation; for the sake of simplicity, one defines them in three dimensions. Let $k=\left(k_{1}, k_{2}, k_{3}\right)$ denote a triple of non-negative intergers, set $|k|=k_{1}+k_{2}+k_{3}$ and define he partial derivative ∂^{k} by

$$
\partial^{k} v=\frac{\partial^{|k|} v}{\partial x^{k_{1}} \partial y^{k_{2}} \partial z^{k_{3}}}
$$

Then, for non-negative integer m, we recall the classical Sobolev space

$$
H^{m}(\Omega)=\left\{v \in L^{2}(\Omega) ; \quad \partial^{k} v \in L^{2}(\Omega) \quad \forall|k| \leq m\right\}
$$

equipped with the seminorm

$$
|v|_{H^{m}(\Omega)}=\left[\sum_{|k|=m} \int_{\Omega}\left|\partial^{k} v\right|^{2} \mathrm{dx}\right]^{1 / 2}
$$

and norm

$$
\|v\|_{H^{m}(\Omega)}=\left[\sum_{0 \leq k \leq m} \int_{\Omega}\left|\partial^{k} v\right|^{2} \mathrm{dx}\right]^{1 / 2}
$$

For $p=1,2,3, \cdots$, the inner products in the spaces $L^{2}(\Omega)^{p}, L^{2}(\partial \Omega)^{p}$ and $H^{1}(\Omega)^{p}$ are denoted by $(\cdot, \cdot),(\cdot, \cdot)_{\partial \Omega}$ and $(\cdot, \cdot)_{1}$, respectively. The product spaces are denoted by bold letters: $\mathbf{H}^{1}(\Omega)=H^{1}(\Omega)^{3}, \mathbf{L}^{2}(\Omega)=L^{2}(\Omega)^{3}, \mathbf{L}^{\alpha+2}(\Omega)=$ $L^{\alpha+2}(\Omega)^{3}$, etc.
Here, and in what follows, the boundary values are to be understood in the sense of traces. We omit the trace operators where the meaning is direct; otherwise we denote the traces by $\left.\boldsymbol{v}\right|_{\Gamma},\left.\boldsymbol{v}\right|_{S}$, etc. Also, all the derivatives should be understood in the sense of distribution.
We also recall from 15 (Chap. I, Thm 1.1) for instance the following PoincaréFriedrichs inequality:

$$
\begin{equation*}
\text { for all } \quad \boldsymbol{v} \in \mathbf{H}^{1}(\Omega) \cap\left\{\left.v_{n}\right|_{S}=0,\left.\boldsymbol{v}\right|_{\Gamma}=0\right\}, \quad\|\boldsymbol{v}\| \leq C\|\nabla \boldsymbol{v}\|, \tag{2.1}
\end{equation*}
$$

which yields the equivalence of the norms $\|\cdot\|_{1}$ and $|\cdot|_{1}$ on $\mathbf{H}^{1}(\Omega) \cap\left\{\left.v_{n}\right|_{S}=\right.$ $\left.0,\left.\boldsymbol{v}\right|_{\Gamma}=0\right\}$.
For any separable Banach space E equipped with the norm $\|\cdot\|_{E}$, we denote by $C^{0}(0, T ; E)$ the space of continuous functions from $[0, T]$ with values in E and by $D^{\prime}(0, T ; E)$ the space of distributions with values in $E . L^{p}(0, T ; E)$ is a Banach space consisting of (classes of) functions $t \longmapsto f(t)$ measurable from $[0, T] \longmapsto E$ (for the measure $d t$) such that

$$
\begin{aligned}
& \|f\|_{L^{p}(0, T ; E)}=\left[\int_{0}^{T}\|f(t)\|_{E}^{p} d t\right]^{1 / p}<\infty \text { for } p \neq \infty \\
& \|f\|_{L^{\infty}(0, T ; E)}=\operatorname{ess}_{0<t<T} \sup \|f(t)\|_{E}<\infty
\end{aligned}
$$

In what follows, $\phi(t)$ stands for the function $\boldsymbol{x} \in \Omega \mapsto \phi(\boldsymbol{x}, t)$.
We assume that the data (\boldsymbol{f}, g) belong to $L^{2}\left(0, T ; \mathbf{L}^{2}(\Omega)\right) \times L^{\infty}(S)^{2}$, and that the datum \boldsymbol{u}_{0} belongs to $\mathbf{H}^{1}(\Omega) \cap \mathbf{L}^{\alpha+2}(\Omega)$, and satisfies the incompressibility condition

$$
\begin{equation*}
\operatorname{div} \boldsymbol{u}_{0}=0 \quad \text { in } \quad \Omega \tag{2.2}
\end{equation*}
$$

This last condition is not necessary for all the results that follow but, since it is not restrictive, we shall assume it from now on.

2.2 Variational formulation

In order to write a variational form associated with (1.1)-(1.6), we retain (1.3) and we weaken the equations (1.1), (1.2) and constraints (1.4), (1.5) using the Green's formula, while (1.6) is re-interpreted with the help of (1.7). It follows from the nonlinear term in (1.1) that $\boldsymbol{u}(t)$ and the test function \boldsymbol{v} should belong to $\mathbf{L}^{\alpha+2}(\Omega)$. Then $\boldsymbol{u}^{\prime}(t)$ and $|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t)$ must belong to the conjugate of
$\mathbf{L}^{\alpha+2}(\Omega)$, which is $\mathbf{L}^{\frac{\alpha+2}{\alpha+1}}(\Omega)$. We then introduce the following spaces

$$
\begin{aligned}
\mathcal{N} & =\mathbf{H}^{1}(\Omega) \cap\left\{\left.\boldsymbol{v}\right|_{\Gamma}=0,\left.v_{n}\right|_{S}=0\right\} \\
M & =L_{0}^{2}(\Omega)=\left\{q \in L^{2}(\Omega),(q, 1)=0\right\}
\end{aligned}
$$

We then adopt the following definition of weak solutions of (1.1)-(1.6)
Definition 2.1 Given (\boldsymbol{f}, g) in $L^{2}\left(0, T ; \mathbf{L}^{2}(\Omega)\right) \times L^{\infty}(S)^{2}$, and $\boldsymbol{u}_{0} \in \mathbf{H}^{1}(\Omega) \cap$ $\mathbf{L}^{\alpha+2}(\Omega)$, satisfying (2.2). We say that (\boldsymbol{u}, p) is a weak solution of (1.1)-(1.6) if and only if;
$\boldsymbol{u} \in L^{\infty}\left(0, T ;\left(\mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)\right), p \in L^{2}(0, T ; M)\right.$, and $\boldsymbol{u}^{\prime} \in L^{2}\left(0, T ;\left(\mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)\right)^{\prime}\right)$, and
for almost all t and all $q \in L^{2}(\Omega), \boldsymbol{v} \in \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)$

$$
\begin{align*}
& \left(\boldsymbol{u}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)+\gamma(\nabla \boldsymbol{u}(t), \nabla(\boldsymbol{v}-\boldsymbol{u}(t)))+a(\boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)) \\
& +b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)-(\operatorname{div}(\boldsymbol{v}-\boldsymbol{u}(t)), p(t))+ \\
& +J(\boldsymbol{v})-J(\boldsymbol{u}(t)) \geq(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}(t)) \tag{2.3}\\
& (\operatorname{div} \boldsymbol{u}(t), q)=0 \tag{2.4}\\
& \boldsymbol{u}(0)=\boldsymbol{u}_{0} \tag{2.5}
\end{align*}
$$

where, $J(\boldsymbol{v})=\left(g(\boldsymbol{x}),\left|\boldsymbol{v}_{\boldsymbol{\tau}}(\boldsymbol{x})\right|\right)_{L^{2}(S)}$.
Following [5, it can be shown that any solution of (1.1)-1.6) is a solution of (2.3)-(2.5) in the sense of distributions. The converse property holds for any solution of the problem (1.1)-(1.6) that enjoys the regularity mentioned in Definition 2.1] in a sense to be made precise later on. The kernel of the bilinear and continuous form $L^{2}(\Omega) \times \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega) \ni(q, \boldsymbol{v}) \longmapsto(q, \operatorname{div} \boldsymbol{v}) \in \mathbb{R}$ is $\mathbb{V}=\left\{\boldsymbol{v} \in \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega), \operatorname{div} \boldsymbol{v}=0 \quad\right.$ in $\left.\Omega\right\}$. With the space \mathbb{V} in mind, it is then easy to see that the function $\boldsymbol{u}(t)$ given in (2.3)-(2.5) is a solution of the simpler variational problem: Find $\boldsymbol{u} \in L^{\infty}(0, T ; \mathbb{V}), \boldsymbol{u}^{\prime} \in L^{2}\left(0, T ; \mathbb{V}^{\prime}\right)$ satisfying (2.5) such that for almost all t and all $\boldsymbol{v} \in \mathbb{V}$

$$
\begin{align*}
& \left(\boldsymbol{u}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)+\gamma(\nabla \boldsymbol{u}(t), \nabla(\boldsymbol{v}-\boldsymbol{u}(t)))+a(\boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)) \tag{2.6}\\
& +b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)+J(\boldsymbol{v})-J(\boldsymbol{u}(t)) \geq(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}(t)) .
\end{align*}
$$

Next, we establish the solvability of the variational problem (2.6) by means of regularization combined with Galerkin's method. We then construct a pressure p in $L^{2}\left(0, T ; L_{0}^{2}(\Omega)\right)$ such that the couple (\boldsymbol{u}, p) enjoys the regularity announced in definition 2.1, and satisfies (2.3)-(2.5) .

2.3 Existence of a solution

In this paragraph we discuss the solvability of (2.6) by regularization, and passage to the limit. Thus it is obtained in several steps, that we describe below.

Step 1: Regularized problem.
We first recall that one of the difficulties of solving (2.6) is the fact that the
functional $\boldsymbol{v} \in \mathbb{V} \longmapsto J(\boldsymbol{v})=\left(g(\boldsymbol{x}),\left|\boldsymbol{v}_{\boldsymbol{\tau}}(\boldsymbol{x})\right|\right)_{S}$ is not differentiable at zero. So, to bypass that hurdle we introduce the regularized functional J_{ε} defined by

$$
v \in \mathbb{V} \mapsto J_{\varepsilon}(v)=\left(g(\boldsymbol{x}), \sqrt{\left|v_{\boldsymbol{\tau}}(\boldsymbol{x})\right|^{2}+\varepsilon^{2}}\right)_{S} \quad, \quad 0<\varepsilon \ll 1
$$

Clearly J_{ε} is convex and Gateaux differentiable with Gateaux derivative K_{ε} defined on \mathbb{V} and given by

$$
\left\langle K_{\varepsilon}(\boldsymbol{u}), \boldsymbol{v}\right\rangle=\int_{S} g \frac{\boldsymbol{u}_{\boldsymbol{\tau}} \cdot \boldsymbol{v}_{\boldsymbol{\tau}}}{\sqrt{\left|\boldsymbol{u}_{\boldsymbol{\tau}}\right|^{2}+\varepsilon^{2}}} d s
$$

We briefly observe that K_{ε} is monotone. Indeed since J_{ε} is convex, for $\boldsymbol{u}, \boldsymbol{v}$ elements of \mathbb{V} and $0<t<1, J_{\epsilon}(t \boldsymbol{u}+(1-t) \boldsymbol{v}) \leq t J_{\epsilon}(\boldsymbol{u})+(1-t) J_{\epsilon}(\boldsymbol{v})$, which can be re-written as

$$
\frac{J_{\epsilon}(\boldsymbol{v}+t(\boldsymbol{u}-\boldsymbol{v}))-J_{\epsilon}(\boldsymbol{v})}{t} \leq J_{\epsilon}(\boldsymbol{u})-J_{\epsilon}(\boldsymbol{v}) .
$$

Then by taking the limit on both sides when t goes to zero yields

$$
\left\langle K_{\varepsilon}(\boldsymbol{v}), \boldsymbol{u}-\boldsymbol{v}\right\rangle \leq J_{\epsilon}(\boldsymbol{u})-J_{\epsilon}(\boldsymbol{v}) .
$$

Interchanging the role of \boldsymbol{v} and \boldsymbol{u}, one gets instead

$$
\left\langle K_{\varepsilon}(\boldsymbol{u}), \boldsymbol{v}-\boldsymbol{u}\right\rangle \leq J_{\epsilon}(\boldsymbol{v})-J_{\epsilon}(\boldsymbol{u}) .
$$

Putting together the later and former inequality, one has the desired result

$$
\begin{equation*}
\left\langle K_{\varepsilon}(\boldsymbol{u})-K_{\varepsilon}(\boldsymbol{v}), \boldsymbol{u}-\boldsymbol{v}\right\rangle \geq 0 \tag{2.7}
\end{equation*}
$$

The regularized form of (2.6) can be written as follows: Find $\boldsymbol{u}_{\varepsilon} \in L^{\infty}(0, T ; \mathbb{V})$ satisfying (2.5) with $\boldsymbol{u}_{\varepsilon}^{\prime} \in L^{2}\left(0, T ; \mathbb{V}^{\prime}\right)$ such that for almost all t and all $\boldsymbol{v} \in \mathbb{V}$

$$
\begin{aligned}
& \left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla\left(\boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right) \\
& +b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)+J_{\varepsilon}(\boldsymbol{v})-J_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right) \geq\left(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t) \ell(2.8)\right.
\end{aligned}
$$

Since J_{ε} is differentiable, adopting the classical aruments in 5], one can state that (2.8) is equivalent to: Find $\boldsymbol{u}_{\varepsilon} \in L^{\infty}(0, T ; \mathbb{V})$ satisfying (2.5) with $\boldsymbol{u}_{\varepsilon}^{\prime} \in$ $L^{2}\left(0, T ; \mathbb{V}^{\prime}\right)$ such that for almost all t

$$
\begin{align*}
& \left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla \boldsymbol{v}\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)+b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right) \\
& +\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right), \boldsymbol{v}\right\rangle=(\boldsymbol{f}(t), \boldsymbol{v}) \text { for all } \boldsymbol{v} \in \mathbb{V} . \tag{2.9}
\end{align*}
$$

Before proving the existence of a solution $\boldsymbol{u}_{\varepsilon}(t)$ of (2.9), we first show how the pressure is constructed, knowing the velocity. For that purpose, we begin by integrating (2.9) on $[0, t]$, apply (2.5), and for $\boldsymbol{v} \in \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)$; we introduce the functional

$$
\begin{aligned}
\mathcal{H}(\boldsymbol{v})(t)= & \int_{0}^{t}\left[(\boldsymbol{f}(s), \boldsymbol{v})-\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(s), \nabla \boldsymbol{v}\right)-a\left(\boldsymbol{u}_{\varepsilon}(s), \boldsymbol{v}\right)-b\left(\left|\boldsymbol{u}_{\varepsilon}(s)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(s), \boldsymbol{v}\right)\right] d s \\
& -\int_{0}^{t}\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(s)\right), \boldsymbol{v}\right\rangle d s-\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)+\left(\boldsymbol{u}_{0}, \boldsymbol{v}\right), \text { for all } 0 \leq t \leq T
\end{aligned}
$$

One sees that \mathcal{H} is linear and continuous on $\mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)$, and according to (2.9) and (2.5), it vanishes on \mathbb{V}. Now following [32], [Theorem 2.5-1, page 54], for each $t \in[0, T]$, there exists a unique function $\widetilde{p}_{\varepsilon}(t) \in L_{0}^{2}(\Omega)$ and a positive constant C such that: for all $\boldsymbol{v} \in \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)$,

$$
\begin{array}{r}
\mathcal{H}(\boldsymbol{v})(t)=\left(\operatorname{div} \boldsymbol{v}, \widetilde{p}_{\varepsilon}(t)\right), \\
C\left\|\widetilde{p}_{\varepsilon}(t)\right\| \leq \sup _{\boldsymbol{v} \in \mathcal{N}} \frac{\left(\operatorname{div} \boldsymbol{v}, \widetilde{p}_{\varepsilon}(t)\right)}{\|\boldsymbol{v}\|_{1}} . \tag{2.11}
\end{array}
$$

Finally, we take the time derivative on both sides of (2.10) ; and we let

$$
\begin{equation*}
p_{\varepsilon}(t)=\frac{d}{d t} \widetilde{p}_{\varepsilon}(t) \tag{2.12}
\end{equation*}
$$

in the resulting equation. Thus we have obtained the following variational problem: Find $\boldsymbol{u}_{\varepsilon} \in L^{2}\left(0, T ; \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)\right)$, $p_{\varepsilon} \in L^{2}\left(0, T ; L_{0}^{2}(\Omega)\right)$ with $\boldsymbol{u}_{\varepsilon}^{\prime} \in$ $L^{2}\left(0, T ;\left(\mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)\right)^{\prime}\right)$ such that for almost all t and all $q \in L^{2}(\Omega), \boldsymbol{v} \in$ $\mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)$

$$
\begin{align*}
& \left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla \boldsymbol{v}\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)+b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right) \\
& -\left(\operatorname{div} \boldsymbol{v}, p_{\varepsilon}(t)\right)+\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right), \boldsymbol{v}\right\rangle=(\boldsymbol{f}(t), \boldsymbol{v}) \tag{2.13}\\
& \left(\operatorname{div} \boldsymbol{u}_{\varepsilon}(t), q\right)=0 \\
& \boldsymbol{u}_{\varepsilon}(0)=\boldsymbol{u}_{0}
\end{align*}
$$

It is clear that the variational problems (2.9) and (2.13) are equivalent, with the regularized pressure described by (2.10), (2.11) and (2.12) .

Step 2: Faedo-Galerkin approximation.
We let

$$
\mathbb{H}=\left\{\boldsymbol{v} \in \mathbf{L}^{2}(\Omega), \quad \operatorname{div} \boldsymbol{v}=0,\left.\quad v_{n}\right|_{\partial \Omega}=0\right\} \cap \mathbf{L}^{\alpha+2}(\Omega)
$$

One readily observes that \mathbb{V} is compactly embedded in \mathbb{H}. For the slip boundary condition, we introduce the Stokes operator defined on a subspace of \mathbb{V} constructed in 20] as follows; for every $\boldsymbol{f} \in \mathbb{H}$, there exists a unique $\boldsymbol{v} \in \mathbb{V}$ such that

$$
\begin{equation*}
(\nabla \boldsymbol{v}, \nabla \phi)=(\boldsymbol{f}, \phi), \forall \phi \in \mathbb{V} \tag{2.14}
\end{equation*}
$$

Moreover, for every $\boldsymbol{v} \in \mathbb{V}$, there exists a unique $f \in \mathbb{H}$ such that (2.14) holds. Then (2.14) defines a one-to-one mapping between $\boldsymbol{f} \in \mathbb{H}$ and $\boldsymbol{v} \in D(A)$, where $D(A)$ is a subspace of \mathbb{V}. Hence, $A \boldsymbol{v}=\boldsymbol{f}$ defines the Stokes operator $A: D(A) \rightarrow \mathbb{H}$. Its inverse A^{-1} is compact and self-adjoint as a mapping from \mathbb{H} to \mathbb{H} and possesses an orthogonal sequence of eigenfunctions $\boldsymbol{\psi}_{k}$ which are complete in \mathbb{H} and \mathbb{V};

$$
\begin{equation*}
A \boldsymbol{\psi}_{k}=\lambda_{k} \boldsymbol{\psi}_{k} \tag{2.15}
\end{equation*}
$$

Let \mathbb{V}_{m} be the subspace of \mathbb{V} spanned by $\psi_{1}, \cdots, \psi_{m}$, that is

$$
\mathbb{V}_{m}=\left\{\psi_{1}, \psi_{2}, \psi_{3}, \cdots, \psi_{m}\right\}
$$

We consider the following ordinary differential equation: Find $\boldsymbol{u}_{\varepsilon, m}(t) \in \mathbb{V}_{m}$ such that for all $\boldsymbol{v} \in \mathbb{V}_{m}$;

$$
\begin{array}{r}
\left(\boldsymbol{u}_{\varepsilon, m}^{\prime}(t), \boldsymbol{v}\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon, m}(t), \nabla \boldsymbol{v}\right)+a\left(\boldsymbol{u}_{\varepsilon, m}(t), \boldsymbol{v}\right) \\
+b\left(\left|\boldsymbol{u}_{\varepsilon, m}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon, m}(t), \boldsymbol{v}\right)+\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right), \boldsymbol{v}\right\rangle=(\boldsymbol{f}(t), \boldsymbol{v}), \tag{2.16}\\
\boldsymbol{u}_{\varepsilon, m}(0) \rightarrow \boldsymbol{u}_{\varepsilon}(0)=\boldsymbol{u}_{0} \in \mathbb{V}_{m}
\end{array}
$$

As far as the existence of $\boldsymbol{u}_{\varepsilon, m}(t)$ defined by (2.16) is concerned, we note that the mapping

$$
\mathcal{K}: \boldsymbol{w} \longmapsto(\boldsymbol{f}, \boldsymbol{v})-\nu(\nabla \boldsymbol{w}, \nabla \boldsymbol{v})-a(\boldsymbol{w}, \boldsymbol{v})-b\left(|\boldsymbol{w}|^{\alpha} \boldsymbol{w}, \boldsymbol{v}\right)-\left\langle K_{\varepsilon}(\boldsymbol{w}), \boldsymbol{v}\right\rangle,
$$

is locally Lipschitz thanks to the nature of the operators involved. It then follows from the theory of ordinary differential equations that (2.16) has a solution $\boldsymbol{u}_{\varepsilon, m}$ defined on $\left[0, t_{\varepsilon, m}\right], t_{\varepsilon, m}>0$. Hereafter, C denotes a constant independent of m, and depending only on the data such as Ω, and whose value may be different in each inequality. Next, we derive some a priori estimates and deduce that $t_{\varepsilon, m}$ does not depend on ε or m. Concerning the later property, is should be mentioned from [5, 27], that it suffice to derive a priori estimates of the solution with the right hand side independent of m and ε.

Step 3: Some a priori estimates.
First we let $\boldsymbol{v}=\boldsymbol{u}_{\varepsilon, m}(t)$ in (2.16). After using Young's inequality, one obtains

$$
\begin{align*}
& \frac{d}{d t}\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+2 \nu\left\|\nabla \boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+a\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+2 b\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|_{L^{\alpha+2}}^{\alpha+2} \\
& +2\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right), \boldsymbol{u}_{\varepsilon, m}(t)\right\rangle \leq \frac{\|f(t)\|^{2}}{a} \tag{2.17}
\end{align*}
$$

which by integrating over $\left[0, T^{\sharp}\right]$ for $T^{\sharp} \leq t_{\varepsilon, m}$, and using (2.7), yields

$$
\begin{align*}
& \sup _{0 \leq t \leq T^{\sharp}}\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+2 \nu \int_{0}^{T^{\sharp}}\left\|\nabla \boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2} d t+a \int_{0}^{T^{\sharp}}\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2} d t \\
& +2 b \int_{0}^{T^{\sharp}}\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|_{L^{\alpha+2}}^{\alpha+2} d t \leq \frac{1}{a} \int_{0}^{T^{\sharp}}\|\boldsymbol{f}(t)\|^{2} d t+\left\|\boldsymbol{u}_{0}\right\|^{2}<\infty \tag{2.18}
\end{align*}
$$

since by assumption $\boldsymbol{f} \in L^{2}(Q)$. Now let $\boldsymbol{v}=\boldsymbol{u}_{\varepsilon, m}^{\prime}(t)$ in (2.16). For $0 \leq t \leq T^{\sharp}$, Young's inequality yields

$$
\begin{aligned}
& \left\|\boldsymbol{u}_{\varepsilon, m}^{\prime}(t)\right\|^{2}+\frac{d}{d t}\left[\nu\left\|\nabla \boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+a\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+\frac{2 b}{\alpha+2}\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|_{L^{\alpha+2}}^{\alpha+2}\right] \\
& +\frac{d}{d t}\left[2 K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right)\right] \leq\|\boldsymbol{f}(t)\|^{2}
\end{aligned}
$$

which leads to

$$
\begin{align*}
& \int_{0}^{T^{\sharp}}\left\|\boldsymbol{u}_{\varepsilon, m}^{\prime}(t)\right\|^{2} d t+\nu\left\|\nabla \boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+a\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+\frac{2 b}{\alpha+2}\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|_{L^{\alpha+2}}^{\alpha+2} \\
& +2 K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right) \leq\|\boldsymbol{f}\|_{L^{2}\left(0, T^{\sharp} ; L^{2}\right)}^{2}+\Phi(0), \tag{2.19}
\end{align*}
$$

where

$$
\Phi(0)=\nu\left\|\nabla \boldsymbol{u}_{0}\right\|^{2}+a\left\|\boldsymbol{u}_{0}\right\|^{2}+\frac{2 b}{\alpha+2}\left\|\boldsymbol{u}_{0}\right\|_{L^{\alpha+2}}^{\alpha+2}+2 \int_{S} g \sqrt{\left|\boldsymbol{u}_{0}\right|^{2}+1} d s
$$

It is manifest that the right hand sides of the a priori estimates obtained in (2.18) and (2.19) are independent of m and ε. We then conclude that $t_{\varepsilon, m}$ is independent of ε and m following the arguments discussed in length by [5, 27.

Step 4: Passage to the limit.
We need to pass to the limit when m approaches infinity and ε approaches zero. We start by fixing ε and study the sequence $m \longmapsto \boldsymbol{u}_{\varepsilon, m}$.
Based on (2.18) and (2.19), it is clear that when $m \rightarrow \infty$,

$$
\begin{align*}
& \boldsymbol{u}_{\varepsilon, m} \text { remains bounded in } L^{\infty}(0, T ; \mathbb{H}) \\
& \left|\boldsymbol{u}_{\varepsilon, m}\right|^{\alpha} \boldsymbol{u}_{\varepsilon, m} \text { remains bounded in } L^{\frac{\alpha+2}{\alpha+1}}\left(0, T ; \mathbf{L}^{\frac{\alpha+2}{\alpha+1}}(\Omega)\right), \tag{2.20}\\
& \boldsymbol{u}_{\varepsilon, m}^{\prime} \text { remains bounded in } L^{2}\left(0, T ; \mathbf{L}^{2}(\Omega)\right) \text {. }
\end{align*}
$$

From a consequence of the result of Dunford-Pettis [34, it is possible to extract from $\left(\boldsymbol{u}_{\varepsilon, m}\right)_{m}$ a subsequence, denoted again by $\left(\boldsymbol{u}_{\varepsilon, m}\right)_{m}$ such that

$$
\begin{align*}
& \boldsymbol{u}_{\varepsilon, m} \longrightarrow \boldsymbol{u}_{\varepsilon} \text { weak star in } L^{\infty}(0, T ; \mathbb{H}) \tag{2.21}\\
& \boldsymbol{u}_{\varepsilon, m} \longrightarrow \boldsymbol{u}_{\varepsilon} \text { weak star in } L^{\infty}\left(0, T ; \mathbb{V}_{m}\right) \tag{2.22}\\
& \left|\boldsymbol{u}_{\varepsilon, m}\right|^{\alpha} \boldsymbol{u}_{\varepsilon, m} \longrightarrow \chi_{\varepsilon} \text { weak star in } L^{\frac{\alpha+2}{\alpha+1}}\left(0, T ; \mathbf{L}^{\frac{\alpha+2}{\alpha+1}}(\Omega)\right) \tag{2.23}\\
& \boldsymbol{u}_{\varepsilon, m}^{\prime} \longrightarrow \boldsymbol{u}_{\varepsilon}^{\prime} \text { weak in } L^{2}(0, T ; \mathbb{H}) . \tag{2.24}
\end{align*}
$$

The convergence results (2.21), and (2.24) imply in particular that

$$
\begin{equation*}
\boldsymbol{u}_{\varepsilon, m} \text { remains in a bounded set of } H^{1}(Q) \tag{2.25}
\end{equation*}
$$

But from Rellich-Kondrachoff, the embedding $H^{1}(Q) \longmapsto L^{2}(Q)$ is compact. So one can extract from $\left(\boldsymbol{u}_{\varepsilon, m}\right)$ a subsequence, denoted again by $\left(\boldsymbol{u}_{\varepsilon, m}\right)$ such that

$$
\begin{equation*}
\boldsymbol{u}_{\varepsilon, m} \longrightarrow \boldsymbol{u}_{\varepsilon} \text { strong in } L^{2}(0, T ; \mathbb{H}) \text { and a.e. in } Q \tag{2.26}
\end{equation*}
$$

Next, it follows from (2.23) and (2.26) and Lemma 1.3 in [27] (page 12) that $\chi_{\varepsilon}=\left|\boldsymbol{u}_{\varepsilon}\right|^{\alpha} \boldsymbol{u}_{\varepsilon}$.
It remains to be shown that

$$
\begin{equation*}
K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}\right) \longrightarrow K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}\right) \text { weak star in } L^{\infty}\left(0, T, \mathbb{V}_{m}^{\prime}\right) \tag{2.27}
\end{equation*}
$$

Firstly from (2.22)

$$
\begin{equation*}
K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}\right) \longrightarrow \beta_{\varepsilon} \text { weak star in } L^{\infty}\left(0, T, \mathbb{V}_{m}^{\prime}\right) \tag{2.28}
\end{equation*}
$$

Passing to the limit in (2.16), one obtains

$$
\begin{align*}
& \left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla \boldsymbol{v}\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)+b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right) \\
& +\left\langle\beta_{\varepsilon}, \boldsymbol{v}\right\rangle=(\boldsymbol{f}(t), \boldsymbol{v}), \forall \boldsymbol{v} \in \mathbb{V}_{m} . \tag{2.29}
\end{align*}
$$

For any $\boldsymbol{w} \in L^{1}\left(0, T ; \mathbb{V}_{m}\right)$, since $K_{\varepsilon}(\cdot)$ is monotone (see 2.7),

$$
\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right), \boldsymbol{u}_{\varepsilon, m}(t)\right\rangle \geq\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right), \boldsymbol{w}\right\rangle+\left\langle K_{\varepsilon}(\boldsymbol{w}), \boldsymbol{u}_{\varepsilon, m}(t)-\boldsymbol{w}\right\rangle
$$

but from (2.16)

$$
\begin{aligned}
\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right), \boldsymbol{u}_{\varepsilon, m}(t)\right\rangle= & \left(\boldsymbol{f}(t), \boldsymbol{u}_{\varepsilon, m}(t)\right)-\left(\boldsymbol{u}_{\varepsilon, m}^{\prime}(t), \boldsymbol{u}_{\varepsilon, m}(t)\right) \\
& -\nu\left(\nabla \boldsymbol{u}_{\varepsilon, m}(t), \nabla \boldsymbol{u}_{\varepsilon, m}(t)\right)-a\left(\boldsymbol{u}_{\varepsilon, m}(t), \boldsymbol{u}_{\varepsilon, m}(t)\right) \\
& -b\left(\left|\boldsymbol{u}_{\varepsilon, m}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon, m}(t), \boldsymbol{u}_{\varepsilon, m}(t)\right)
\end{aligned}
$$

The former and latter equations give

$$
\begin{aligned}
\left(\boldsymbol{f}(t), \boldsymbol{u}_{\varepsilon, m}(t)\right)-\frac{1}{2} \frac{d}{d t}\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2} & -\nu\left\|\nabla \boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}-a\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}-b\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|_{L^{\alpha+2}}^{\alpha+2} \\
& \geq\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right), \boldsymbol{w}\right\rangle+\left\langle K_{\varepsilon}(\boldsymbol{w}), \boldsymbol{u}_{\varepsilon, m}(t)-\boldsymbol{w}\right\rangle
\end{aligned}
$$

So, integrating with respect to t on $[0, T]$, yields

$$
\begin{align*}
& \int_{0}^{T}\left(\boldsymbol{f}(t), \boldsymbol{u}_{\varepsilon, m}(t)\right) d t-\frac{1}{2}\left\|\boldsymbol{u}_{\varepsilon, m}(T)\right\|^{2}+\frac{1}{2}\left\|\boldsymbol{u}_{\varepsilon, m}(0)\right\|^{2} \\
& -\int_{0}^{T}\left[\nu\left\|\nabla \boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+a\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|^{2}+b\left\|\boldsymbol{u}_{\varepsilon, m}(t)\right\|_{L^{\alpha+2}}^{\alpha+2}\right] d t \tag{2.30}\\
& \geq \int_{0}^{T}\left[\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon, m}(t)\right), \boldsymbol{w}(t)\right\rangle+\left\langle K_{\varepsilon}(\boldsymbol{w}(t)), \boldsymbol{u}_{\varepsilon, m}(t)-\boldsymbol{w}(t)\right\rangle\right] d t
\end{align*}
$$

Next, we take $\boldsymbol{v}=\boldsymbol{u}_{\varepsilon, m}(t)$ in (2.29), and combined the resulting equation with (2.30), which yields (after taking the limit as m approaches to infinity)

$$
\begin{equation*}
\int_{0}^{T}\left\langle\beta_{\varepsilon}-K_{\varepsilon}(\boldsymbol{w}(t)), \boldsymbol{u}_{\varepsilon}(t)-\boldsymbol{w}(t)\right\rangle d t \geq 0 \tag{2.31}
\end{equation*}
$$

At this juncture, we let $\boldsymbol{u}_{\varepsilon}(t)-\boldsymbol{w}(t)= \pm \boldsymbol{q}$ with $\boldsymbol{q} \in L^{2}\left(0, T ; \mathbb{V}_{m}\right)$. Thus (2.31) leads to

$$
\int_{0}^{T}\left\langle\beta_{\varepsilon}-K_{\varepsilon}(\boldsymbol{w}(t)), \boldsymbol{q}\right\rangle d t=0
$$

from which we deduce the desired convergence result (2.27). We have established that as m goes to infinity, the sequence $\left(\boldsymbol{u}_{\varepsilon, m}(t)\right)_{m}$ converges to $\boldsymbol{u}_{\varepsilon}(t)$ in some sense with $\boldsymbol{u}_{\varepsilon}(t)$, the solution of

$$
\begin{align*}
\left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla \boldsymbol{v}\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)+b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right) \tag{2.32}\\
+\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right), \boldsymbol{v}\right\rangle=(\boldsymbol{f}(t), \boldsymbol{v}), \text { for all } \boldsymbol{v} \in \mathbb{V}_{m} .
\end{align*}
$$

Since $\cup_{m} \mathbb{V}_{m}$ is dense in \mathbb{V}, we can conclude that (2.32) holds true for \boldsymbol{v} in \mathbb{V}. Therefore, we have established that there exists a function $\boldsymbol{u}_{\varepsilon}$ uniformly bounded with respect to ε in $L^{\infty}\left(0, T, \mathbb{H} \cap \mathbb{V} \cap \mathbf{L}^{\alpha+2}(\Omega)\right)$ such that $\boldsymbol{u}_{\varepsilon}^{\prime}$ is uniformly
bounded with respect to ε in $L^{2}(0, T, \mathbb{H})$ and $\boldsymbol{u}_{\varepsilon}$ satisfies (2.32).
Our final task in the paragraph is to consider the limit as ε goes to zero. First, we take the limit on both sides of (2.18) and (2.19), one has

$$
\begin{align*}
& \sup _{0 \leq t \leq T}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|^{2}+2 \nu \int_{0}^{T}\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|^{2} d t+a \int_{0}^{T}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|^{2} d t \\
& +2 b \int_{0}^{T}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|_{L^{\alpha+2}}^{\alpha+2} d t \leq \frac{1}{a} \int_{0}^{T}\|\boldsymbol{f}(t)\|^{2} d t+\left\|\boldsymbol{u}_{0}\right\|^{2} \tag{2.33}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{0}^{T}\left\|\boldsymbol{u}_{\varepsilon}^{\prime}(t)\right\|^{2} d t+\nu\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|^{2}+a\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|^{2}+\frac{2 b}{\alpha+2}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|_{L^{\alpha+2}}^{\alpha+2} \\
& \leq \int_{0}^{T}\|\boldsymbol{f}(t)\|^{2} d t+\Phi(0) \tag{2.34}
\end{align*}
$$

Thus we can extract from $\left(\boldsymbol{u}_{\varepsilon}\right)_{\varepsilon}$ a subsequence still denoted by $\left(\boldsymbol{u}_{\varepsilon}\right)_{\varepsilon}$ such that

$$
\begin{align*}
& \boldsymbol{u}_{\varepsilon} \longrightarrow \boldsymbol{u} \text { weak star in } L^{\infty}(0, T, \mathbb{H}) \tag{2.35}\\
& \boldsymbol{u}_{\varepsilon} \longrightarrow \boldsymbol{u} \text { weak star in } L^{\infty}(0, T, \mathbb{V}) \tag{2.36}\\
& \left|\boldsymbol{u}_{\varepsilon}\right|^{\alpha} \boldsymbol{u}_{\varepsilon} \longrightarrow \chi \text { weak star in } L^{\frac{\alpha+2}{\alpha+1}}\left(0, T, \mathbf{L}^{\frac{\alpha+2}{\alpha+1}}(\Omega)\right) \tag{2.37}\\
& \boldsymbol{u}_{\varepsilon}^{\prime} \longrightarrow \boldsymbol{u}^{\prime} \text { weak in } L^{2}(0, T, \mathbb{H}) \text {. } \tag{2.38}
\end{align*}
$$

Arguing as before we can prove that

$$
\begin{array}{r}
\boldsymbol{u}_{\varepsilon} \longrightarrow \boldsymbol{u} \text { strong in } L(0, T ; \mathbb{H}) \text { and a.e. in } Q, \\
\left|\boldsymbol{u}_{\varepsilon}\right|^{\alpha} \boldsymbol{u}_{\varepsilon} \longrightarrow|\boldsymbol{u}|^{\alpha} \boldsymbol{u} \text { weak in } L^{\frac{\alpha+2}{\alpha+1}}\left(0, T ; \mathbf{L}^{\frac{\alpha+2}{\alpha+1}}(\Omega)\right) . \tag{2.40}
\end{array}
$$

Let $\boldsymbol{v} \in L^{2}(0, T, \mathbb{V})$, from (2.32), it follows that

$$
\begin{align*}
& \left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla\left(\boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right) \\
& +b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)+J_{\varepsilon}(\boldsymbol{v})-J_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right) \\
& =\left(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)+J_{\varepsilon}(\boldsymbol{v})-J_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right)-\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right\rangle .(2.4 \tag{2.41}
\end{align*}
$$

Integrating (2.41) with respect to t along $[0, T]$ and taking into account the fact that $J_{\varepsilon}(\boldsymbol{v})-J_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right)-\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right\rangle \geq 0$, one obtains

$$
\begin{align*}
& \int_{0}^{T}\left(\left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla \boldsymbol{v}\right)+\right.\left.a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)+b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)\right) d t \\
&+\int_{0}^{T}\left(J_{\varepsilon}(\boldsymbol{v})-\left(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)\right) d t \tag{2.42}\\
& \geq \frac{1}{2}\left\|\boldsymbol{u}_{\varepsilon}(T)\right\|^{2}-\frac{1}{2}\left\|\boldsymbol{u}_{\varepsilon 0}\right\|^{2}+\int_{0}^{T}\left(a\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|^{2}+b \int_{\Omega}\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha+2} d x\right) d t \\
&+\int_{0}^{t} J_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right) d t
\end{align*}
$$

Since $\boldsymbol{u}_{\varepsilon} \longrightarrow \boldsymbol{u}$ weak star in $L^{\infty}(0, T, \mathbb{V})$, and J_{ε} is a convex and continuous functional on \mathbb{V}, one has

$$
\begin{equation*}
\lim \inf _{\varepsilon \rightarrow 0} \int_{0}^{T} J_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right) d t \geq \int_{0}^{T} J(\boldsymbol{u}(t)) d t \tag{2.43}
\end{equation*}
$$

By using (2.43), we infer from (2.42) that

$$
\begin{array}{r}
\int_{0}^{T}\left(\left(\boldsymbol{u}^{\prime}(t), \boldsymbol{v}\right)+\nu(\nabla \boldsymbol{u}(t), \nabla \boldsymbol{v})+a(\boldsymbol{u}(t), \boldsymbol{v})+b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \boldsymbol{v}\right)\right. \\
+J(\boldsymbol{v})-(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}(t))) d t \\
\left.\geq \frac{1}{2}\|\boldsymbol{u}(T)\|^{2}-\frac{1}{2} \right\rvert\,\left\|\boldsymbol{u}_{0}\right\|^{2}+\int_{0}^{T}\left(a\|\boldsymbol{u}(t)\|^{2}+b \int_{\Omega}|\boldsymbol{u}(t)|^{\alpha+2} d x\right) d t+\int_{0}^{T} J(\boldsymbol{u}(t)) d t \\
=\int_{0}^{T}\left[\left(\boldsymbol{u}^{\prime}(t), \boldsymbol{u}(t)\right)+a(\boldsymbol{u}(t), \boldsymbol{u}(t))+b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \boldsymbol{u}(t)\right)+J(\boldsymbol{u}(t))\right] d t
\end{array}
$$

which by arguing as in [5], pages 56-57, yields

$$
\begin{array}{r}
\left(\boldsymbol{u}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)+\nu(\nabla \boldsymbol{u}(t), \nabla(\boldsymbol{v}-\boldsymbol{u}(t)))+a(\boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)) \\
+b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)+J(\boldsymbol{v})-J(\boldsymbol{u}(t)) \geq(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}(t)) \text { for all } \boldsymbol{v} \in \mathbb{V} .
\end{array}
$$

We then conclude that
Theorem 2.1 The variational problem (2.9) admits at least a weak solution, which moreover satisfies;

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\|\nabla \boldsymbol{u}(t)\| \leq C \quad, \quad \int_{0}^{T}\left\|\boldsymbol{u}^{\prime}(t)\right\|^{2} d t \leq C \tag{2.44}
\end{equation*}
$$

where C is a positive constant depending on the data.
Having obtained the velocity, we shall indicate how the pressure is constructed. First, we recall that from (2.13) ${ }_{1}$,

$$
\begin{array}{r}
\left(\operatorname{div} \boldsymbol{v}, p_{\varepsilon}(t)\right)=\left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla \boldsymbol{v}\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right) \\
+b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}\right)+\left\langle K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right), \boldsymbol{v}\right\rangle-(\boldsymbol{f}(t), \boldsymbol{v}),
\end{array}
$$

but since $p_{\varepsilon}(t) \in L_{0}^{2}(\Omega)$, following [15], one can find a positive constant C such that

$$
C\left\|p_{\varepsilon}(t)\right\| \leq \sup _{\boldsymbol{v} \in \mathcal{N}} \frac{\left(\operatorname{div} \boldsymbol{v}, p_{\varepsilon}(t)\right)}{\|\boldsymbol{v}\|_{1}}
$$

Now, combining the former and latter equations and the continuity of operators involved, one obtains

$$
\begin{aligned}
C\left\|p_{\varepsilon}(t)\right\| \leq\left\|\boldsymbol{u}_{\varepsilon}^{\prime}(t)\right\|+\nu\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|+ & a\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|+b\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|_{L^{2 \alpha+2}}^{\alpha+1} \\
& +\left\|K_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right)\right\| \mathcal{V}^{\prime}+\|\boldsymbol{f}(t)\|
\end{aligned}
$$

Equivalently,

$$
\begin{aligned}
C\left\|p_{\varepsilon}(t)\right\| \leq & \left\|\boldsymbol{u}_{\varepsilon}^{\prime}(t)\right\|+\nu\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|+a\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|+C(b, \Omega, \alpha)\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|_{L^{6}}^{\alpha+1} \\
& +C(\Omega)\|g\|_{L^{\infty}(S)}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|_{1}+\|\boldsymbol{f}(t)\| \\
\leq & \left\|\boldsymbol{u}_{\varepsilon}^{\prime}(t)\right\|+\nu\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|+a\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|+C(b, \Omega, \alpha)\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|^{\alpha+1} \\
& +C(\Omega)\|g\|_{L^{\infty}(S)}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|_{1}+\|\boldsymbol{f}(t)\|
\end{aligned}
$$

which by Young's inequality and integrating the resulting inequality over $[0, T]$, yields (after utilization of (2.33) and (2.34))

$$
\begin{array}{r}
\int_{0}^{T}\left\|p_{\varepsilon}(t)\right\|^{2} d t \leq C \int_{0}^{T}\left\|\boldsymbol{u}_{\varepsilon}^{\prime}(t)\right\|^{2}+C \int_{0}^{T}\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|^{2} d t+C \int_{0}^{T}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|^{2} \\
+C \int_{0}^{T}\left\|\nabla \boldsymbol{u}_{\varepsilon}(t)\right\|^{2 \alpha+2} d t+C\|g\|_{L^{\infty}(S)}^{2} \int_{0}^{T}\left\|\boldsymbol{u}_{\varepsilon}(t)\right\|_{1}^{2} \\
+C \int_{0}^{T}\|\boldsymbol{f}(t)\|^{2} d t<\infty \tag{2.45}
\end{array}
$$

C being a positive constant depending on the parameters and the domain of the problem. Then we can select from $p_{\varepsilon}(t)$ a sequence, again denoted by $p_{\varepsilon}(t)$, such that

$$
\begin{equation*}
p_{\varepsilon} \longrightarrow p \text { weakly in } L^{2}\left(0, T ; L_{0}^{2}(\Omega)\right) . \tag{2.46}
\end{equation*}
$$

Next, one observes that (2.13) can be re-written as

$$
\begin{array}{r}
\left(\boldsymbol{u}_{\varepsilon}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)+\nu\left(\nabla \boldsymbol{u}_{\varepsilon}(t), \nabla\left(\boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)\right)+a\left(\boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right) \\
+b\left(\left|\boldsymbol{u}_{\varepsilon}(t)\right|^{\alpha} \boldsymbol{u}_{\varepsilon}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right)-\left(\operatorname{div}\left(\boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right), p_{\varepsilon}(t)\right) \\
+J_{\varepsilon}(\boldsymbol{v})-J_{\varepsilon}\left(\boldsymbol{u}_{\varepsilon}(t)\right)-\left(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}_{\varepsilon}(t)\right) \geq 0 \text { for all } \boldsymbol{v} \in \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega), \\
\left(\operatorname{div} \boldsymbol{u}_{\varepsilon}(t), q\right)=0, \text { for all } q \in L^{2}(\Omega),
\end{array}
$$

which by integration over the time interval $[0, T]$ and passage to the limit (as $\varepsilon \rightarrow 0$) yields, (after utilization of the identity $\left(\operatorname{div} \boldsymbol{u}_{\varepsilon}(t), q\right)=0$ for all $q \in$ $\left.L^{2}(\Omega)\right)$

$$
\begin{aligned}
& \int_{0}^{T}\left[\left(\boldsymbol{u}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)+\nu(\nabla \boldsymbol{u}(t), \nabla(\boldsymbol{v}-\boldsymbol{u}(t)))+a(\boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t))\right] d t \\
& +\int_{0}^{T}[-(\operatorname{div}(\boldsymbol{v}-\boldsymbol{u}(t)), p(t))+J(\boldsymbol{v})-J(\boldsymbol{u}(t))-(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}(t))] d t \\
& +\int_{0}^{T} b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right) d t \geq 0,
\end{aligned}
$$

for all $\boldsymbol{v} \in \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)$. Also, $(\operatorname{div} \boldsymbol{u}(t), q)=0$ for all $q \in L^{2}(\Omega)$.

Finally, arguing as in [5], pages 56-57, one obtains

$$
\begin{array}{r}
\left(\boldsymbol{u}^{\prime}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)+\nu(\nabla \boldsymbol{u}(t), \nabla(\boldsymbol{v}-\boldsymbol{u}(t)))+a(\boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)) \\
+b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \boldsymbol{v}-\boldsymbol{u}(t)\right)-(\operatorname{div}(\boldsymbol{v}-\boldsymbol{u}(t)), p(t))+J(\boldsymbol{v})-J(\boldsymbol{u}(t)) \tag{2.47}\\
\geq(\boldsymbol{f}(t), \boldsymbol{v}-\boldsymbol{u}(t))
\end{array}
$$

for all $\boldsymbol{v} \in \mathcal{N} \cap \mathbf{L}^{\alpha+2}(\Omega)$. Moreover, $(\operatorname{div} \boldsymbol{u}(t), q)=0$ for all $q \in L^{2}(\Omega)$.

3 Continuous dependence on the data

In this section, our focus is to establish some qualitative properties of the weak solutions in Theorem 2.1 In particular, we show that the solutions depend continuously on initial velocity, external force as well as the Forchheimer's and Brinkman's coefficients. We recall that such results in the literature are sometimes referred to as structural stability.
We first claim that

Theorem 3.1 Let \boldsymbol{u}_{i} be the solution of (2.5) with respect to $\boldsymbol{u}_{i 0}, \boldsymbol{f}_{i}, i=1,2$. Then there exists a positive constant C, depending on a, ν and Ω such that

$$
\begin{equation*}
\left\|\boldsymbol{u}_{1}(t)-\boldsymbol{u}_{2}(t)\right\|^{2} \leq e^{-C t}\left\|\boldsymbol{u}_{1}(0)-\boldsymbol{u}_{2}(0)\right\|^{2}+\int_{0}^{t} e^{C(-t+s)}\left\|\boldsymbol{f}_{2}(s)-\boldsymbol{f}_{1}(s)\right\|^{2} d s \tag{3.1}
\end{equation*}
$$

This theorem implies in particular the following uniqueness result.
Corollary 3.1 The problem (2.5) has one and only one solution.
Proof theorem 3.1. The functions \boldsymbol{u}_{1} and \boldsymbol{u}_{2} satisfy respectively:

$$
\begin{align*}
\left(\partial_{t} \boldsymbol{u}_{1}, \boldsymbol{v}-\boldsymbol{u}_{1}\right)+\nu\left(\nabla \boldsymbol{u}_{1}, \nabla\left(\boldsymbol{v}-\boldsymbol{u}_{1}\right)\right)+a\left(\boldsymbol{u}_{1}, \boldsymbol{v}-\boldsymbol{u}_{1}\right)+b\left(\left|\boldsymbol{u}_{1}\right|^{\alpha} \boldsymbol{u}_{1}, \boldsymbol{v}-\boldsymbol{u}_{1}\right) \\
+J(\boldsymbol{v})-J\left(\boldsymbol{u}_{1}\right) \geq\left(\boldsymbol{f}_{1}, \boldsymbol{v}-\boldsymbol{u}_{1}\right) \text { for all } \boldsymbol{v} \in \mathbb{V} . \tag{3.2}
\end{align*}
$$

and

$$
\begin{array}{r}
\left(\partial_{t} \boldsymbol{u}_{2}, \boldsymbol{v}-\boldsymbol{u}_{2}\right)+\nu\left(\nabla \boldsymbol{u}_{2}, \nabla\left(\boldsymbol{v}-\boldsymbol{u}_{2}\right)\right)+a\left(\boldsymbol{u}_{2}, \boldsymbol{v}-\boldsymbol{u}_{2}\right)+b\left(\left|\boldsymbol{u}_{2}\right|^{\alpha} \boldsymbol{u}_{2}, \boldsymbol{v}-\boldsymbol{u}_{2}\right) \\
+J(\boldsymbol{v})-J\left(\boldsymbol{u}_{2}\right) \geq\left(\boldsymbol{f}_{2}, \boldsymbol{v}-\boldsymbol{u}_{2}\right) \text { for all } \boldsymbol{v} \in \mathbb{V} . \tag{3.3}
\end{array}
$$

Setting $\boldsymbol{v}=\boldsymbol{u}_{2}$ in (3.2) and $\boldsymbol{v}=\boldsymbol{u}_{1}$ in (3.3) and adding the resulting inequalities, it follows that

$$
\begin{array}{r}
\frac{1}{2} \frac{d}{d t}\|\boldsymbol{w}(t)\|^{2}+\nu\|\nabla \boldsymbol{w}\|^{2}+a\|\boldsymbol{w}(t)\|^{2} \\
+b\left(\left|\boldsymbol{u}_{2}\right|^{\alpha} \boldsymbol{u}_{2}-\left|\boldsymbol{u}_{1}\right|^{\alpha} \boldsymbol{u}_{1}, \boldsymbol{w}(t)\right) \leq\left(\boldsymbol{f}_{2}-\boldsymbol{f}_{1}, \boldsymbol{w}(t)\right),
\end{array}
$$

where $\boldsymbol{w}(t)=\boldsymbol{u}_{2}(t)-\boldsymbol{u}_{1}(t)$ and $\boldsymbol{w}_{0}=\boldsymbol{u}_{20}-\boldsymbol{u}_{10}$. Since $T(\zeta)=|\zeta|^{\alpha} \zeta$ is monotone then

$$
\left(\left|\boldsymbol{u}_{2}\right|^{\alpha} \boldsymbol{u}_{2}-\left|\boldsymbol{u}_{1}\right|^{\alpha} \boldsymbol{u}_{1}, \boldsymbol{w}(t)\right) \geq 0
$$

Therefore

$$
\begin{equation*}
\frac{d}{d t}\|\boldsymbol{w}(t)\|^{2}+C(\nu, a, \Omega)\|\boldsymbol{w}(t)\|^{2} \leq C(a, \Omega)\left\|\boldsymbol{f}_{2}-\boldsymbol{f}_{1}\right\|^{2} \tag{3.4}
\end{equation*}
$$

where Poincaré's inequality has been used. We readily deduce the desired result from (3.4) using Gronwall's lemma.

In line of theorem 3.1 one can state the following result.
Theorem 3.2 The weak solutions of problem (2.5) constructed in theorem 2.1 depends continuously with respect to the L^{2} norm on:
(a) the Forchheimer coefficient b, and
(b) the Brinkman coefficient ν.

The proof follows mutatis mutandis the proof of theorem 3.1.

4 Stability of stationary solutions

Hereafter, we study the stability of stationary solutions to (2.5).
We assume that the apply force \boldsymbol{f} is independent of time, and we consider the following stationary problem

$$
\left\{\begin{array}{l}
-\nu \Delta \boldsymbol{u}+a \boldsymbol{u}+b|\boldsymbol{u}|^{\alpha} \boldsymbol{u}-\nabla p=\boldsymbol{f}, \text { in } \Omega \tag{4.1}\\
\operatorname{div} \boldsymbol{u}=0, \text { in } \Omega, \\
\boldsymbol{u}=0 \text { on } \Gamma, \\
\boldsymbol{u} \cdot \boldsymbol{n}=0, \text { and }-\boldsymbol{\sigma}_{\boldsymbol{\tau}} \in g \partial\left|\boldsymbol{u}_{\boldsymbol{\tau}}\right| \text { on } S
\end{array}\right.
$$

Here, we always assume that $\alpha \in[1,2], \gamma, a, b>0$.
It is clear that the velocity satisfies the simpler variational problem
$\left\{\begin{array}{l}\text { Find } \boldsymbol{u} \in \mathbb{V} \text { such that for all } \boldsymbol{v} \in \mathbb{V}, \\ \nu(\nabla \boldsymbol{u}, \nabla(\boldsymbol{v}-\boldsymbol{u}))+a(\boldsymbol{u}, \boldsymbol{v}-\boldsymbol{u})+b\left(|\boldsymbol{u}|^{\alpha} \boldsymbol{u}, \boldsymbol{v}-\boldsymbol{u}\right)+J(\boldsymbol{v})-J(\boldsymbol{u}) \geq(\boldsymbol{f}, \boldsymbol{v}-\boldsymbol{u}) .\end{array}\right.$
It can be shown as in 5 that there exists a unique $\widetilde{\boldsymbol{u}} \in \mathbb{V}$ such that (4.2) holds true, and one has the following

Theorem 4.1 The weak solution \boldsymbol{u} of (2.5) constructed in theorem 2.1 converges to the unique solution $\widetilde{\boldsymbol{u}}$ to (4.2) exponentially as t goes to infinity. More precisely, we have the following estimate

$$
\begin{equation*}
\|\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}\|^{2} \leq\left\|\boldsymbol{u}_{0}-\widetilde{\boldsymbol{u}}\right\|^{2} e^{-2(a+\nu) t} \quad, \quad \text { for all } t \geq 0 \tag{4.3}
\end{equation*}
$$

proof. We let $\boldsymbol{v}=\boldsymbol{u}(t)$ in (4.2), thus

$$
\begin{aligned}
\nu(\nabla \widetilde{\boldsymbol{u}}, \nabla(\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}))+a & (\widetilde{\boldsymbol{u}}, \boldsymbol{u}(t)-\widetilde{\boldsymbol{u}})+b\left(|\widetilde{\boldsymbol{u}}|^{\alpha} \widetilde{\boldsymbol{u}}, \boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}\right) \\
+ & +\boldsymbol{u}(t))-J(\widetilde{\boldsymbol{u}}) \geq(\boldsymbol{f}, \boldsymbol{u}(t)-\widetilde{\boldsymbol{u}})
\end{aligned}
$$

Next, for $\boldsymbol{v}=\widetilde{\boldsymbol{u}}$ in (2.5), one has

$$
\begin{aligned}
& \left(\boldsymbol{u}^{\prime}(t), \widetilde{\boldsymbol{u}}-\boldsymbol{u}(t)\right)+\nu(\nabla \boldsymbol{u}(t), \nabla(\widetilde{\boldsymbol{u}}-\boldsymbol{u}(t)))+a(\boldsymbol{u}(t), \widetilde{\boldsymbol{u}}-\boldsymbol{u}(t)) \\
& +b\left(|\boldsymbol{u}(t)|^{\alpha} \boldsymbol{u}(t), \widetilde{\boldsymbol{u}}-\boldsymbol{u}(t)\right)+J(\widetilde{\boldsymbol{u}})-J(\boldsymbol{u}(t)) \geq(\boldsymbol{f}, \widetilde{\boldsymbol{u}}-\boldsymbol{u}(t)) .
\end{aligned}
$$

Now, putting together the two previous inequalities yields;

$$
\begin{equation*}
-\left(\boldsymbol{w}^{\prime}(t), \boldsymbol{w}(t)\right)-\nu\|\boldsymbol{w}(t)\|^{2}-a\|\boldsymbol{w}(t)\|^{2}-b\left(|\boldsymbol{u}|^{\alpha} \boldsymbol{u}-|\widetilde{\boldsymbol{u}}|^{\alpha} \widetilde{\boldsymbol{u}}, \boldsymbol{u}-\widetilde{\boldsymbol{u}}\right) \geq 0 \tag{4.4}
\end{equation*}
$$

where $\boldsymbol{w}(t)=\boldsymbol{u}(t)-\widetilde{\boldsymbol{u}}$. From the monotonicity of $T(\zeta)=|\zeta|^{\alpha} \zeta$, (4.4) imply that

$$
\frac{d}{d t}\|\boldsymbol{w}(t)\|^{2}+2(\nu+a)\|\boldsymbol{w}(t)\|^{2} \leq 0
$$

from which the announced estimate is readily obtained via Gronwall's lemma.
Acknowledgment The authors are indebted to Prof Mamadou Sango for interesting discussions on Brinkman equations. The work of second author has been sponsored by the University of Pretoria and the National Research Foundation of South Africa.

References

[1] K. A. Ames \& L. E. Payne., On the stabilizing against modeling errors in a penetrative convection problem for a porous medium. Math. Models Methods Appl. Sci., 4, 733-740, 1994.
[2] K. A. Ames \& B. Straughan., Non Standard and Improper Posed problems, in: Mathematics in Science and Engineering Series, Academic Press, San Diego 194, 1997.
[3] H. C. Brinkman., On the permeability of media consisting of closely packed porous particle. Appl. Sci. Res, A 1, 81-86, 1947.
[4] A.O. Celebi, V.K. Kalantarov \& D. Ugurlu., On the continuous dependence on coefficients of the Brinkman-Forchheimer equations. Appl. Math. Lett, 19, 801-807, 2006.
[5] G. Duvaut \& J.-L. Lions., Inequalities in Mechanics and Physics, Grundlehren der Mathematischen Wissenschaften, Vol. 219, SpringerVerlag, Berlin, 1976.
[6] P. Forchheimer., Wasserbewegung durch Boden. Z. Ver. Deutch. Ing, 45, 1782-1788, 1901.
[7] H. Fujita., A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions, In: Mathematical Fluid Mechanics and Modeling (Kyoto, 1994), RIMS Kōkyūroko, Vol. 888, Kyoto University, Kyoto, 199-216, 1994.
[8] H. Fujita., Non-stationary Stokes flows under leak boundary conditions of friction type, J. Comput. Math, 19, 1-8, 2001.
[9] H. Fujita., Variational inequalities and nonlinear semi-groups applied to certain nonlinear problems for the Stokes equation, In: Tosio Kato's Method and Principle for Evolution Equations in Mathematical Physics (Sapporo, 2001), Eds. H. Fujita et al., RIMS, Kyoto, 70-85, 2002.
[10] H. Fujita., A coherent analysis of Stokes flows under boundary conditions of friction type, J. Comput. Appl. Math, 149, 57-69, 2002.
[11] H. Fujita, H. Kawahara \& H. Kawarada., Distribution theoretic approach to fictitious domain method for Neumann problems, East-West J. Numer. Math, 3, 111-126, 1995.
[12] H. Fujita \& H. Kawarada., Variational inequalities for the Stokes equation with boundary conditions of friction type, In: Recent Developments in Domain Decomposition Methods and Flow Problems (Kyoto, 1996; Anacapri, 1996), GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 11, Gakkōtosho, 15-33, 1998.
[13] H. Fujita, H. Kawarada \& A. Sasamoto., Analytical and numerical approaches to stationary flow problems with leak and slip boundary conditions, In: Advances in Numerical Mathematics (Tokyo, 1994), Lect. Notes Numer. Appl. Anal., Vol. 14, Eds. T. Ushijima et al., Kinokuniya, 17-31, 1995.
[14] J.-F. Gerbeau \& T. Leliévre., Generalized Navier boundary condition and geometric conservation law for surface tension. Comput. Methods Appl. Mech. Engrg. 198, 644-656, 2009.
[15] V. Girault \& P.-A. Raviart., Finite Element Methods for Navier-Stokes Equations. Theory and Algorithms, Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag, Berlin, 1986.
[16] R. Glowinski.Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics, Springer-Verlag, New York, 1984.
[17] R. Glowinski, J.-L. Lions \& R.Trémolières., Numerical Analysis of Variational Inequalities, Studies in Mathematics and its Applications, Vol. 8, North-Holland, Amsterdam, 1981.
[18] W. Han \& B. D. Reddy., On the finite element method for mixed variational inequalities arising in elastoplasticity, SIAM J. Numer. Anal, 32, 1778-1807, 1995.
[19] W. Han, M. Shillor\& M. Sofonea. Analysis and approximation of contact problems with adhesion or damage, Pure and Applied Mathematics, Vol. 276, Chapman \& Hall/CRC, Boca Raton, FL, 2006.
[20] J.G Heywood, R. Rannacher \& S. Turek., Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Internat. J. Numer. Methods Fluids, 22, no. 5, 325352, 1996.
[21] H. Kawarada \& A. Sasamoto , Numerical simulation of the flow in a vessel with the free boundary and the sliding wall, In: Nonlinear Mathematical Problems in Industry (Iwaki, 1992), GAKUTO Internat. Ser. Math. Sci. Appl., Vol. 1, Gakkōtosho, Tokyo, 175-187, 1993.
[22] N. Kladias \& V. Prasad., Experimental verification of Darcy-BrinkmanForchheimer flow model for natural convection in porous media. J. Thermophys. Heat Tr., 5, 560-576, 1991.
[23] A. V. Kuznetsov \& M. Xiong., Numerical simulation of the effect of thermal dispersion on forced convection in a circular duct partly filled with a Brinkman-Forchheimer porous medium. Int. J. Numer. Method. H., 10, No 5, 488-501 1991.
[24] C. Le Roux., Steady Stokes flows with threshold slip boundary conditions, $M^{3} A S, 15,1141-1168,2005$.
[25] C. Le Roux \& A. Tani., Steady solutions of the Navier-Stokes equations with threshold slip boundary conditions, Math. Methods Appl. Sci., 30, 595-624, 2007.
[26] Y. Li \& K. Li., Penalty finite element method for Stokes problem with nonlinear slip boundary conditions. Appl. Math. Comput. 204, 216-226, 2008.
[27] J.L. Lions., Quelques méthodes de résolution des problèmes aux limites non linéaires. Etudes mathématiques. Dunod, 1969.
[28] D. A. Nield., The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat Mass Tran., 12, No 3, 269-272, 1991.
[29] L. E. Payne \& B. Straughan., Stability in the initial time geometry problem for the Brinkman and Darcy equations of the flow in a porous media. J. Math. Pures Appl, 9, No 75, 225-271, 1996.
[30] L.E. Payne \& B. Straughan., Convergence and continuous dependence for the Brinkman-Forchheimer equations. Stud. Appl. Math, 102, 419-439, 1999.
[31] K. R Rajagopal., On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci., 17, no. 2, 215-252, 2007.
[32] P.A. Raviart \& J.M Thomas., Introduction a l'analyse numerique des equations aux derivees partielles, Masson, Paris, 1983.
[33] A. Sasamoto., Numerical analysis of Navier-Stokes equation with slip boundary wall and free boundary (in Japanese), Ph.D. thesis, Chiba University, 1992.
[34] K. Yosida., Functional Analysis. Die Grundlehren der Mathematischen Wissenschaften Bd. 123, Springer-Verlag, Berlin, 1965.

[^0]: ${ }^{1}$ Is the corresponding author. jules.djokokamdem@up.ac.za

