Mathematics > Analysis of PDEs

Well-posedness for the fifth-order KdV equation in the energy space

Carlos E. Kenig, Didier Pilod

(Submitted on 1 May 2012 (v1), last revised 23 Jun 2012 (this version, v3))
We prove that the initial value problem (IVP) associated to the fifth order KdV equation \{equation\} \backslash label $\{05 \mathrm{KdV}\} \backslash$ partial_tu-lalphalpartial^5_x u=c_1 |partial_xulpartial_x^2u+c_2\partial_x(ulpartial_x^2u)+c_3|partial_x(u^3), \{equation\} where $\$ x$ lin $\backslash m a t h b b ~ R \$, \$ t \backslash i n ~ \backslash m a t h b b ~ R \$, \$ u=u(x, t) \$$ is a realvalued function and \$ 1 alpha, \c_1, \c_2, \c_3\$ are real constants with $\$$ lalpha $\backslash n e q ~ 0 \$$, is locally well-posed in $\$ H^{\wedge} s(\backslash m a t h b b ~ R) \$$ for $\$ s$ lge $2 \$$. In the Hamiltonian case (ltextit i.e. when \$c_1=c_2\$), the IVP associated to leqref $\{05 \mathrm{KdV}\}$ is then globally well-posed in the energy space $\$ \mathrm{H}^{\wedge} 2($ (lmathbb R$) \$$.

Comments: We corrected a few typos and fixed a technical mistake in the proof of Lemma 6.3. We also changed a comment on the work of Guo, Kwak and Kwon on the same subject according to the new version they posted recently on the arXiv (arXiv:1205.0850v2)
Subjects: Analysis of PDEs (math.AP)
MSC classes:
Cite as: arXiv:1205.0169 [math.AP]
(or arXiv:1205.0169v3 [math.AP] for this version)

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.AP
< prev | next > new | recent | 1205

Change to browse by: math

References \& Citations

- NASA ADS

Bookmark(what is this?)

Submission history

From: Didier Pilod [view email]
[v1] Tue, 1 May 2012 14:22:10 GMT (43kb)
[v2] Thu, 3 May 2012 20:04:04 GMT (43kb)
[v3] Sat, 23 Jun 2012 16:50:31 GMT (44kb)
Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

