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Abstract

A D-finite system is a finite set of linear homogeneous partial differential equations in several
independent and dependent variables, whose solution space is of finite dimensidn.beeh
D-finite system with rational function coefficients. We present an algorithm for computing all
hyperexponential solutions df, and analgorithm for cenputing all D-finite systems whose
coefficients are also rational functions, and whose solutions are contained in the solution dpace of
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For varbus reasonBnear differential equations have been of particular importance in
the history of mathematics. First of all, the problems connected with them are much easier
than those for nonlinear equations. Second, many nonlinear problems may be linearized
in some way sut that he results of the former theory may be applied to them. This
is especially true for Lie’s symmetry analysis of ordinary differential equations (ODES)
which reduces the problem of solving nonlinear ODEs with a sufficiently large number of
symmetries to the study of certain systems of linear partial differential equations (PDE's).
The problem of finding conservation laws for nonlinear PDE’s also leads to systems of
linear PDE’s.
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Many concepts from commutative algebhave been suitablyegeralized to the
algebraic theory of linear ODEs, e.g. theegtest common divisor and least common
multiple, the concept of reducibility and factorization which finally led to the theory of
Picard and Vessiot and differential Galolsebry. This is true to a much lesser extent
for linear homogeneous PDE's. To obtain manageable problems, we have to specialize
them further. The constraint that the geal solution depends on a finite humber of
constants, i.e. it may be represented as a linear combination with constant coefficients
of a finite number of special solutions which form a fundamental system, turns out to be
appropriate. It allows us to generalize many concepts from the theory of linear ODESs in
an almost straightforward manner. Linear homogeneous PDE’s with this constraint will be
called D-finite systemswhich may be seen as a slight generalization of Definition 2.1
given by Chyzak and Salvy(1999 in the differential case. They arise from different
research areas such as: symmetry analyses (873, holonomic systemsSaito et al,

2000 and the description of functions by a given system of PDE’s with initial conditions
(Chyzak and Salvy1998. We shall focus onD-finite systems whose coefficients are
rational functions in the independent variables d@ethe abebraic closure of).

Contributions of this paper mainly consist of two algorithms. The first finds all
hyperexponential solutions of B-finite system. It genefizes the main algorithm by
Li and Schwarz(200]) to the case of saral independent variables. The second finds
all D-finite systems whose coefficients are in the field of rational functions @yend
whose solution spaces areoperly contained in the solution space of a given system.
It generalizes the factoridan algorithm sketched bysarev(2001) and comgeted by
Li et al. (2002 to thecase of several independent and dependent variables. In principle,
most problems related t®-finite systems reduce, as shown by Lie, to corresponding
problems for linear ODEs. However, such “reduction” may be nontrivial and usually leads
to solving or factoring linear ODEs with parameters. This makes many known algorithms
fail. We shall avoid such complications. The paper also proves a theorem describing the
structure of hyperexponential solutions offinite system in one dependent variable
(Proposition 3.% and generalizes the notiofi left quotients oflinear ODEs toD-finite
systemsRroposition 5.3

This paper is based on several known results. The theory of linear differen-
tial ideals Kolchin, 1973 supplies useful conclusions about dimension and lin-
ear dependence. The reduction—completion procdssef 192Q Galligo, 1985
Kandru-Rody and Weispfennind.99Q Schwarz 1992 Chyzak and Salvy1998 malkes
sure that the systems to be factored and the factors to be sought are of required rank. The
idea of associated equatiorBeke 1894 Schlesnger 1895 Schwarz 1989 Bronstein
19949 inspires us to reduce our factorization problem to that of finding hyperexponential
solutions of associated systems.

The paper is organized as follov&ection Zzontains necessary preliminari&gction 3
presents an algorithm for computing all hyperexponential solutions@ffimite system
in one dependent variabl&ection 4extends the results ofSection 3to the case of
several depndent variables$ection Spresents a factorization algorithm. Some concluding
remarks are given iSection 6
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2. Preliminaries

We shall spcify notation, state problems to be studied, and list a few useful results in
this section.

All (sub)modules, vector spaces and idealdhmpaper are left (sub)modules, left vector
spaces and left ideals, respectively.

Throughout this paper, the following notation will be used: the synibaitands for
the fieldQ(x4, . . ., Xn). The fieldK is viewed as a partial differential field on which usual
derivation operator§; = 9/9X1,...,0n = 9/9Xy act. Denote by® the commutative
monoid generated b¥, ..., dn, andby K; the fieldQ(x1, ..., Xi_1, Xitl,---5Xn),1 =
1,...,n.

The symbolD stands for the noncommutative ring[o, ..., d,] of differential
operators (se€hyzak and Salvy1998 Saito et al.20000r van der Put ad Singey2003
Appendix D). Forf in D anda in a differential field extension oK, we deiote the
application off toa by f (a).

Letys, ..., ym bemdifferential indeterminates ov&. For every in @, 8y; is called a
derivative. The set of alderivatives is denoted h¥. We denote byl the K-linear space
generated by all elements &t ThenLy, is both aK-linear space and a module over
An elementf of Ly, can be written as

f=> fr (1)

yel

where f, € K, only finitely many nonzero. Alternatively, we may regdrgl as the sum
Zi"zl Dy; of left modules oved, whereDy; = {f(y;) | f € D}, thatis,Ly, is isonorphic

to the direct sum ofm copies ofD as left modules oveld. We opt for the notatioriLy,,
because the introduction of unknowys . . . ym makes it easier to speak about solutions
of differential equations.

A subsetL of Ly, is called a submodule if (a) € L for everyf € D anda < L.
For a sibsetS of L, the sabmodule generated by, denoted by(S), is thelinear space
spaned by the elements ¢ff (s) | f € D, s € S}. Every submodule ofLy, is finitely
generated by Proposition 1.9 of Chapter VBarel et al.(1987 or the bass theorem on
p. 126 inKolchin (1973. A submoduld_ is said to be ofinite rankif the quotient(L,,,/L)
is a finite-dimensional vector space o¥érlIf L is of finite rank, then the dimension of the
vector spacé€lLy,/L) is called therankof L, denoted by rankL).

With the notation just ifbduced, we state our factorization problem.

Problem F. Given asubmoduleL of Ly, with finite rank, find all the submodules (lhy)
containingL.

Let F be a differential field containing. For a \ectorz = (z1,...,zm) € F™ and
y = 0yi € I', yZ is understood a®(z). The \ectorz is a solution of f in (1) if
f) = > yer f,(y2) = 0. For a setSin L, Z is a solution ofS if every element of
Sannihilatesz. A system of PDE'Yf, =0, ..., fx = 0}, wherefy, ..., fx are inLm, has
the sane solitions ag{ f1, ..., fk}). So we dudy submodules instead of systems of linear
homogeneous PDE’s. This point of view enables us to make statements concise.
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To speak about all solutions of a submodule, we fix a differential extensionfiatK
containing all solutions of any submodulelof, with finite rank. Such a differential field
always existskiolchin, 1973 p. 133). An elemené of K is called ad;-constant ifd; (a) is
equal to zero. For example, all elementsgfared;-constants. 19 (a) = 0, for alli with
1 <i < n, thenais called a constant. All constantsIgfform a field denoted b{.

For asubmoduleL of Lm, the set of slutions ofL in K is denoted by salL). This set
is a vector space ovér. Proposition 2 inKolchin (1973 p. 151) implies that rank.) is
equal to the dimension of s@l) overC if either rankL) or dimx sol(L) is finite (see also
Theorem 1.4.22 iiBaito et al.(2000). If a submoduleM properly contains a submodule
L with finite rank, then s@M) is properly contained in s¢L). A submodule of rank
containingL is called a rankk factor of L. A solution to Problem Fis an algorithm for
computing all factors whose ranks are lower than tank

Remark 2.1. Itis convenient to introduce the field to describe solutions of submodules,
although all the calculations will be performedli It is not required to determine the

field K explicitly in the algorithms in this paper.

We recall the notion of hyperexponentialeenents which play a key role in our
factorization algorithm. The logarithmic derivative w.xi.of a nonzero elemera of K
is the ratio ofd; (a) anda, which isdenoted by(d;log)a. The fdlowing rules ae obvious:
Fora,be Kandi, j € {1,...,n},

o (dilog)(ab) = (dilog)a + (9;log)b,
e (3ilog) (a7t) = —(3ilog)a,
e 0j(dlog)a = 3 (9jlog)a.

A nonzero elemena of K is said to behyperexponentiaiv.r.t. x; over K if the ith
logarithmic derivatived;log)a belongs tdK. The eementa is sdd to be hyperexponential
if (djlog)a belongs taK for all i with 1 <i < n. Examples of hyperexponential elements
are rational, exponential and certain algebraic functions, e.g. functions defirdbwn
wherek € N anda € K. The product and ratio of two hyperexponential elements remain
hyperexponential; while their sum is not necessarily hyperexponential.

SincelL; = Dy, L1 can be identified witiD and a submodule df; can be identified
with an ideal ofD. We will use the ringD and ideals instead of the modulg and
submodules, respectively. In doing so, we can omit the indeterminatdnich helps little
to describe solutions in the case= 1.

To solveProblem F, we reed to solve

Problem H1. Given an ideal of D with finite rank, find all its hyperexponential solutions.
As abyproduct, we will solve

Problem H. Given asubmodule ofL, with finite rank, find all its nontrivial solutions
whose components are either zero or hyperexponential.

In the rest of this section, we briefly review the notion of Janebf@er) bases of
a suubmodule, which is fundamental for us to compute rank of submodules, to reduce
Problem H1to the problem of computing hyperexponential solutions of linear ODEs, and
to form factor candiates in our factorization algorithm. The notion of Janet bases in this
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paper may be viewed either as an extension adb@et basis for ideals i (Galligo,
1985 Kandru-Rody and Weispfennin@99Q Chyzak and Salvy1998 to submodules in
Lm = D™, or as a spcialization of nonlineacharacteristic set¥plchin, 1973 Wu, 1989
to linear homogeneous differential polynomials.

A total ordering< on I" is admissible ify < 6y, andy1 < y2 = 0y1 < 0y», for all
v, y1, y2 € I' andd € ©\{1}. Fix anadmissible total ordering on I". Fornonzerof in
Lm, the highest derivative appearing ih is called theleading derivativeor leader of f
and denoted by Idéf ). The ceefficient of Idex f) is denoted by I f). For f, g € L, with
g # 0, f isreducedw.r.t. g if any derivative of Idefg) does not appear ifi. Moreover, f
is reduced w.t. a sibsetS of nonzero elements df, if f is reduced w.r.t every element
of S. A setS C L, is said to beautoreducedf its elements are reduced pairwise. Every
autoreduced set is finit&¢lchin, 1973 Chapter 0, Section 17).

Let L be a nontrivial submodule, arifl be the set condimg of all leading derivatives
of nonzero elements df. There exits an autoreduced sétin = such that any element
of = is a derivative bsome elenent of A. In fact, it is nothard to prove thaA is unique.
We danote it by Ide(L). A derivative is cdled aparametric derivativef L if it is reduced
w.r.t.Ider(L). The set of pametric derivatives ok is denoted by pde(iL).

A finite subset] of L is called alanet basisf every nonzeo elemat of L is not reduced
w.r.t. J. We atribute bases of this type to Janet because he appears to be the first person
who conceived a thorough reduction—completion process for PDERdt 1920. There
are a number of ways to construct Janet bases from a given finite bakisTfoe fdlowing
seems to be the most concise one, which can be viewed either as an extensiobméiGr”
bases inD to Ly, or as a specialization of coherent autoreduced $etsdénfeld 1959
Boulier et al, 1999 to linear differential polynomials.

Let f; and f2 be nonzero elements &f, with respective leading derivativésy and
62y, wherey € {y1,...,Ym} andd1,62 € 6. There existp; and ¢, in 6 suchthat
$101 = ¢202 with minimal orders. TheA-polynomialof f; and f; is defined to be
A(f1, f2) = (Ic(f2)(¢1f1) — le(f1) (g2 f2)). An aubreduced seA is said to becoherent
if, for every pair f1, f2 in A as described above\(f1, f2) can be written as &-linear
combination of derivatives of elements @&f, in which each derivative has its leader
lower than¢161y. For the submoduld. there exists ainique Janet basis (up to some
multiplicative scalars oK) which is a ®herent autoreduced set. Such a basis is also called
the reduced Gatiner basis foL in the literature.

We may ead off IdefL) and pde¢L) from a Janet basis fdr. If L is of finite rank,
then rankL) = |pdelL)|. For anideal | c D with finite rank, the generator of the ideal
I NK[4] in K[9i], where 1< i < n, can be computed by Janet basis computation and
linear algebra.

3. Hyperexponential solutions of idealswith finite rank

We descitbe an algorithm to solvBroblem H1 Throughout this section, we Iétbe an
ideal of D with finite rank. The set of hyperexponential solutiond o denoted byH ().
Fori =1,...,n,letl; betheideal NK[g]in K[d;].
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To illustrate the idea of our algorithm, let us compute rational solutions. dfirst,
compute rational solutions of eadh. Suppose a basis of rational solutions bfis
{rie,....rim},i = 1,...,n. Let g be the common denominator of a&l|, where 1<
j <mjand1<i < n.Thenqis a canmon denominator of all rational solutions bf
In particular we can writerj; as pjj /g where pj; are polynomials irnxj, 1 < j < m
and 1 < i < n. Then everyational solution ofl can be written ag/q, wherep is a
polynomial with degree irx; no more tharthe maximum of the degrees of4, . .., pim,
in x;, for alli with 1 <i < n. Herce, we may findp by sohing a linear algebraic system
over@Q. Other methods for computing polynomial and rational solutions of an ideal with
finite rank can be found i€hyzak(2000 andOaku et al(2001).

If h € H(l), thenitis a hyperexponential solution fw.r.t. x;. We shall

(1) compute hyperexponential solutionslpiv.r.t. xj,i =1,...,n,

(2) combine these solutions to recovécl ).

The first step is carried out by finding rational solutions i of the Riccati equation
associated with the generator Ipf It is possible to @apt the classical algorithnshger,
1991, Bronstein 1992 to find these aslutions (i and Schwarz 200], Sedion 4). The
second step hinges on a structure theoreniHgl ) (Proposition 3.4 and thenation
of common hyperexponential associateéze¢tion 3.2 It might be possible to find
hyperexponential solutions of one of theés and then design a back-substitution to get
H(I). But our investigation in this direction hagen unsuccessful so far, because we need
to differentiate integrals wir parameters, and deal with arbitrary irrational functions.
This section is organized as followSection 3.1proves a structure theorem 61 ).
Section 3.2introduces the notion of common hyperexponential associ&testion 3.3
presents an algorithm for computift¢1).

3.1. Structure of hyperexponential solutions

For anonzero element ¢ K, its logarithmic gadient ((d1log)u, ..., (dplog)u)
is denoted by (Vlog)u. From the rules for logaithmic derivatives it follows that
(Vlog)(uv) = (Vlog)(u) + (Vlog)(v) and(Vlog)(u—1) = —(Vlog)(u).

An elementu of K is hyperexponential oveK if and only if (Vlog)u belongs toK".

A vectorv = (vi,...,vn) in K" is said to becompatibleif divj = djv; for all i, j
with 1 < i < j < n. If uis hyperexponential ovek, then (Vlog)u is compatible.
Conversely, ifv is compatible, then any nonzero solution of the id@ak- vy, . . ., dn —vn)

is hyperexponential oveK. So ahyperexponential element with logarithmic gradiuig
also denoted by

exp(/ vldx1+«~+vndxn>. (2)

Note that the notation in2) denotes hyperexponential elements which may differ from a
norzero multiplicative constant ift.
The following technical lemma will be frequently used in the sequel.
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Lemma3.1. Let nonzerot, ..., ry belong toC(xy, . . ., Xn). If

w = ((d1log)ra, . . ., (3nlog)rn)

is a compatible vector oK", thenw is a logarithmt gradient of an element d =
Q(X1, ..., Xn).

Proof. The proof will rely on the following claim. Letbe in{1, ..., n}. andain K. If the
operatob = (9; — a) has a nonzero solution If(x; ), whereF is the field consisting of all
di-constants, theh has a nonzero solution K.

To show tle clam, let nonzera in F(x;) be a solution ob, and the deominator ofa be
p € Kj[x]. Since eery finite pole ofs is a oot of p, there exits a positive integek such
that pX is a multiple of the denominator &f Therdore, s can be written as the ratio of
andpK, whereq belongs tdf[x;]. Let deg, g =dandset = (quid +---40qo)/pX, where
dd, - - - , Jo are unspecified -constants. Applyind tot yields a linear systemigg, . .., Qo
with coefficients inK;. This g/stem has a nonzero solution consisting of the coefficients of
g, so the sgtem has aonzero solution ifK;. Herce,b has a nonzero solution iK.

For eachi with 1 < i < n, the firstorder operatoff; = (3 — (dilog)ri) has a shution
ri in C(xy, ..., Xn). Sincef; € K[d;], it has anonzero solution ik by the daim. Thus,
we may further assume that, .. ., r, belong tokK.

We proceed by induction on. The lanma clearly holds when = 1. Assume that the
lemma holds forln — 1). Foreach with1 <i < (n—1),

on(dilog)ri — 9 (dnlog)rn =0

implies that

on | Bilogri — (dilog)rn | =0,

Ui

so thatu; belongs tdKp,. Sincethe operatos; —u; has a stutionr; /r in K, it has a slution
vi in K, by the daim. Since the compatible vectoilog)ry, ..., (dh—1log)rn—1) equals

((01l0g)rn, ..., (On-1l0g)rn) + ((d1l0g)vy, ..., (dn-1l0g)vn-1),

the vector ((91log)vi, ..., (dh—1l0Q)vn—1) € KR*l is compatible. The induction
hypothesis then implies that there exigt® K, suchthat

((91l09)g, .. ., (9n-1l09)g) = ((d1l0g)v1, . . ., (3n-1l0Q)vn-1).
It follows from a direct verification thatvVlog)(rng) is equal tow. O
Two conpatible vectors are said to bequivalentif their difference is a logarithmic

gradient of some element &f. Two hyperexponential elements are said tocl@ivalent
if their logarithmic gradients are equivalent.

Lemma 3.2. Let uandv be hyperexponential ové&. Then he following statements are
equivalent.
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(1) uandv are equivalent;
(2) u/visthe product of a constant i and a rational function irk.
(3) uandv are linearly dependent oveE(xy, ..., Xn).

Proof. If the first assertion holds, thereriss K suchthat(Vlog)(r) is equal to((Vlog)u—

(Vlog)v), and so thefraction u/v is a solution of the idea(dr — (dilogr, ..., dn —

(dnlog)r). It follows thatu/v = cr for somec € C. The seond assertio clearly implies
the last. To show that the last implies the firstuet r v for somer € C(Xy, ..., Xn). Then
(Vlog)(r) is equal to((Vlog) (u) — (Vlog) (v)) € K". It follows fromLemma 3.1hat there
is q in K with (Vlog)(q) = ((Vlog)(u) — (Vlog)(v)), and the lenma follows. [

Next, we characterize mutually inequivalent hyperexponential elements.

Proposition 3.3. Let hy, ..., hy be hyperexponential elements oV&r The eéments
hy, . o hm are mutually inequivalent if and only ifih. .., hy are linearly independent
overC(Xy, ..., Xn).

Proof. The necessity follows fronhemma 3.2 We prove the sufficiency by induction

onm. If m = 2, then the proposition holds lyemma 3.2 Assume that the result is proved
for lower values ofm. Suppose thaby, ..., hm are mutually inequivalent but linearly

dependent ove€(xy, ..., Xn). By a pasible rearangement of indexes, we have

hm = gih1 + g2h2 + - - - + gm—1hm-1 (3

for someqr, g2, ..., 0m-1 € C(X1, ..., %n). Sincehy, hy, ..., hm_1 are linearly indepen-
dent over@(xl, ..., %Xn) by the~induction hypothesis, we deduce thdty, .. ., gm—1hm-1
are linearly independent ovél. Then Theorem 1 inKolchin (1973 p. 86)implies that
there exst derivativesdy, 02, ..., 60m_1 in © suchthat W = det®;(gjhj)) is nonzero,
where 1< i <m-1and1< j < m- 1 Since theh;’s are hyperexponential, there
existrij in C(xy, ..., Xn) suchthat6;(gjhj) = rijhj, for eachi and eachj. Applying

01,02, ...,6m-1to (3) then yidds a linear system
ri r2 -+ fima1 hy F1imhm
ra1 r2 -+ Tfam1 hz ramhm
fm-11 fm-12 -+ I'm-1m-1 hm—1 rmm—1hm

whose coefficient matrixr jj ) is of full rank, because]—[im=l hj)def(rjj) = W is nonzero.
Solving this system, we gdtj = shpy, wheres e@(xl, ..., Xn). Soh; and hy, are
equivalent byLemma 3.2a ontradiction. [

To decide if a finite number of hyperexponential elements &vere linearly dependent
overC(xy, ..., Xn), we reed only to decide if there exist two equivalent elements among
the gven hyperexponential elementsByoposition 3.3To decide if two hyperexponential
elementsf andg are equivalent, we need to check if the logarithmic gradient /of is
a logarithmic gradient of some elementsl®f By Lemma 3.1it suffices to decide if the
rational functionr; = (9jlog)(f/g) is equal to (djlogq;) for someq; € K, fori = 1,

..., N. Itis straghtforward to show that sudlj exigs if and only f the quarefree partial
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fraction decomposition af; w.r.t. x; is in the forij Kij (ai(pi,- )/pij) where thekj 's
are nonzero integers and thg's are polynomials irK.

Let P stand for the ringQ[X, . .., Xa]. A finite se of polynomials inP is said to be
independenbver a subfield® c K if its elements are linearly independent oWerLet
P be an independent set ov@randg a hyperexponential element ovEr. We daote by
Hg,p) the set consistip of thenonzero elements in the forog(3_,.p Cpp), Wherec is

in C and thecp in Q. Clearly, all elements oty p) are hyperexponential ové and
equivalent tag. The following proposition describes the structuréafl ).

Proposition 3.4. If | is an ideal of D with finite rank d, then there is a finite number
of mutually inequivalent hyperexponential elemenis. g, gk and independent sets
Pi, ..., PcinPoverQs.t.H(l) = Hg, py Y- - -UH (g Ry in Which theunion is disjoint.
The sim of|Py|, ..., | Pk| is not more than d.

Proof. The equivalence relation gives rise to a partition?€l ). By Proposition 3.3
there are only finitely many equivalence classesifl ). Hence, we have the partition
H(l) = H1U- - -UH, in which’H; stands for an equivalence class. lkgtbelong toH; for

i =1,...,k. Foreveryf € H; there existx; € ® andr; € Ksuchthat f = cs¢rh;j by
the second assertion bémma 3.2Pick p a maxinal Q-linearly independent s&; from
allsuchr 1. The eements oQ; are alsaC-linearly independentplchin, 1973 pp. 86, 87).
The setQ; is finite, for otherwisé+; would contain infinitely mang-linearly independent
elements. LeQQ; = {&, ..., &}, wherepy, ..., p4,q € P, andgi = hij/g. Theng; is
hyperexponential ana equiva(ienthg LetP = {p1,..., pg}. ThenH g, p) = Hi. The
first assertion then follows from the partition &f(l1). The sum of{Py|, ..., |Pk| is no
more thard by Proposition 3.3 [

By computing the hyperexponential solutions of the ideawe mean to compute
mutually inequivalent hyperexponential elemergs, ..., gn, and ndependent sets
Pi, ..., PcsuchthatH (1) = Hg, py U - - - U H(g. Ro-

3.2. Common hyperexponential associates

Two hyperexponential elements B w.r.t. x; are said to bequivalent w.r.t. xif the
difference of their logarithmic derivatives w.rx; is a logarithmic derivative of some

element inK w.r.t. xj. Fori = 1,...,n, we leth; be hyperexponential w.r.k; in this
subsection. A hyperexponential eleménbverK is called acommon hyperexponential
associateof hy, ..., hy if his equivalent tch; w.r.t. x;, fori = 1, ..., n. In other words,
a ommmon hyperexponential associatef hy, .. ., h, isahyperexponential element &f
suchthat

hi =cirih, ..., hn = carph (4)
wherec; is adj-constant and; belongstdk,i =1, ..., n. For simpicity, we shall use the

termcommon associatésstead ofcommon hyperexponential associaifeso confusion
arises.
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Lemma3.5. Ifhy, ..., hy have acommon associate, thearhexists a common associate
f of hy, ..., hy suchthat

hi =cipif,....,hh=chpnf, (5)

where ¢ is a 9;-constant and pbelongs tdP,i = 1, ..., n. Inaddition, any two common
associates off .. ., hp are equivalent.

Proof. Let h be a common associate dfy, ..., h, satisfying @). Write ry =
(p1/9),.--,m = (pn/q), Where p1, ..., pnh andq belong toP. Then f in (5) can
be chosen a$/g. Let f and g be two common associates bf, ..., hy. By (4),
f = bjsg, whereb; is ad;-constants belongs toK, andi = 1, ..., n. It follows that

(Vlog) f — (Vlog)g = ((01l009)s1, . . ., (dnlog)sy), which iscompatible Lemma 3.1then
implies thatf andg are equivalent. [J

Applying (3;log) to the equalities ing), we get

(01log)h1 = (d1l09) p1 + (91l0Q) f
(6)
(dnlog)hn = (9nlog) pn + (dnlog) f.
Applying 9; to the jth equation and); to theith equation in §) and usng the equality
9 (djlog) f = 9j(dilog) f, we deluce

0j (dilog) pj — 8i (9jlog) pi = 9j (dilog)hj — d; (3;log)h;, l<i<j=<n.
Therefore(ps, ..., pn) is apolynomial solution of the system
zj hj . .
dj (dilog) — ) =9 (dilog) n ) l<i<j=n. (1)
1 1
Conversely, if {) has a rational or polynomial solutiaips, . .., pn), then

(01log)hy — (91l09) p1, . . ., (dnlog)hn — (3nlog) pn
f1 fn

is a compatible vector iik". A direct calculation shows that

f =exp</ fodxg +---+ fndxn> (8)

is a canmon associate such th&) folds. Thus, we have proved

Proposition 3.6. The elements1..., hy have a common associate if and onl{7f has
anonzero polynomial solution. (¥) has a nonzero polynomial soluti@ps, . . ., pn), then
f given in(8) is a common associate of h . ., h, suchthat (5) holds.

The next corollary indicates a special property of the syst@m (

Corollary 3.7. If (7) has two solutiongps, ..., pn) and (qi, ..., qn) in K", then here
exidsr € K s.t.(9;log) pi — (9jlog)gi = (dilog)r,i =1,...,n.
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Proof. Let g = (9jlog)h;, for all i with 1 < i < n. Proposition 3.@mplies hat both
Hi1 = exp(f (g1 — (91l09) p1) dX1 + - - - + (Gn — (dnlog) pn) dxn) andHz = exp([ (g1 —
(01log)q1) dxg + -+ + (gn — (dnlog)gn) dxn) are common associates bf, ..., hy. It
follows from Lemmas 3.2and3.5that there exist € C andr € K suchthatH; = crHo.
Applying (9;log) to this equality yields the corollary.(d

To compute polynomial solutions of), we need

Algorithm RationalAntiderivative (Find Rational Antiderivative). Givemy, ..., ak in
K, where 1< k < n, the agjorithm finds a nonzemin K suchthat{d;r = ay, ..., dkr =
ax} or determineshat no such solutions exist.

1. [Recursive base]. Ik = 1, apply the Hermite reduction ta; w.r.t. x; to get
g1, r1 € K suchthata; = 9101 + r1, wherery has a squarefree denominatonin
(Geddes et a].1992 Bronstein 1997. If r1 is nonzero, then exjino such solution
exigs].

2. [ReCL}rsion]. If RationalAntiderivative (a1, ..., ax_1) deternines that no such
solution exists inK, then &it [no such sdution exists]. Otherwise, let a solution
bery_1 and sebyx <« (ax — dkrk—1).

3. [Hermite reduction]. Ifb is not in Q(Xk, Xk+1, - - - » Xn), then &it [no suchsolution
exigs]. Othewise, apply the Hermite reduction b w.r.t. X to getgk, hk in K such
thatby = dxqk + hk, wherehy has a squarefree denominatowin If hy is nonzero,
then exit [no such solution exists]. Otherwise,iset-ry_1 + k. O

In step 1 the Hermite reduction w.nt; enables us to compute a solutiondgf = f1
in K. Assume that wecan compute a nonzero solutiop_; of the system{o;r =
ai, ..., ok—1r = ak_1} in K. Its raional solutions are in the form

r=rg_1+ Ok, wheregk € Q(Xk, Xk41, - - - » Xn)- (9)

If okrker = ak thenrg_1 is what we seek. Otherwisby = (ax — lk_1) is
norzero. Substituting9) into oxr = ax, we getby = dk0k. Herce, b belongs to
Q(Xk, Xk41s - - -» Xn) and gk can be computed by the Hermite reduction wxt. The
algorithm RationalAntiderivativeis correct.

To descrbe the next algorithm, we denote B the setP\{0} and by Ex the set
consisting of the equations if)(with 1 <i < j <k, where 1<k <n.

Algorithm PolynomialRatio (Find a Sdution (ps, ..., pk) of Ex in (P*)X). Given hy,
..., hg, where 1< k < n andh; is hyperexponential w.r.t; overK,i = 1,...,k, the
algorithm finds(ps, . .., pk), wherep; belongs toP*, such hat Ex holds or determines
that Ex has no polynomial solution.

1. [Recursive base]. Ik = 1, then réurn 1.
2. [Recursion]. If PdynomialRatio (hy, .. ., hx—1) finds no polynomial solution, then

exit [Ex has no polynomial solution]. Otherwise, let its output(pe, . . ., pk—1).
3. [Find a rational solution]. ApplyRationalAntiderivativeto the system

01z = 91(dklog)hx — dk(d1l0g)h1 + dk(91109) p1,
.. (10)
—1Z = k—1(klog)hk — dk(dk—1l0g)hk—1 + Ik (Fk—1100) Pk—1.



454 Z. Lietal. / Journal of Symbolic Computation 36 (2003) 443-471

If no rational solution is found, then exiEk has no polynomial solution]. Otherwise,
let its output bez.

4. [Partial fradion decomposition]. Writg as

(log)g — (klog)p+ g (11)

where p,q € P andg € Q(Xx, Xki1,-..,%n) by squarefree partial fraction
decomposition w.r.txg. If (11) cannot hold, then exitHx has no polynomial
solution]. Otherwise, retur@p1p, ..., pk-1p,d). O

To see the coactness of this algorithm, we need to show

e If PdynomialRatio outputs(ps, . .., pK) € (P*)X, (p1. ..., pk) solvesEy.

o If Ex has solutions iffP*)", PdynomialRatio produces such a solution.
The algorithm is clearly correct when = 1. We proceed by induction ok Assume
that PdynomialRatio outputs a vectou = (p1p, ..., Pk-1P. 9), wherepa, ..., pk—1
are produced by step 3, angl g by step 4.(p1p,-.., Pk—1p) solves Ex_1 by the
multiplicative rule of logarithmic differetiation and induction hypothesis. It remains to
verify that (p1p, ..., pk=1p, q) solves

Ik (9ilog)zx — 0; (klog)zi = 3k (d;log)hk — 9 (dklog)h; 1<i<k-1.

Foralli with1 <i <k — 1, we calculate

K (9ilog)g — 8i (Aklog)(pp) = 9 ((klog)q — (dklog) p) — di (klog) pi

11 10
W 52— aailog p X ax(ailoghk — 3 (dlog)h.

To show the scond assertion, lgs;, . .., s in (P*)K be a solution ofEy. We proceed
again by induction ok. The seond assertion clearly holds far= 1. Assume that it holds
for (k — 1). Then we get a polynomial solutiaips, . .., pk—1) in step 2. ByCorollary 3.7
there exists in K s.t.

(dilog) pi — (91log)s = (djlog)r i=1...,k—1 (12)
Fori =1,...,k—1, we compute
0o @ (9 (3ilog)sc — 9; (3log)s) — (3k(djlog)hk — i (klog)hi)
= (k(9jlog)(rsx) — 9; (dklog)(rsi)) — (3 (dilog)hk — 9; (3klog)hj)
D (ix(dil0g) (rs) — 3 (aklog) pi) — (dk(@iloghi — i (Aklog)hy).

It follows that(dklog)(rsk) is a rational solution ofX0). Hence, RationalAntiderivative
returns a ratinal functionz in the third step. Since

a okr _
z= (f?s‘ + %) +g  whereg € D0, Xki1, - - Xn),

we get (L1). The second assertion holds.
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Example 3.1. Find a common associate lof = exp(/ uj dx;), where 1<i <3,

! X1X3X3 + 2X2XoX3 — Xo — X1
l =
X2 (X2 + X1)X2X3

! —X1X2X2 + 2X1X3X3 + X3 — X2
2 =

(X2 — X3)X5X1X3

andusz = (3X1X2X3 — 1)/x1xzx§. First, PdynomialRatio applies toh; and yields 1 as a
polynomial solution ofi; (see step 1 in the algorithm). In step 3, the syst&@) kecomes
91Z = d1U2—ad2u1 With a rational solutiorixo+x1—1) / (X2+X1), whichcan be decomposed
into
(02109)1 — (d2109) (X2 + X1) + L.
Hence, a polynomial solution dt> is (X2 + X1, 1). Now the ystem (0) becomes
{012 = 01u3 — 33(u1 — (31109) (X2 + X1)), 02Z = U3 — d3U2}
with a rational solutio1 — 2x3 + 2x2) /(X2 — X3), whichcan be decomposed into
(93l09)1 — (93l0Q) (X2 — X3) + 2.

At last, we obtain a polynomial solution((x2 + X1)(X2 — X3), X2 — X3,1) of Es.
By Proposition 3. canmon associate df1, hy andhs is

X2 — X 1
exp(/ (ul— xz+xj> dxy + <uz— X2—X3) dX2+U3dX3>.

Find a common associate bf, ho andhs = exp(f us + X1 dx3). The agorithm runs
exacly the same as before until step 3 foe= 2, in which system 10) becomes

912 = 91(U3 + X1) — 33(uy — (31l0Q) (X2 + X1)).
02Z = 02(U3 + X1) — d3U2

with a rational solutior{1 — X1X3 + X1X2 — X3 + X2) /(X2 — X3), which cannot be written as

a logarithmic derivative of a rational function plus a rational functioxjralone. Hence,
h1, ho andhs have no common associate.

3.3. An algorithm for solvingProblem H1

Let I be the ideakl N K[3]) in K[o;], fori = 1,...,n. Note hatl; is nontrivial
because is of finite rank We denote by (I;) the st of all hyperexponential solutions
of l; w.r.t. x;. Clearly,

n
H() < (YR . (13)
i=1
Recall that an independent set o¥&ris a %t consisting of finitely many polynomials in
P, whichare linearly independent ov&}; . Viewing K as an ordinary differential field with
derivative operatos; and constant fiel&;, we deluce fromProposition 3.4
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Lemma3.8. For eadh i with 1 < i < n, there is afinite number of mutually
inequivalent hyperexponential elements,f .., fix w.rt. x overK, and a finite number
of independentsets P, ..., Bk overK; suchthat

) _ (I)
HOM) =1 oy U UH (fik - Plig)” (14)
whereHEif)i R = {cfij (Zpepu_ cpP)icp € K, ¢ is adj-constant. Moreover, the union
is disjoint.

For corvenierce, letF; be the setansiding of fi1, ..., fik in (14). If f belongs toH (1),
then (L3) and (14) imply that there gist uniquefyj, € Fy,..., faj, € Fn suchthat

fe ﬂHE'?. P (15)
Thus, f is a common associate Ooffyj,,..., fnj,. We gply the algorithm
PdynomialRatio to each element ofF1 x --- x F,) to get all pasible hequivalent
common associates of these elements,fsay. ., fx. Every f € H(l) must be equivalent

to one and only one of th&’s. The next lemma tells us how to compute hyperexponential
solutions of | that are equivala to one of thef;’s

Lemma3.9. Let fi,,..., fng, belong to h,...,F,, respectively. Assume that
(Pik;» - - - » Pnk,) IS @ polynomial solution of(7), in which h is replaced by f ,i =
1,...,n. Let

h— exp( / (log) ( flkl) dxg 4+ -+ (3nl0g) <f1_'<n) dxn) (16)
Pk, Pk,

and g bemaxpep  (deg, p), where R is specified in(14), fori = 1,....n. If f €
H(l) is equivalent to h, then there existsep P such hat f = cph, for some nonzero
ceCand

deg, p < (&k +deg, pi k), i=1,...,n
Proof. The element is well-defined and is a common associatefgf,, ..., fnk, by
Proposition 3.6Let f € H(l) be equivalent td. Thenf e H® (l;) is equivalent tofik;
w.r.t.x;. Thus(djlog) f = (9jlog) fi k + (3ilog)qi k , whereq; i is aK;-linear comination
of elements oP, x, by Lemma 3.81t follows that
fik
(dilog) f = (9; |Og)ﬂ + (9ilog)(ai.k Pik)
ik
= (dilog)h + (9;109)(gi,k Pi.k)-
So, thevector
((91109) (A1 ky P1,ky)s - - - 5 (3n10G) (G, k, P k) = (VIog) f — (VIog)h (17)
is compatible. Byremma 3.1there existp € K suchthat

(Vlog) p = ((81109)(Q1,k; PLKy)s - - - » (BnlOG) (CIn,ky Prkn))- (18)
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Thus, p = ¢ (01, P1k,) for somed;-constant;. Consequentlyp is a polynomial inx;
with degree lesthan or gual to(e  + deg pi.k ), fori =1,...,n, andthusp belongs
to P. Theequalities {7) and @18) imply (Vlog)(f/ph) =0. O

Example 3.2. Consider the ideal c K[d;, d2] with rank four, generated by

2 2
X5 + BXT — 6X1X2 5

f]_ == 83 )
! 2x3 — xox? 1
3X1 — 2X2 2X1 — X2
fo = 82 + = 2 3 5 d2.

2
Xl — X1X2 Xl — X1X2

A Jaret basis computation reveals tHat= (1) in K[d1] andl; = (f2) in K[d2]. Using
the algorithms mentined at the beginning ddection 3or the expsols function in the
Maple packag®Etools, we find that the hyperexponential solutionslgfare

(U1 + U2Xx1) exp(/ 0 dxl), uz exp (/ x_; dx1>,
X1
—_—

—_——

o] @

whereus, Uz andug ared;-constants. The hyperexponential solutions$.odire

v1 exp(/ 0 dX2), (v2 + U3X§) exp(/ ;—1 dXZ),
——— —/l—/

B B2
wherevy, vz andvz aredo-constants. Applying the algorithiRdynomialRatioto («i, ;)
with i, j = 1, 2, we see thai;, 1 have a common associaf¢ = 1, andaz, 82 have a

common associate

1
fo = exp(/ % dx1 — X_l dxz) = exp(—i—j) ;
1

while neitheray, B2 nor azB1 have any common associatidote that the algorithm
PdynomialRatio («;j, 8i) outputs(l, 1), fori = 1, 2. Lemma 3.9mplies that the ideal
can only have hyperexponential solutions in forms:

(ci+cx)fi  or  (C3+ Caxp+ Csx3) fa,

wherecy, ..., cs belong toQ. These constants can be determined by substituting the
respective ansatz inté; and f,. As a matter of fact,lte solutions aré&c; + c2x1) and
(C3 + C5x3) fo, wherecicp # 0 andeacs # 0. O

Now, we outline an algorithm for solvingroblem H1

Algorithm Hyper exponential Solutions (Compute Hyperexponential Solutions of an
Ideal with Finite Rank). Given an idedl = (gi,..., gs) with finite rank in D, the
algorithm computes all hyperexponential solution$ of

1. [Janet basis]. Compute a Janet bakfer | w.r.t. any erm-order.
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[Linear algebra]. Usd to conpute a generator df = | N K[9;], fori =1,...,n.

[Solve ODEs]. FindH®(1;), fori = 1,...,n. If one of theH@(l;) is empty,

then exit [no such solution exists]. Otherwise, wrtd) (1;) as @4) and setF <«
{fi1g,..., fix}, fori=121,...,n.

[Common associate]. Apply the algorithrRPdynomialRatio to each vector in

(F1 x --- x Fp) to construct common associates. If no common associate can be
constructed, exit [no such solution exists]. Otherwise, set the constructed common
associatesto béy, ..., fx, respectively.

[Solution candidates]. Applemma 3.9%o each of thef; to construct polynomial

pj with ungecified constants such that any elementt) can be expressed as

pj fj forsomej with 1 < j <k.

[True solutions]. For eachwith 1 < j <k, the system

{01(pj fj) =0, ..., 9s(pj fj) =0}

gives rise to dinear homogeneous algebraic systel in the coefficients ofp;.
Solve Aj to determine all the elements Bf(1) equivalent tofj. O

Example 3.3. ConputeH(l), where theank two ideall is generated by

1 1

5 X1 1 2X1X3 + 5X1 2X3 + 5X1

97 — 01+ , 03 — 01 )
X1 —1 X1 —1 X1X3 — X3 X1X3 — X3

X1 P X1
1 — .
X2(X1X2 — X2) X2(X1X2 — X2)

Step 2 in HyperexponentialSolutiongields

X1 1
li=(02— ) ,
! (l X1—11+X1—1>

3—16x2 8x3+ 6
I3 = 3% + - 3 03 — 23 + .
8x5 + 2x3 8x3 + 2X3

Step 3 gives:

and

@ _ 2@ @ 2 _ 142 2
H7 () =R ap Y Hexpxp - 72 =H UH

(es( ) )

UHY

3) )
HP () =H ", (eXp(2x3), (1))

)

Step 4 gives us eight common associatésp S sets up eight solution candidates:

1 1 1
exp(/ (X_l dxq — 2—X3dX3)), exp(/ldx1+ FdX2+2dX3>,
2
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exp(/ (1dx1—idX3>>, exp(/ <1dx1+ ! dX2—idX3)),
2X3 2 2X3
1 1 1
exp(/ (—dX1+2dX3>>, exp(/ (—dX1+—2dX2+2dX3>>,
X1 X1 X5
1 1 1
exp(/ldx1+2dX3>, exp(/ (—dx1+—2dxz——dX3>).
X1 X2 2X3

Step 6 produces two geine solutions: ex{x; + 2x3) andxy/,/Xzexp(—1/x2).
Example 3.4. Conpute™(l), where the rakthreeideall is generated by

X101 — Xavda + X1(2X1X2 + X1X3 + X5)d3 — 2X1X2 — X1X3 + X2,
X1(X1 — X3) (2% — X1 + 2X3)d3 + (X2 + X3)?vd3 + 2xqvd,
+X1(—2X2 + X1 — 2X3),
(x2+ X3)2v3233 + X102 + 2X1(X2 + X3) (X1 — X3)d3 — 2X1(X2 + X3),
(X2 + X3)2(X1 — X3)vd3 4 w3 — 2X1X5 — 2X2Xp — 2X1XpX3 — X3 — XaX2,
wherev = xf — X1X3 + x2 + 2XoX3 + x3 and
w = —2%5 — 8XaX5 — 12x3%3 — 8XoX3 + 2x1X5 + 2x3x2
— 3x2x3 — AxZxox3 — 2X§ + XT + 2x1xpX3.

Steps 1 and 2 are standard. Step 3 yields

Dy 4D @ @i 2@ @

HEUD) =Heg 1y Y e wxy: 702 =R 1y Y Hi, 1)
3 3 &)

and  HO(l3) = M) 11 UH o) )

wherea; = 1/(X1 — X3) andap = exp(xl/(xz + x3)). Step 4 finds two common associates
and step 5 sets up two solution candidates:

X1 E Xa' eXP<X2 n X3> (Co + C1X1 + C2X2 + C3X1X2),
wherec, Co, . . ., C3 are constants. The algorithm returns solutions
hy = ¢ ) hy = exp( > (Co + C3X1X2),
X1 — X3 X2 + X3

wherec, ¢g andcs are unspecified constants with# 0 andcpcs # 0.

4. Hyperexponential solutions of submodules with finite rank

Let L be a submodule with finite rank ihm. A solution of L in K™ is said to be
hyperexponential if it is no0, and each of its components is either hyperexponential
or equal to zero. We extend the algorithHyperexponentialSolutiongn Section 3.30
compute hyperexponential solutionslaf
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Let L® be the intesection ofL andDy, for k = 1,..., m, whichcan be computed
by Janet basis computation w.r.t. an elimination ordering. The submadfilef Dy is
of finite rank becausé is. Applying the algorithmHyperexponentialSolutiongo L®,
we obtain all possible hyperexponential solution candidatesyfotin which there may
be a finite number of unspecified constants. For daelith 1 < k < m, we aubditute
these candidates into a set of generatork @b obtain a systenof linear homogeneous
equations in these unspecified constant$byposition 3.3Solve ths system and make
sure that there is at least one nonzero component in a solution (vector).

Example4.1. ConputeH (L) whereL is generated by

(X1X3 — X1X2)y1 + (XaXz2 — 1)d2y1 + (1 — X1X3)d3Y1,

(X2X3 — X1X2) Y1 + (X1X2 — 1)91y1 + (1 — X2X3)d3Y1,

01Y2 — X2X3Yy1 — X2X3Y2, 92Y2 — X1X3Yy1 — X1X3Y2,

32y1 + (XaX2 + 1)dsy1 + XaXay1, 03Y2 — X1X2Y1 — X1X2Y2.

A Jaret basis computation yields

LY = (81y1 — XaXay1, 921 — X1X3Y1, d3y1 — X1X2Y1),
L@ = (x2x2yp — 2X1%203Y2 + 952, X101Y2 — X303Y2, X202Y2 — X303Y2).

Applying the algorithmHyperexponentialSolutiont L™ andL®, weobtainy; = ¢ih

andy, = (C2 + C3X1Xox3)h, respectively, whereh = exp(xi1x2x3) and cy, Cp, C3 are
ungecified constants. Substituting the candidatgs y») into a set of gaerators ofL,

we find thatc; = c3. Thusyz = (C2+ C1X1x2X3)h. By Proposition 3.4c4 = c2/c¢1 belongs
to Q. SoH(L) is equal to the union of (0, cxh) | ¢ € C, ¢p # 0} and

{(c1h, (c1€4 + crxaxoxg)h) | c1 € C, ¢ # 0, ca € Q).

5. Factoring submoduleswith finite rank

This section presents an algorithm for solviRgblem FE The aforithm hinges on
the algorithm HyperexponentialSolutionand extends Algorithm F bi et al. (2002.
As there are several unknown functions, notation and constructions will be more involved.
Nonetheless, the idea alters little. This section is structured as folimesion 5.Jpresents
some usefl facts.Section 5.Ztudies quotient systemSectbns 5.3and5.4generalize the
notions of Wronskian and associated systems, respectively. The idea and algorithm for
factorization are given iBectons 5.5and5.6, resgectively.

5.1. Some useful facts

First, we show how to fid rank one factors.

Proposition 5.1. The sibmodule L has a rank one factor if and only if L has a
hyperexponential solution whose nonzesonponents are equivalent to each other.
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Proof. If k is a hyperexponential solution df whoseith component is nonzero, and
the jthcomponent, wher¢ = 1, ..., n, andj # i, is equal tor jh; for somerj € K, then
L has a rank one factor generated by

Y1 —="rayi, ..., Yi-1 —Tli-1Yi,
a1Yi — ((d1lo@h))yi, ..., dnyi — ((Bnlog)hi))yi, (19)
Yi+1 —li+1Yi,---» Ym —I'mYi.

Conversely, anydctor with rank one has only one parametric derivagivior somei with
1 <i < m. It follows that the factor can be generated by generators in the fbl@mThis
factor has a hyperexponential solution

(rihy, ... riz1hy, hisripahi, oo rmhy). O

Example 5.1. The submodule given ikxample 4.lhas two families of rank one factors
(01y1 — X3X2Y1, d2Y1 — X1X3Y1, 03Y1 — X1X2Y1, Y2 — (€4 + X1X2X3)y1), in whichcs € Q,
and(y1, d1y2 — XaXaY2, d2Y2 — X1X3Y2, 93Y2 — X1X2Y2).

For adth order lirear ode w.r.td1, its kth order right factors have leading derivati&fa
What is IdefF) if F is a facor of L? Thenext lemma ths us that there are only finitely
many choices for |d€F).

Lemmab.2. If L C F, then
Ider(F) c (Ider(L) U pderL)) and pderF) c pderL).

Proof. If § € Ider(F) ands ¢ (Ider(L) U pderL)), thens can be reduced by somein
Ider(L). As L is a subset ofF, y can be reduced by songan Ider(F), which isnot equal
to 8. Thuss can be reduced by, contradicting to the fact that |[d€fF) is autoreduced. The
second assertion folles from the sene argument. [J

Remark 5.2. The structure of factors of. can be described by the JordareittEr
theorem. Se@sarev(200]) andLi et al. (2002 for moredetals.

We use ®&terior algebra notation to denote determinants. Eet K™. Recall that the
application ofy = 6y; € I' to a vectow in E is the application of to theith component
of v. Thek-fold exterior produck = y1 A y2 A - - - A yk is understood as a mapping from
EX to K:

viZ1 yiz2 - V1%
L |ver yaz2 cer 2k .. R ‘
AR) = | . . forz = (z1,...,2) € E*.
W31 Wk&2 o WKEk

Forexample, le1 = d1y1, y2 = 92y3, 71 = (211, Z12, Z13) andZz = (221, 222, Z23), where
thezjj belong toK. Then

01211 01221
2 2
05213 05223

(M1yDz1  (d1y1)22
(92y3)71  (32y3)72

(Y1 A y2)(31,22) =
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Besides being multi-linear and anti-symmetric, we also have

k
di(ar) = (di (@) + aZ(m N NV AN A VKD (20)

j:l
wherea € K,i = 1,...,n. We regard anyK-linear comination of k-fold exterior
products of elements af as a multi-linear function froniX to K. Clearly, a derivation
operator can be applied to such a combination. For a subsdt I, we denote by
AK(S) the K-linear space gemated by # the k-fold exterior products of the elements
of S. TheK-linear space/lk(l”) is closed undem®. For everyi € AX(I"), thereexigs
AL € AX (pderL)) s.t.

AZ1, .. ) = ALEL, ., 2K) forzy, ...,z € sol(L). (21)
The exterior expressioh, can be computed by replacing each derivative appearing in
by its normal form w.r.t. the Janet basis forEq. (22) is crucal in the rest of this paper.

5.2. Quotients

A factorF of L helps us to find a subspace of o). Can we usd- to describe all
the soltions of L? An answer is to se thequotient ofL w.r.t. F, whichis introduced by
Tsarev(2007) and rdined byLi et al. (2002 for the case in whicm = 2 andm = 1. The
general constructionigen below & similar.

LetF = (Fy,..., Fg) be afactorofL = (Ly,..., Lp). Assume thafFy, ..., Fq} be
the reduced Janet (Gioher) basis foF. Then, for each with 1 <i < p,

q
L = Z Qij (Fj), forsomeQjj e Dwithl <i < pandl<j <q, (22)
j=1

whereQjj (Fj) means the application @jj to F;j. Since{F4, ..., Fq} is a Janet basis, all
A-polynomials

da(Fa) _ 3n(Fp)
fa fb

q
) = Papj(Fj).  for somePap; € D, (23)
j=1

wheresd,, §p are the derivatives to form th&-polynomial ofF; andFy, and fa, f, are the
respective leading coefficients. Let, ..., ug be differential indeterminates ovét and
denote byUq the submodule generated luy, . . ., ug. Thequotientof L w.r.t. F and w.r.t.
the termerder~ is defined to be the submoduleliiy generated by

q
Q={Qi,Tal1l=<i =< p,1§a<b§q}cZ]D>uj,
=1

where

q s P q
Q= Qi) Tan= ( allla) _ b(”b)> =3 Pagi(up),
=1 =1

fa fp
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Proposition5.3. Let y = (y1,...,¥m) and let Gy, us, ..., Uq) denote the linear
differential systemiF1(y ) = u1, ..., Fq(y) = ug}. Then ve have

(1) if (v, ..., vq) isin sol(Q), then here eistsip in E s.t.(Vg, v1, . .., vq) isin sol(G),
so thatuvg is in sol(L);

(2) if vg € sol(L), then(F1(vp), ..., Fq (V) € sol(Q);
(3) dimsolQ) 4 dimsokF) = dimsokL).

Proof. We bain to prove the first assertion. L&t be a factor of rank and (v, .. ., vg)
belongs to sdlQ). RegardG(y) = G(y,v1,...,vq) as a differential system in
Y1, ..., Ym. Its integrability conditions, i.eA-polynomialsTap(vy, ..., vg) (1 <a < b <
), vanish, sice allthe Tap are inQ. In other words{F1(y) — v, ..., Fq(y) —vq} is
alinear coherent autoreduced set. Her@éy ) has a stution y , in E. It follows from
(22 that y , € sol(L). The seond assertionsi direct from 2) and @3).

To prove the last assertion, we recall tliht= dim solL). Let h be the dimension of

sol(Q) overC, andzy, ..., Zk, @1, . . . , Wd—k form a basis of s@L), in whichZx, .. ., %
are in so{F). Then he vectors = (Fi(wy), ..., Fq(wi)), where 1< i < (d — k), are

nontrivial solutions ofQ by the second assertion7f, . . ., 74— areC-linearly dependent,
then a nontrivialC-linear combirmtion of thew) is a solution of all theé=, a cntradiction to
the selection of thuj. Thus,h > (d — k). Fornonzercw e sol(Q), there is aslution Yo

of G(y,) by the first assertion. Sincy o € sol(L), it can be expressed as a nontrivial
C-linear combirtion of thez; andu;. Applying eachF to the linear combination, we see
thatv is aC-linear comlination ofry, .. ., Fg—_k. Consequently, we gét < (d — k). O

Example5.3. Let us consider the submodulegiven inExample 4.1Example 5.1shows
thatL has a factoF generated by

f1 = 01y2 — XoX3Yo2, f2 = 02y2 — X1X3Yo2,

f3 = d3y2 — x1Xayz, fa=y1.
A quotientQ of L and F is generated by nine elements, six of which correspond to
the reduction of generators af by the f's (see 22)), and three of which correspond to

A-polynomials among théd's (see 23)). Using these nine elements, we compute a Janet
basis to geQQ equal to

(U1 — X2X3Ug, U2 — X1X3U4, U3 — X1X2U4,
01Ug — X2X3U4, d2U4 — X1X3U4, d3Ug — X1X2U4).

It has a stution (x2x3h, x1x3h, x1x2h, h), whereh = exp(x1x2x3). The first asertion of
Proposition 5.3rompts us to form the syste@® equal to

{01U02 — X2X3Up2 = XoX3h, d2Ug2 — X1X3Up2 = X1X3h,
93Up2 — X1X2Ug2 = X1X2h, Up1 = h}.

By variation of paameters we find thah, x1x2x3h) solvesG. Herce, it is a solution oL
by Proposition 5.3A basis br solL) is {(0, h), (h, Xxyx2x3h)}.
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5.3. Wronskian representations

A key ideain the Beke—Schlesinger algonithis to look for right factors whose
coefficients are Wronskian-like determinants. To use this idea, we extend the notion of
Wronskians. Let- be a submodule with finite rank The reluced (monic) Janet basis
for F consists offFy, ..., Fp}. Letlder(F) = {y1,..., yp} and pdetF) = {&1, ..., &},
where§ <& forl<i < j <k.

We call the elementwg = (§1 A - -+ A &) the Wronskian operatonof F (w.r.t. the
term oder <). It follows from (21) and AX(pdeKF)) = {ror | r € K} that, for every
A € AX(I"), thereexigsr, e K suchthat

AMZ1, ..., 2) =hor @, ..., 2K) forzy, ..., 2 € sol(F). (24)
Lemmab.4. For all Z1,...,% € SONF), 71, ..., % are C-linearly independent if and
only if wr(Z1, ...,2) # 0. Moreover, letzy, ..., zx form abasis ofsol(F) and denote

(Z1,...,2) byZ, (Y1,..., ym) by 3. Then
(0F AVDGE y) = oF@F, i=1...,p.

Proof. If Z1,...,Z are C-linearly independent, Theorem 1 Kolchin (1973 p. 86)
implies that there exists in AK(I") s.t.A(Z1, ..., %) # 0. The first asertion then follows
from (24). The converse is true by the same theorem. Expan@ipg i )(Z, y ) according
to the last caimn, we have

k
(@F AWE §) =or@n + Y (D m Ay @) &), (25)
i=1

wherenj =& A--- AEj_1AEjra A Ak, Since(wr A "G, y ) vanishen solF),
it can be reduced to zero by, ..., Fp}. But the ight-hand side ofZ5) can only be
reduced by once. The second assertion is proved]

We call {(wF A1) (Z, V)soon, (F Ayp)(Z, y )} aWronskian representatioof F. Any
two Wronskian representations can only differ by a multiplicative consta@t isecause
any two sets of fundamental solutionsféfcan be transformed from one to the other by a
matix overC. Note hatwij; = 0if 4, < &j, because of the second assertiohefmma 5.4

Example5.4. Let Ider(F) = {y1, d1Y2. 322, 32y2}. ThenpderF) = {y», d3y2}. The
Wronskian operator i&g = (y2 A (33Y2)) and the representation is

(W1 = wr (2)y1 — (Y2 A Y1) (D) (3Y2) + ((33Y2) A Y1)Y2,

Wo = wF (2)01Y2 — (Y2 A (91Y2)) (@) (33Y2) + ((33Y2) A (31Y2))Y2,
W5 = wr (2)922 — (Y2 A (32Y2))(2)(33Y2) + ((33Y2) A (31Y2))Yo,
Wi = wr (D93Y2 — (Y2 A (02y2) ) (33Y2) + ((Bay2) A (95Y2))Y2).

The next proposition implies that tha; in (25) is hyperexponential.
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Proposition 5.5. Let F be a submodule of rank k ihy, andZ = (1, ..., ), Where
thez; form abasis ofsol(F). Thenwr () is hyperexponential ovek. Moreover, for all
A € AX(I"), A3) is either zero or hyperexponential.

Proof. Lemma 5.4mplies thatwr (z) is nonzero. It follows from 24) that he logarithmic
derivative ofwr (Z) W.r.t. anyx; belongs toK. Herce, wr (z) is hyperexponential. Any
nonzerai(2) is then hyperexponential by2¢). O

5.4. Associad sytems

We shall generalize the notion of associateglations for factorig linear ODEs. As in
the prevous sections, leik be an ieger with 1< k < d. We regard ewsy element of
AK(I") as a function on s6L)X. Two elkements ofAX(I") are said to bequivalentf they
are identical (as functions) on $ah¥. For anelement of AK(I), its equivalence class
is denoted bya. It is easy to verify that the equivalence relation is compatible with linear
operations and differentiations aff (I"). TheK-linear spaceansisting of the equivalence
classes is called thkth Beke spaceelaive to L, anddenoted byBx whenL is clear
from the context. From2Q) it follows that each equivalence class contains an element
of A¥(pderL)). ConsequentlyBx can beK-linearly generated by the elements in the
form (ny A m2 A -+ A k), where then; belong to pdeil) andn < n; for alli, j with
1 <i < j < k. These eédments are calledanonical generatoref Bx. They ae not
necessariljK-linearly independent.

Lemma5.6. The kth Bke pace K is of dimension less than or equal (&) and closed
under differentiation.

Example5.5. Let pde(L) = {vy1, Y2, d3y2}. The canonical generators of the second
Beke'sspaceBy areb; = (y1 A ¥2), b2 = (Y1 A (83Y2)), b3 = (Y2 A (33y2)).

Sete = (ﬂ) For anelement of By, the iceal consisting of all annihilators of in D

is denoted by ant). A finite subsebf ann(x) with finite-dimensional solution space is
called asystem associated with The fdlowing method computes an associated system
by linear algebra and differential reductidcemma 5.6implies thati, 9, ..., 3% are
linearly dep@dent overK. Suppose thafp; is a snallest nonnegative integer such that

P+ iji:_ol fija) » = 0, wherefi 5 _1, ..., fio € K. We find the deal generated by

pi—1 .
P+ fjal li=1....n (26)
j=0

annihilatingx. The solution space of the ideal is ofifendimension, because its parametric
derivatives are irD;, = {8'11 e 0< ij < pj—11<j <n}.Herce, £6)is asytem
associated witl.. Considering all possibl&-linear comlinations of(e + 1) elements of
D,, we mayobtain an associated system widimensional solution space (see Lemma 1
in Tsarey 2001). We may also consider linear relations among mixed derivativéstof
get associated systems with lower-dimensional solution space.
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To factor submodules with finite rank, we need systems associated with the canonical
generators. The method for computing these associated equations gi@roristein
(1999 can be directly applied in the general case.

Example 5.6. Consider the rank three submodullegenerated by
L1 = X2X2(d1y1) + XaXix3y2 — (33Y3)XaXoX1 — (d3Yy3) + X1X2Y1 + YaX1Xe,
L2 = X1X5(32y1) + X3XIX3Y2 — (33y3)XaXoX1 — (33Y3) + X1XaY1 + YaXiXo,

L3 = (33y1) + y2xax2 — (33y3).  La= (93y3) + xPX3y2 — 2x1%a(33y3).
Ls = (91y2) — (93Y3)X3, Le = X2(d2y2) — (33y3)X3.
The sef{L1, ..., Lg} isareduced Janet basis under the lexicographical term-order defined

by y1 < y2 < y3anddi < 92 < 93. Thus,

Ider(F) = {d1y1, 92Y2, d3Y3, 95Y2, d2y2, d1y2}, and pdetF) = {ya, y1, d3y2}.

The canonical generators B arebs, b, andbs as given irExample 5.5By linear algebra
and differentiation, we find idealg, |2, I3 annihilatingbs, bp andbs, respectively, where

1 1
l1 = (01— ZtX—Jlr 92 — th—g 93 — 2X1X2),

| <—2x§x§(t2—6) t(—18+4t+5t2)a
2:

x1(t +2) x2(t +2)
23t —3+2t2)82 3 —24(t?—6)  t(-18+ 4t+5t2)a
xt+2 1TV 31+ 2t+2)
2(3t — 3+ 2t2)

— 2 T T T 7524 93, —2x3x3 4 5x2x293 — Ax1%202 + 93 | ,
ol +2) o + 05 1X5 + OX1X503 1X203 + 03

and

L (fP@+s)  P6t412), t@+9), oz @+ 5)
"\ Ct+2 T @i+ T oxat+2 TV 3+ 2)

t2(5t + 12) t(4t + 9)
2012 2 %12 92 + 93, —23%3 4 5xPx303 — Ax1x202 + 93 | ,
2

in whicht = Xx1XoXa.
5.5. Sketch of the factorization algorithm

Before presenting our factorization algorithm in detail, we describe it informally by
exampes. Assume that we look for a ramkfactor F ¢ Lny, of L. Let Z the vector
(Z1,...,2x) Wherezy, 2o, . . ., Zx form a fundamental system of solutionsfef

First, we emumerate all possible leading derivativedoby Lemma 5.2

Example5.7. The submodulé given inExample 5.6night have rank two factors whose
leading derivatives are

{y1, 91Y2, 02Y2, 3§Y3} or {01Y2, 02Y2, 03Y3, 01Y1, 02Y1, 03Y1}.
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Secondfor a given Ide¢F), we conpute candidates for the Wronskian operatg(z)

by finding the hyperexponential solutions of one of its associated systems. If no
hyperexponential solution is found, then the factor with the leading derivatived-lger
does not exist byProposition 5.5

Example5.8. Find a factorF of L with Ider(F) = {y1, d1Y2, 92Y2, 832y3}. The Wonskian
operator ofF is wgp = Y2 A (33y2). An ideal annihilatingwg is 11 in Example 5.6
The algorithm HyperexponentialSolutionfinds thatwg (Z) can only becox1x2h?, where
h = exp(x1x2Xx3) andcy is a @nstant.

Third, we compute all candidates for canonical generators equivalent to a given
Wronskian candidate, becaugdl implies that all candidates for canonical generators are
hyperexponential and equivalent to the Wrkina candidate. If the Wronskian candidate

is equivalent td, then candidates for a canonical generatoan be expressed Hs where

r belongs taK. Subdituting rh into a system associated witt) we obtain an ideal with
finite rank. We arenly interested in its rational solutions.

Example5.9. Besidestie Wronskian operatasg, two other canonical generators of the
second Beke space at® = y2 A y1 andbz = (33Y2) A Y1, b2(2) is annihilated byl,
bs(Z) by I3, as desribed inExample 5.6 The hyperexponential solutions &f (resp.13)
equivalent tch? arec;h? (resp.cox1x2h), wherec; andc; are constants.

Fourth, we form all the Wonskian representations fér w.r.t. a given candidate for the
Wronskian operator. This is possible because the coefficienptsn (25 are K-linear

combinations of thé; (z) which can beobtained by the reduction w.rit..

Example5.10. The Wronskian representation &f is given in Example 5.4 All its
coefficients ar&-linear comlinations ofwg (2), b2(Z) andbz(zZ). These comimations can
be found by the reduction of an elemeéBit by L. The Wionskian representation &f is

{X1X2y1 — €1(03Y2) + X1X2C2Y2, X1X2(01Y2) — X3X2(93Y2),
X1X2(32Y3) — 2X2x3(d3Y2) + X3X3Y2, X1X2(d2Y2) — XaX1(d3Y2)}.

Fifth, the nonic associaté) of a candidate for the Wronskian representation has rational
coefficients. If the monic associate is a factoiLofvith rankk, thenU is a reduced Janet
basis and each elementbfcan be reduced to zero by. These two onstraints lead to a
system of algkraic equations in the unspecified constants appeariky iBoling these
algebraic equations yields factors that we seek.

(27)

Example5.11. Decide the onstants in 27) by assuming that the monic associate of
(27) is a Janet bas and thatL is contained inF. We geta factor F generated by
Y1 — 1/X1%2(33Y2) + Y2, (91Y2) — X3/X1(d3Y2), (32y2) — Xa/X2(d3y2), and (d3ys) —
2x1X2(03Y2) + X2X3Y2.

5.6. Factorization algorithm

For simpicity, we describe an algorithm for finding factofsof L under the assumption
that IdeKF) is given. It is easy to adjust the algorithm to compute all factord aby
Lemma 5.2



468 Z. Lietal. / Journal of Symbolic Computation 36 (2003) 443-471

Factor WithSpecifiedL eaders (Compute Factors whose Leaders are given). Given a fi-
nite basis for a submoduleof finite rank and an autoreduced gktn the unon of Ider(L)
and pdefL), the agorithm computes all proper factoFsof L with Ider(F) = A.

1. [Parametric derivatives]. Find\~ < pdelL) consisting of all derivatives not
divisible by any elements of\. If |A™| = d, returnL. Otherwse, sekk = |A7|
ande = (ﬂ)

2. [Candidates for the Wronskian]. Find a systeM associated withwg, and
compute hyperexponential solutions 8f by HyperexponentialSolutiondf no
hyperexponential solution is found, exit [no such factors exist]. Otherwise, organize
the soltions as equivalence classes:

{h11 = p11fig, ..., hyt = pat fat}

where thefy; are hyperexponential ov&, and theps; are polynomialsirxg, . .., Xp
whose coefficients are elements@&nd unspecified constants.

3. [Candidates for other canonical gea®rs]. Construct the systenm&y, ..., Ae
associated with other canonical gerters, and compute their hyperexponential
solutionsequivalent to somdy; (1 <i < t). Forj = 2,...,¢ sethjj to be the
hyperexponential solution oAj equivalent tofy; if such a solution exists, else set
hji to be zeo. Let

H = {(hl]J h217 A ] hel)? AR (hlt1 h2k1 AR het)}

where thehy; are obtained from step 2, and thg with j > 1 are éher zero or
hyperexponential elements equivalenhtp.

4. [Candidates for factors]. Construct the Wronskian representation defined. by
Construct the matrix transforming the canonical generators to the Wronskian
coefficients. Use this matrix and the elementsHbfto get all rdional monic
associate$Fi, ..., F )} of the candidates for factors.

5. [Select true factors]. Check if eadR is reduced Janet basis andHf contains
L. Solve afjebraic equations in unspecified constants when necessary. Return the
factors.

A few words need to be said aboudfactorWithSpecifiedLeader3he firststep isclear.

The second step is a direct application of the algoritHyperexponentialSolution#f no
hyperexponential solution is found, then factors with leading derivativei not exist

by Proposition 5.51n the third step, 24) implies that we need only hyperexponential
solutionsequivalent to somé;j;. Sincethese saltions belong to one equivalence class,
all of them can be expressed @1;, whereq; is a rational functia whose coefficients

are elements o) and unspecified constants. Thiscontains at modtelements. Finding
these solutions amounts to computing rational solutions of some ideals with finite rank,
which is easier than computing all hyperexponential solutions of other associated systems.
This technique is introduced Bronstein(1994) for the ODE case, and is extended to the
PDE case byl'sarev(200J). In the fourth step, we express the Wronskian coefficients as
K-linear combinations of the canonical generators by differential reduction .rln

the last step there may arise an algebraitesysnunspecified constants. So an algebraic
equation solver is required.
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Example5.12. Let us find factorss of L (in Example 5. whose leading derivatives are
{91Y2, 02Y2, d3Y3, 01Y1, 02Y1, d3y1}. SincepdeG) = {y», y1}, the Wionskian operator
we is equal toby = Y2 A y1. The aforithm HyperexponentialSolutionfindsby(zZ) can
only bef,1 equal to

h
(C1 4 CoX3 + C3X1X2 + C4X1X2X3 + C5X1 + CeX1X3 4 C7X2 + CgXoX3) o
1X2

or 822 = cgh?, whereh = exp(x1xox3) and thec’s are constants. Other two canonical
generators ofB; areb; = y2 A (d3y2) andbz = (d3y2) A y1. The hyperexponential
solutions ofl; andl3 equivalent tg321 are 0 and

B31 = h(Cg + C10X3 + X1X2C11 + X1X2C12X3
+ X1C€13 + X1C14X3 + X2C15 + X2C16X3).
The respective hyperexponential solutiond pand |3 equivalent tg3;; are
P12 = Cox1x2h?  and  Ba2 = cixaxgh?.
The Wronskian representation fGrby definition is
We = {b2(2)(d1y1) — Y2 A (01yD @Y1 + Y1 A (01y1) (D) Y2, b2(2) (92y1)
— Y2 A (92YD @Y1+ Y1 A (92Y2) (D)2, b2(2) (33y1) — Y2 A (03y1) (D) Y1
+ Y1 A @B3y) G)Y2, 02D (91Y2) — Y1 A (91Y2)(3)Y2, b2(2)(02Y2)
— Y1 A (02Y2) @) Y2, b2(2)(33Y2) — Y1 A (33Y2) (3)Ya).

Note that

Yo A (01Y2) = Y2 A (92Y2) = Y2 A (33Y2) =0

sincedsy, < day2 < d1y2 < yi1. Herce,by(z) = 0. Consequentlp;2 = 0. We have two
candidates for the canonical generators, which are

(by, bz, b3) = (0, B21, B31), (b1, b2, b3) = (0, B22, B32).
The first candidate leads to a factor
(X1S(01Y1) + SY1 — Ca(t + 1)y2, X2S(d2Y1) + Sy + Ca(t + 1)yo,
S(d3Y1) — CaX1X2Y2, S(91Y2) — CaXaX3ty2 — CoX2X3Yo2,
S(02Y2) — C4X1X3ty2 — CoX1X3Y2, S(03Y2) — CaX1Xoly2 — CoX1X2Y2),

wheret = x3X2X3 ands = (t — 1)c4 + Co. The seond leads to a factor which is a special
instance of the firstoy = 0, cg = 1).

The reader is referred td et al. (2002 for exanples on factorization if.

6. Concluding remarks

The results of this article are a first step toward generalizing computer algebra
techniques for solving linear ODEs to PDE’s. The algorithtyperexponentialSolutions
generalizes the algorithm for computing hyperexponential solutions of linear ODEs.
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The algorithm FactorWithSpecifiedLeadergeneralizes the Beke—Schlesinger algorithm
for factoring linear ODESs. The notions of factors and quotients enable us to reduce the rank
of a D-finite system.

Based on the Male packageSre_algebra andDEtools, a prdiminary implemen-
tation of the algorithmHyperexponentialSolutiondias been made. The factorization
algorithm for ideals inQ(x1, X2)[d1, d2] has been implemented in the ALLTYPES
system ofSchwarz(1999. Yet, it is challenging to have an efficient factorizer fbr
finite systems with rational function coeffegits. To this end, we would like to have
efficient implementations for finding elimination idedisin Section 3 and conputing
the soultions of I; in K. We will study how to avoid generating too many candidates
for hyperexponential solutions itlyperexponentialSolutionsind how to construcf;
in step 2 of FactorWithSpecifiedLeadersiith lower rank so that we may have fewer
candidates for factors in step 4. To factoDdfinite system, we would have to enumerate
all possible sets of leading derivatives of a potential factor. The number of these sets may
be an exponential function in rank. Would there be a fast way to decide if a set of leading
derivatives will not lead to any true factor? Would there be a fast way to decide if an ideal
with finite rank has no hyperexponential solutions?
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