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Abstract

A D-finite system is a finite set of linear homogeneous partial differential equations in several
independent and dependent variables, whose solution space is of finite dimension. LetL be a
D-finite system with rational function coefficients. We present an algorithm for computing all
hyperexponential solutions ofL , and analgorithm for computing all D-finite systems whose
coefficients are also rational functions, and whose solutions are contained in the solution space ofL .
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For various reasonslinear differential equations have been of particular importance in
the history of mathematics. First of all, the problems connected with them are much easier
than those for nonlinear equations. Second, many nonlinear problems may be linearized
in some way such that the results of the former theory may be applied to them. This
is especially true for Lie’s symmetry analysis of ordinary differential equations (ODEs)
which reduces the problem of solving nonlinear ODEs with a sufficiently large number of
symmetries to the study of certain systems of linear partial differential equations (PDE’s).
The problem of finding conservation laws for nonlinear PDE’s also leads to systems of
linear PDE’s.
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Many concepts from commutative algebra have been suitably generalized to the
algebraic theory of linear ODEs, e.g. the greatest common divisor and least common
multiple, the concept of reducibility and factorization which finally led to the theory of
Picard and Vessiot and differential Galois theory. This is true to a much lesser extent
for linear homogeneous PDE’s. To obtain manageable problems, we have to specialize
them further. The constraint that the general solution depends on a finite number of
constants, i.e. it may be represented as a linear combination with constant coefficients
of a finite number of special solutions which form a fundamental system, turns out to be
appropriate. It allows us to generalize many concepts from the theory of linear ODEs in
an almost straightforward manner. Linear homogeneous PDE’s with this constraint will be
called D-finite systems, which may be seen as a slight generalization of Definition 2.1
given by Chyzak and Salvy(1998) in the differential case. They arise from different
research areas such as: symmetry analysis (Lie, 1873), holonomic systems (Saito et al.,
2000) and the description of functions by a given system of PDE’s with initial conditions
(Chyzak and Salvy, 1998). We shall focus onD-finite systems whose coefficients are
rational functions in the independent variables overQ, the algebraic closure ofQ.

Contributions of this paper mainly consist of two algorithms. The first finds all
hyperexponential solutions of aD-finite system. It generalizes the main algorithm by
Li and Schwarz(2001) to the case of several independent variables. The second finds
all D-finite systems whose coefficients are in the field of rational functions overQ, and
whose solution spaces are properly contained in the solution space of a given system.
It generalizes the factorization algorithm sketched byTsarev(2001) and completed by
Li et al. (2002) to thecase of several independent and dependent variables. In principle,
most problems related toD-finite systems reduce, as shown by Lie, to corresponding
problems for linear ODEs. However, such “reduction” may be nontrivial and usually leads
to solving or factoring linear ODEs with parameters. This makes many known algorithms
fail. We shall avoid such complications. The paper also proves a theorem describing the
structure of hyperexponential solutions of aD-finite system in one dependent variable
(Proposition 3.4), and generalizes the notion of left quotients oflinear ODEs toD-finite
systems (Proposition 5.3).

This paper is based on several known results. The theory of linear differen-
tial ideals (Kolchin, 1973) supplies useful conclusions about dimension and lin-
ear dependence. The reduction–completion process (Janet, 1920; Galligo, 1985;
Kandru-Rody and Weispfenning, 1990; Schwarz, 1992; Chyzak and Salvy, 1998) makes
sure that the systems to be factored and the factors to be sought are of required rank. The
idea of associated equations (Beke, 1894; Schlesinger, 1895; Schwarz, 1989; Bronstein,
1994) inspires us to reduce our factorization problem to that of finding hyperexponential
solutions of associated systems.

The paper is organized as follows.Section 2contains necessary preliminaries.Section 3
presents an algorithm for computing all hyperexponential solutions of aD-finite system
in one dependent variable.Section 4extends the results ofSection 3to the case of
several dependent variables.Section 5presents a factorization algorithm. Some concluding
remarks are given inSection 6.
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2. Preliminaries

We shall specify notation, state problems to be studied, and list a few useful results in
this section.

All (sub)modules, vector spaces and ideals in the paper are left (sub)modules, left vector
spaces and left ideals, respectively.

Throughout this paper, the following notation will be used: the symbolK stands for
the fieldQ(x1, . . . , xn). The fieldK is viewed as a partial differential field on which usual
derivation operators∂1 = ∂/∂x1, . . . , ∂n = ∂/∂xn act. Denote byΘ the commutative
monoid generated by∂1, . . . , ∂n, andby Ki the fieldQ(x1, . . . , xi−1, xi+1, . . . , xn), i =
1, . . . , n.

The symbol D stands for the noncommutative ringK[∂1, . . . , ∂n] of differential
operators (seeChyzak and Salvy, 1998; Saito et al., 2000or van der Put and Singer, 2003,
Appendix D). For f in D and a in a differential field extension ofK, we denote the
application of f to a by f (a).

Let y1, . . . , ym bem differential indeterminates overK. For everyθ in Θ , θyi is called a
derivative. The set of allderivatives is denoted byΓ . We denote byLm theK-linear space
generated by all elements ofΓ . ThenLm is both aK-linear space and a module overD.
An elementf of Lm can be written as

f =
∑
γ∈Γ

fγ γ, (1)

where fγ ∈ K, only finitely many nonzero. Alternatively, we may regardLm as the sum∑n
i=1 Dyi of left modules overD, whereDyi = { f (yi ) | f ∈ D}, that is,Lm is isomorphic

to the direct sum ofm copies ofD as left modules overD. We opt for the notationLm,
because the introduction of unknownsy1, . . . ym makes it easier to speak about solutions
of differential equations.

A subsetL of Lm is called a submodule iff (a) ∈ L for every f ∈ D anda ∈ L.
For a subsetS of Lm the submodule generated byS, denoted by(S), is thelinear space
spanned by the elements of{ f (s) | f ∈ D, s ∈ S}. Every submodule ofLm is finitely
generated by Proposition 1.9 of Chapter V inBorel et al.(1987) or the basis theorem on
p. 126 inKolchin (1973). A submoduleL is said to be offinite rankif the quotient(Lm/L)

is a finite-dimensional vector space overK. If L is of finite rank, then the dimension of the
vector space(Lm/L) is called therankof L, denoted by rank(L).

With the notation just introduced, we state our factorization problem.

Problem F. Given asubmoduleL of Lm with finite rank, find all the submodules (inLm)
containingL.

Let F be a differential field containingK. For a vector = (z1, . . . , zm) ∈ Fm and
γ = θyi ∈ Γ , γ is understood asθ(zi ). The vector is a solution of f in (1) if
f ( ) = ∑γ∈Γ fγ (γ ) = 0. For a setS in Lm, is a solution ofS if every element of

Sannihilates . A system of PDE’s{ f1 = 0, . . . , fk = 0}, where f1, . . . , fk are inLm, has
the same solutions as({ f1, . . . , fk}). So we study submodules instead of systems of linear
homogeneous PDE’s. This point of view enables us to make statements concise.
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To speak about all solutions of a submodule, we fix a differential extension fieldK̃ of K

containing all solutions of any submodule ofLm with finite rank. Such a differential field
always exists (Kolchin, 1973, p. 133). An elementa of K̃ is called a∂i -constant if∂i (a) is
equal to zero. For example, all elements ofKi are∂i -constants. If∂i (a) = 0, for all i with
1 ≤ i ≤ n, thena is called a constant. All constants ofK̃ form a field denoted bỹC.

For a submoduleL of Lm, the set of solutions ofL in K̃ is denoted by sol(L). This set
is a vector space over̃C. Proposition 2 inKolchin (1973, p. 151) implies that rank(L) is
equal to the dimension of sol(L) overC̃ if either rank(L) or dim

C̃
sol(L) is finite (see also

Theorem 1.4.22 inSaito et al.(2000)). If a submoduleM properly contains a submodule
L with finite rank, then sol(M) is properly contained in sol(L). A submodule of rankk
containingL is called a rankk factor of L. A solution to Problem Fis an algorithm for
computing all factors whose ranks are lower than rank(L).

Remark 2.1. It is convenient to introduce the field̃K to describe solutions of submodules,
although all the calculations will be performed inK. It is not required to determine the

field K̃ explicitly in the algorithms in this paper.

We recall the notion of hyperexponential elements which play a key role in our
factorization algorithm. The logarithmic derivative w.r.t.xi of a nonzero elementa of K̃

is the ratio of∂i (a) anda, which isdenoted by(∂i log)a. The following rules are obvious:
Fora, b ∈ K̃ andi , j ∈ {1, . . . , n},
• (∂i log)(ab) = (∂i log)a+ (∂i log)b,
• (∂i log)

(
a−1
) = −(∂i log)a,

• ∂ j (∂i log)a = ∂i (∂ j log)a.

A nonzero elementa of K̃ is said to behyperexponentialw.r.t. xi over K if the i th
logarithmic derivative(∂i log)a belongs toK. The elementa is said to be hyperexponential
if (∂i log)a belongs toK for all i with 1 ≤ i ≤ n. Examples of hyperexponential elements
are rational, exponential and certain algebraic functions, e.g. functions defined byzk = a
wherek ∈ N anda ∈ K. The product and ratio of two hyperexponential elements remain
hyperexponential; while their sum is not necessarily hyperexponential.

SinceL1 = Dy1, L1 can be identified withD and a submodule ofL1 can be identified
with an ideal ofD. We will use the ring D and ideals instead of the moduleL1 and
submodules, respectively. In doing so, we can omit the indeterminatey1 which helps little
to describe solutions in the casem= 1.

To solveProblem F, we need to solve

Problem H1. Given an ideal ofD with finite rank, find all its hyperexponential solutions.

As abyproduct, we will solve

Problem H. Given a submodule ofLm with finite rank, find all its nontrivial solutions
whose components are either zero or hyperexponential.

In the rest of this section, we briefly review the notion of Janet (Gr¨obner) bases of
a submodule, which is fundamental for us to compute rank of submodules, to reduce
Problem H1to the problem of computing hyperexponential solutions of linear ODEs, and
to form factor candidates in our factorization algorithm. The notion of Janet bases in this
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paper may be viewed either as an extension of Gr¨obner basis for ideals inD (Galligo,
1985; Kandru-Rody and Weispfenning, 1990; Chyzak and Salvy, 1998) to submodules in
Lm ∼= Dm, or as a specialization of nonlinearcharacteristic sets (Kolchin, 1973; Wu, 1989)
to linear homogeneous differential polynomials.

A total ordering≺ on Γ is admissible ifγ ≺ θγ , andγ1 ≺ γ2 θγ1 ≺ θγ2, for all
γ, γ1, γ2 ∈ Γ andθ ∈ Θ\{1}. Fix anadmissible total ordering≺ onΓ . Fornonzerof in
Lm, thehighest derivative appearing inf is called theleading derivativeor leader of f
and denoted by lder( f ). The coefficient of lder( f ) is denoted by lc( f ). For f, g ∈ Lm with
g �= 0, f is reducedw.r.t. g if any derivative of lder(g) does not appear inf . Moreover, f
is reduced w.r.t. a subsetS of nonzero elements ofLm if f is reduced w.r.t every element
of S. A set S ⊂ Lm is said to beautoreducedif its elements are reduced pairwise. Every
autoreduced set is finite (Kolchin, 1973, Chapter 0, Section 17).

Let L be a nontrivial submodule, andΞ be the set consisting of all leading derivatives
of nonzero elements ofL. There exists an autoreduced setA in Ξ such that any element
of Ξ is a derivative of some element of A. In fact, it is nothard to prove thatA is unique.
We denote it by lder(L). A derivative is called aparametric derivativeof L if it is reduced
w.r.t. lder(L). The set of parametric derivatives ofL is denoted by pder(L).

A finite subsetJ of L is called aJanet basisif every nonzero element of L is not reduced
w.r.t. J. We attribute bases of this type to Janet because he appears to be the first person
who conceived a thorough reduction–completion process for PDE’s (Janet, 1920). There
are a number of ways to construct Janet bases from a given finite basis forL. The following
seems to be the most concise one, which can be viewed either as an extension of Gr¨obner
bases inD to Lm or as a specialization of coherent autoreduced sets (Rosenfeld, 1959;
Boulier et al., 1995) to linear differential polynomials.

Let f1 and f2 be nonzero elements ofLm with respective leading derivativesθ1y and
θ2y, where y ∈ {y1, . . . , ym} and θ1, θ2 ∈ Θ . There existφ1 and φ2 in Θ suchthat
φ1θ1 = φ2θ2 with minimal orders. The∆-polynomialof f1 and f2 is defined to be
∆( f1, f2) = (lc( f2)(φ1 f1) − lc( f1)(φ2 f2)). An autoreduced setA is said to becoherent
if, for every pair f1, f2 in A as described above,∆( f1, f2) can be written as aK-linear
combination of derivatives of elements ofA, in which each derivative has its leader
lower thanφ1θ1y. For the submoduleL there exists aunique Janet basis (up to some
multiplicative scalars ofK) which is a coherent autoreduced set. Such a basis is also called
the reduced Gr¨obner basis forL in the literature.

We may read off lder(L) and pder(L) from a Janet basis forL. If L is of finite rank,
then rank(L) = |pder(L)|. For anideal I ⊂ D with finite rank, the generator of the ideal
I ∩ K[∂i ] in K[∂i ], where 1≤ i ≤ n, can be computed by Janet basis computation and
linear algebra.

3. Hyperexponential solutions of ideals with finite rank

We describe an algorithm to solveProblem H1. Throughout this section, we letI be an
ideal ofD with finite rank. The set of hyperexponential solutions ofI is denoted byH(I ).
For i = 1, . . . , n, let Ii be the idealI ∩K[∂i ] in K[∂i ].
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To illustrate the idea of our algorithm, let us compute rational solutions ofI . First,
compute rational solutions of eachIi . Suppose a basis of rational solutions ofIi is
{r i1, . . . , r imi }, i = 1, . . . , n. Let q be the common denominator of allr i j , where 1≤
j ≤ mi and 1≤ i ≤ n. Thenq is a common denominator of all rational solutions ofI .
In particular, we can writer i j as pi j /q where pi j are polynomials inxi , 1 ≤ j ≤ mi

and 1≤ i ≤ n. Then everyrational solution ofI can be written asp/q, where p is a
polynomial with degree inxi no more thanthe maximum of the degrees ofpi1, . . . , pimi

in xi , for all i with 1 ≤ i ≤ n. Hence, we may findp by solving a linear algebraic system
overQ. Other methods for computing polynomial and rational solutions of an ideal with
finite rank can be found inChyzak(2000) andOaku et al.(2001).

If h ∈ H(I ), then it is a hyperexponential solution ofIi w.r.t. xi . We shall

(1) compute hyperexponential solutions ofIi w.r.t. xi , i = 1, . . . , n,

(2) combine these solutions to recoverH(I ).

The first step is carried out by finding rational solutions (inK) of the Riccati equation
associated with the generator ofIi . It is possible to adapt the classical algorithm (Singer,
1991; Bronstein, 1992) to find these solutions (Li and Schwarz, 2001, Section 4). The
second step hinges on a structure theorem ofH(I ) (Proposition 3.4) and thenotion
of common hyperexponential associates (Section 3.2). It might be possible to find
hyperexponential solutions of one of theIi ’s and then design a back-substitution to get
H(I ). But our investigation in this direction hasbeen unsuccessful so far, because we need
to differentiate integrals w.r.t. parameters, and deal with arbitrary irrational functions.

This section is organized as follows.Section 3.1proves a structure theorem onH(I ).
Section 3.2introduces the notion of common hyperexponential associates.Section 3.3
presents an algorithm for computingH(I ).

3.1. Structure of hyperexponential solutions

For a nonzero elementu ∈ K̃, its logarithmic gradient ((∂1log)u, . . . , (∂nlog)u)

is denoted by (∇ log)u. From the rules for logarithmic derivatives it follows that
(∇ log)(uv) = (∇ log)(u)+ (∇ log)(v) and(∇ log)(u−1) = −(∇ log)(u).

An elementu of K̃ is hyperexponential overK if and only if (∇ log)u belongs toKn.
A vector = (v1, . . . , vn) in Kn is said to becompatibleif ∂i v j = ∂ j vi for all i , j
with 1 ≤ i < j ≤ n. If u is hyperexponential overK, then (∇ log)u is compatible.
Conversely, if is compatible, then any nonzero solution of the ideal(∂1−v1, . . . , ∂n−vn)

is hyperexponential overK. So ahyperexponential element with logarithmic gradientis
also denoted by

exp

(∫
v1 dx1+ · · · + vn dxn

)
. (2)

Note that the notation in (2) denotes hyperexponential elements which may differ from a
nonzero multiplicative constant iñC.

The following technical lemma will be frequently used in the sequel.
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Lemma 3.1. Let nonzero r1, . . . , rn belong tõC(x1, . . . , xn). If

= ((∂1log)r1, . . . , (∂nlog)rn)

is a compatible vector ofKn, then is a logarithmic gradient of an element ofK =
Q(x1, . . . , xn).

Proof. The proof will rely on the following claim. Leti be in{1, . . . , n}. anda in K. If the
operatorb = (∂i − a) has a nonzero solution inF(xi ), whereF is the field consisting of all
∂i -constants, thenb has a nonzero solution inK.

To show the claim, let nonzeros in F(xi ) be a solution ofb, and the denominator ofa be
p ∈ Ki [xi ]. Since every finite pole ofs is a root of p, there exists a positive integerk such
that pk is a multiple of the denominator ofs. Therefore,s can be written as the ratio ofq
andpk, whereq belongs toF[xi ]. Let degxi

q = d and sett = (qdxd
i +· · ·+q0)/pk, where

qd, . . . , q0 are unspecified∂i -constants. Applyingb to t yields a linear system inqd, . . . , q0
with coefficients inKi . This system has a nonzero solution consisting of the coefficients of
q, so the system has anonzero solution inKi . Hence,b has a nonzero solution inK.

For eachi with 1 ≤ i ≤ n, the first-order operatorfi = (∂i − (∂i log)r i ) has a solution
r i in C̃(x1, . . . , xn). Since fi ∈ K[∂i ], it has anonzero solution inK by the claim. Thus,
we may further assume thatr1, . . . , rn belong toK.

We proceed by induction onn. The lemma clearly holds whenn = 1. Assume that the
lemma holds for(n− 1). For eachi with 1 ≤ i ≤ (n− 1),

∂n(∂i log)r i − ∂i (∂nlog)rn = 0

implies that

∂n

(∂i log)r i − (∂i log)rn︸ ︷︷ ︸
ui

 = 0,

so thatui belongs toKn. Sincethe operator∂i−ui has a solutionr i /rn in K, it has a solution
vi in Kn by the claim. Since the compatible vector((∂1log)r1, . . . , (∂n−1log)rn−1) equals

((∂1log)rn, . . . , (∂n−1log)rn)+ ((∂1log)v1, . . . , (∂n−1log)vn−1),

the vector ((∂1log)v1, . . . , (∂n−1log)vn−1) ∈ Kn−1
n is compatible. The induction

hypothesis then implies that there existsg in Kn suchthat

((∂1log)g, . . . , (∂n−1log)g) = ((∂1log)v1, . . . , (∂n−1log)vn−1).

It follows from a direct verification that(∇ log)(rng) is equal to . �

Two compatible vectors are said to beequivalentif their difference is a logarithmic
gradient of some element ofK. Two hyperexponential elements are said to beequivalent
if their logarithmic gradients are equivalent.

Lemma 3.2. Let u andv be hyperexponential overK. Then the following statements are
equivalent.
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(1) u andv are equivalent;
(2) u/v is the product of a constant iñC and a rational function inK.
(3) u andv are linearly dependent over̃C(x1, . . . , xn).

Proof. If the first assertion holds, there isr ∈ K suchthat(∇ log)(r ) is equal to((∇ log)u−
(∇ log)v), and so thefraction u/v is a solution of the ideal(∂1 − (∂1log)r, . . . , ∂n −
(∂nlog)r ). It follows thatu/v = cr for somec ∈ C̃. The second assertion clearly implies
the last. To show that the last implies the first, letu = r v for somer ∈ C̃(x1, . . . , xn). Then
(∇ log)(r ) is equal to((∇ log)(u)−(∇ log)(v)) ∈ Kn. It follows fromLemma 3.1that there
is q in K with (∇ log)(q) = ((∇ log)(u)− (∇ log)(v)), and the lemma follows. �

Next, we characterize mutually inequivalent hyperexponential elements.

Proposition 3.3. Let h1, . . . , hm be hyperexponential elements overK. The elements
h1, . . . , hm are mutually inequivalent if and only if h1, . . . , hm are linearly independent
over C̃(x1, . . . , xn).

Proof. The necessity follows fromLemma 3.2. We prove the sufficiency by induction
onm. If m= 2, then the proposition holds byLemma 3.2. Assume that the result is proved
for lower values ofm. Suppose thath1, . . . , hm are mutually inequivalent but linearly
dependent over̃C(x1, . . . , xn). By a possible rearrangement of indexes, we have

hm = q1h1 + q2h2+ · · · + qm−1hm−1 (3)

for someq1, q2, . . . , qm−1 ∈ C̃(x1, . . . , xn). Sinceh1, h2, . . . , hm−1 are linearly indepen-
dent over̃C(x1, . . . , xn) by the induction hypothesis, we deduce thatq1h1, . . . , qm−1hm−1
are linearly independent over̃C. Then Theorem 1 inKolchin (1973, p. 86) implies that
there exist derivativesθ1, θ2, . . . , θm−1 in Θ suchthat W = det(θi (qj h j )) is nonzero,
where 1≤ i ≤ m− 1 and 1≤ j ≤ m− 1. Since thehi ’s are hyperexponential, there
exist r i j in C̃(x1, . . . , xn) suchthat θi (qj h j ) = r i j h j , for eachi and eachj . Applying
θ1, θ2, . . . , θm−1 to (3) then yields a linear system

r11 r12 · · · r1,m−1

r21 r22 · · · r2,m−1

· · · · · ·
rm−1,1 rm−1,2 · · · rm−1,m−1




h1

h2
...

hm−1

 =


r1mhm

r2mhm
...

rm,m−1hm


whose coefficient matrix(r j i ) is of full rank, because(

∏m
i=1 hi )det(r i j ) = W is nonzero.

Solving this system, we gethi = si hm, wheresi ∈ C̃(x1, . . . , xn). So hi and hm are
equivalent byLemma 3.2, a contradiction. �

To decide if a finite number of hyperexponential elements overK are linearly dependent
overC̃(x1, . . . , xn), we need only to decide if there exist two equivalent elements among
the given hyperexponential elements byProposition 3.3. To decide if two hyperexponential
elementsf andg are equivalent, we need to check if the logarithmic gradient off/g is
a logarithmic gradient of some elements ofK. By Lemma 3.1it suffices to decide if the
rational functionr i = (∂i log)( f/g) is equal to (∂i logqi ) for someqi ∈ K, for i = 1,
. . . , n. It is straightforward to show that suchqi exists if and only if the squarefree partial
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fraction decomposition ofr i w.r.t. xi is in the form
∑

j ki j
(
∂i (pi j )/pi j

)
where theki j ’s

are nonzero integers and thepi j ’s are polynomials inK.

Let P stand for the ringQ[x1, . . . , xn]. A finite set of polynomials inP is said to be
independentover a subfieldF ⊂ K if its elements are linearly independent overF. Let
P be an independent set overQ andg a hyperexponential element overK. We denote by
H(g,P) the set consisting of thenonzero elements in the formcg(

∑
p∈P cp p), wherec is

in C̃ and thecp in Q. Clearly, all elements ofH(g,P) are hyperexponential overK and
equivalent tog. The following proposition describes the structure ofH(I ).

Proposition 3.4. If I is an ideal of D with finite rank d, then there is a finite number
of mutually inequivalent hyperexponential elements g1, . . . , gk and independent sets
P1, . . . , Pk in P overQ s.t.H(I ) = H(g1,P1)∪· · ·∪H(gk,Pk), in which theunion is disjoint.
The sum of|P1|, . . . , |Pk| is not more than d.

Proof. The equivalence relation gives rise to a partition ofH(I ). By Proposition 3.3
there are only finitely many equivalence classes inH(I ). Hence, we have the partition
H(I ) = H1∪· · ·∪Hk, in whichHi stands for an equivalence class. Lethi belong toHi for

i = 1, . . . , k. For every f ∈ Hi there existscf ∈ C̃ andr f ∈ K suchthat f = c f r f hi by
the second assertion ofLemma 3.2. Pick up a maximalQ-linearly independent setQi from
all suchr f . The elements ofQi are alsõC-linearly independent (Kolchin, 1973, pp. 86, 87).
The setQi is finite, for otherwiseHi would contain infinitely manỹC-linearly independent
elements. LetQi = { p1

q , . . . ,
pdi
q }, wherep1, . . . , pdi , q ∈ P, andgi = hi /q. Thengi is

hyperexponential and equivalent tohi . Let Pi = {p1, . . . , pdi }. ThenH(gi , Pi ) = Hi . The
first assertion then follows from the partition ofH(I ). The sum of|P1|, . . . , |Pk| is no
more thand by Proposition 3.3. �

By computing the hyperexponential solutions of the idealI , we mean to compute
mutually inequivalent hyperexponential elementsg1, . . . , gm, and independent sets
P1, . . . , Pk suchthatH(I ) = H(g1,P1) ∪ · · · ∪H(gk,Pk).

3.2. Common hyperexponential associates

Two hyperexponential elements of̃K w.r.t. xi are said to beequivalent w.r.t. xi if the
difference of their logarithmic derivatives w.r.t.xi is a logarithmic derivative of some
element inK w.r.t. xi . For i = 1, . . . , n, we let hi be hyperexponential w.r.t.xi in this
subsection. A hyperexponential elementh over K is called acommon hyperexponential
associateof h1, . . . , hn if h is equivalent tohi w.r.t. xi , for i = 1, . . . , n. In other words,
a common hyperexponential associateh of h1, . . . , hn is a hyperexponential element ofK

suchthat

h1 = c1r1h, . . . , hn = cnrnh (4)

whereci is a∂i -constant andr i belongs toK, i = 1, . . . , n. For simplicity, we shall use the
termcommon associatesinstead ofcommon hyperexponential associatesif no confusion
arises.
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Lemma 3.5. If h1, . . . , hn have a common associate, then there exists a common associate
f of h1, . . . , hn suchthat

h1 = c1 p1 f, . . . , hn = cn pn f, (5)

where ci is a ∂i -constant and pi belongs toP, i = 1, . . . , n. In addition, any two common
associates of h1, . . . , hn are equivalent.

Proof. Let h be a common associate ofh1, . . . , hn satisfying (4). Write r1 =
(p1/q), . . . , rn = (pn/q), where p1, . . . , pn and q belong toP. Then f in (5) can
be chosen ash/q. Let f and g be two common associates ofh1, . . . , hn. By (4),
f = bi si g, wherebi is a ∂i -constant,si belongs toK, andi = 1, . . . , n. It follows that
(∇ log) f − (∇ log)g = ((∂1log)s1, . . . , (∂nlog)sn), which iscompatible.Lemma 3.1then
implies that f andg are equivalent. �

Applying(∂i log) to the equalities in (5), we get
(∂1log)h1 = (∂1log)p1+ (∂1log) f

. . .

(∂nlog)hn = (∂nlog)pn + (∂nlog) f.
(6)

Applying ∂i to the j th equation and∂ j to the i th equation in (6) and using the equality
∂i (∂ j log) f = ∂ j (∂i log) f , we deduce

∂ j (∂i log)pj − ∂i (∂ j log)pi = ∂ j (∂i log)h j − ∂i (∂ j log)hi , (1≤ i ≤ j ≤ n).

Therefore,(p1, . . . , pn) is a polynomial solution of the system

∂ j (∂i log)

(
zj

zi

)
= ∂ j (∂i log)

(
h j

hi

)
, (1 ≤ i ≤ j ≤ n). (7)

Conversely, if (7) has a rational or polynomial solution(p1, . . . , pn), then(∂1log)h1− (∂1log)p1︸ ︷︷ ︸
f1

, . . . , (∂nlog)hn − (∂nlog)pn︸ ︷︷ ︸
fn


is a compatible vector inKn. A direct calculation shows that

f = exp

(∫
f1 dx1+ · · · + fn dxn

)
(8)

is a common associate such that (5) holds. Thus, we have proved

Proposition 3.6. The elements h1, . . . , hn have a common associate if and only if(7) has
a nonzero polynomial solution. If(7) has a nonzero polynomial solution(p1, . . . , pn), then
f given in(8) is a common associate of h1, . . . , hn suchthat (5) holds.

The next corollary indicates a special property of the system (7).

Corollary 3.7. If (7) has two solutions(p1, . . . , pn) and (q1, . . . , qn) in Kn, then there
exists r ∈ K s.t.(∂i log)pi − (∂i log)qi = (∂i log)r , i = 1, . . . , n.
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Proof. Let gi = (∂i log)hi , for all i with 1 ≤ i ≤ n. Proposition 3.6implies that both
H1 = exp(

∫
(g1 − (∂1log)p1) dx1 + · · · + (gn − (∂nlog)pn) dxn) andH2 = exp(

∫
(g1 −

(∂1log)q1) dx1 + · · · + (gn − (∂nlog)qn) dxn) are common associates ofh1, . . . , hn. It
follows fromLemmas 3.2and3.5 that there existc ∈ C̃ andr ∈ K suchthat H1 = cr H2.
Applying (∂i log) to this equality yields the corollary.�

To compute polynomial solutions of (7), we need

Algorithm RationalAntiderivative (Find Rational Antiderivative). Givena1, . . . , ak in
K, where 1≤ k ≤ n, the algorithm finds a nonzeror in K suchthat{∂1r = a1, . . . , ∂kr =
ak} or determinesthat no such solutions exist.

1. [Recursive base]. Ifk = 1, apply the Hermite reduction toa1 w.r.t. x1 to get
q1, r1 ∈ K suchthata1 = ∂1q1 + r1, wherer1 has a squarefree denominator inx1
(Geddes et al., 1992; Bronstein, 1997). If r1 is nonzero, then exit[no such solution
exists].

2. [Recursion]. If RationalAntiderivative (a1, . . . , ak−1) determines that no such
solution exists inK, then exit [no such solution exists]. Otherwise, let a solution
berk−1 and setbk ← (ak − ∂krk−1).

3. [Hermite reduction]. Ifbk is not inQ(xk, xk+1, . . . , xn), then exit [no suchsolution
exists]. Otherwise, apply the Hermite reduction tobk w.r.t. xk to getqk, hk in K such
thatbk = ∂kqk + hk, wherehk has a squarefree denominator inxk. If hk is nonzero,
then exit [no such solution exists]. Otherwise, setr ← rk−1 + qk. �

In step 1 the Hermite reduction w.r.t.x1 enables us to compute a solution of∂1r = f1
in K. Assume that wecan compute a nonzero solutionrk−1 of the system{∂1r =
a1, . . . , ∂k−1r = ak−1} in K. Its rational solutions are in the form

r = rk−1 + qk, whereqk ∈ Q(xk, xk+1, . . . , xn). (9)

If ∂krk−1 = ak then rk−1 is what we seek. Otherwisebk = (ak − ∂krk−1) is
nonzero. Substituting (9) into ∂kr = ak, we get bk = ∂kqk. Hence, bk belongs to
Q(xk, xk+1, . . . , xn) and qk can be computed by the Hermite reduction w.r.t.xk. The
algorithm RationalAntiderivativeis correct.

To describe the next algorithm, we denote byP∗ the setP\{0} and by Ek the set
consisting of the equations in (7) with 1 ≤ i ≤ j ≤ k, where 1≤ k ≤ n.

Algorithm PolynomialRatio (Find a Solution (p1, . . . , pk) of Ek in (P∗)k). Given h1,

. . . , hk, where 1≤ k ≤ n andhi is hyperexponential w.r.t.xi overK, i = 1, . . . , k, the
algorithm finds(p1, . . . , pk), wherepi belongs toP∗, such that Ek holds or determines
that Ek has no polynomial solution.

1. [Recursive base]. Ifk = 1, then return 1.
2. [Recursion]. If PolynomialRatio (h1, . . . , hk−1) finds no polynomial solution, then

exit [Ek has no polynomial solution]. Otherwise, let its output be(p1, . . . , pk−1).
3. [Find a rational solution]. ApplyRationalAntiderivativeto the system

∂1z= ∂1(∂klog)hk − ∂k(∂1log)h1 + ∂k(∂1log)p1,

· · ·
∂k−1z= ∂k−1(∂klog)hk − ∂k(∂k−1log)hk−1 + ∂k(∂k−1log)pk−1.

(10)
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If no rational solution is found, then exit [Ek has no polynomial solution]. Otherwise,
let its output bez.

4. [Partial fraction decomposition]. Writez as

(∂klog)q− (∂klog)p+ g (11)

where p, q ∈ P and g ∈ Q(xk, xk+1, . . . , xn) by squarefree partial fraction
decomposition w.r.t.xk. If (11) cannot hold, then exit [Ek has no polynomial
solution]. Otherwise, return(p1p, . . . , pk−1 p, q). �

To see the correctness of this algorithm, we need to show

• If PolynomialRatio outputs(p1, . . . , pk) ∈ (P∗)k, (p1, . . . , pk) solvesEk.

• If Ek has solutions in(P∗)n, PolynomialRatio produces such a solution.

The algorithm is clearly correct whenk = 1. We proceed by induction onk. Assume
that PolynomialRatio outputs a vector = (p1p, . . . , pk−1 p, q), where p1, . . . , pk−1
are produced by step 3, andp, q by step 4.(p1p, . . . , pk−1 p) solves Ek−1 by the
multiplicative rule of logarithmic differentiation and induction hypothesis. It remains to
verify that (p1p, . . . , pk−1 p, q) solves

∂k(∂i log)zk − ∂i (∂klog)zi = ∂k(∂i log)hk − ∂i (∂klog)hi (1≤ i ≤ k− 1).

For all i with 1 ≤ i ≤ k− 1, we calculate

∂k(∂i log)q − ∂i (∂klog)(ppi ) = ∂i ((∂klog)q − (∂klog)p)− ∂i (∂klog)pi

(11)= ∂i z− ∂k(∂i log)pi
(10)= ∂k(∂i log)hk − ∂i (∂klog)hi .

To show the second assertion, let(s1, . . . , sk) in (P∗)k be a solution ofEk. We proceed
again by induction onk. The second assertion clearly holds fork = 1. Assume that it holds
for (k− 1). Then we get a polynomial solution(p1, . . . , pk−1) in step 2. ByCorollary 3.7
there existsr in K s.t.

(∂i log)pi − (∂i log)si = (∂i log)r i = 1, . . . , k− 1. (12)

For i = 1, . . . , k − 1, we compute

0
(7)= (∂k(∂i log)sk − ∂i (∂klog)si )− (∂k(∂i log)hk − ∂i (∂klog)hi )

= (∂k(∂i log)(rsk)− ∂i (∂klog)(rsi ))− (∂k(∂i log)hk − ∂i (∂klog)hi )
(12)= (∂k(∂i log)(rsk)− ∂i (∂klog)pi )− (∂k(∂i log)hk − ∂i (∂klog)hi ).

It follows that(∂klog)(rsk) is a rational solution of (10). Hence, RationalAntiderivative
returns a rational functionz in the third step. Since

z=
(

∂ksk

sk
+ ∂kr

r

)
+ g whereg ∈ Q(xk, xk+1, . . . , xn),

we get (11). The second assertion holds.
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Example 3.1. Find a common associate ofhi = exp(
∫

ui dxi ), where 1≤ i ≤ 3,

u1 = x1x2
2x3+ 2x2

1x2x3− x2− x1

x2
1(x2+ x1)x2x3

,

u2 = −x1x2x2
3 + 2x1x2

2x3+ x3− x2

(x2− x3)x2
2x1x3

,

andu3 = (3x1x2x3 − 1)/x1x2x2
3. First, PolynomialRatio applies toh1 and yields 1 as a

polynomial solution ofu1 (see step 1 in the algorithm). In step 3, the system (10) becomes
∂1z= ∂1u2−∂2u1 with a rational solution(x2+x1−1)/(x2+x1), whichcan be decomposed
into

(∂2log)1− (∂2log)(x2+ x1)+ 1.

Hence, a polynomial solution ofE2 is (x2+ x1, 1). Now the system (10) becomes

{∂1z= ∂1u3− ∂3(u1− (∂1log)(x2+ x1)), ∂2z= ∂2u3− ∂3u2}
with a rational solution(1− 2x3+ 2x2)/(x2− x3), whichcan be decomposed into

(∂3log)1− (∂3log)(x2− x3)+ 2.

At last, we obtain a polynomial solution((x2 + x1)(x2 − x3), x2 − x3, 1) of E3.
By Proposition 3.6a common associate ofh1, h2 andh3 is

exp

(∫ (
u1− x2− x3

x2+ x1

)
dx1+

(
u2− 1

x2− x3

)
dx2+ u3 dx3

)
.

Find a common associate ofh1, h2 andh4 = exp(
∫

u3 + x1 dx3). The algorithm runs
exactly the same as before until step 3 fork = 2, in which system (10) becomes{

∂1z= ∂1(u3+ x1)− ∂3(u1− (∂1log)(x2+ x1)),

∂2z= ∂2(u3+ x1)− ∂3u2

with a rational solution(1− x1x3+ x1x2− x3+ x2)/(x2− x3), which cannot be written as
a logarithmic derivative of a rational function plus a rational function inx3 alone. Hence,
h1, h2 andh4 have no common associate.

3.3. An algorithm for solvingProblem H1

Let Ii be the ideal(I ∩ K[∂i ]) in K[∂i ], for i = 1, . . . , n. Note that Ii is nontrivial
becauseI is of finite rank.We denote byH(i )(Ii ) the set of all hyperexponential solutions
of Ii w.r.t. xi . Clearly,

H(I ) ⊂
n⋂

i=1

H(i )(Ii ). (13)

Recall that an independent set overKi is a set consisting of finitely many polynomials in
P, whichare linearly independent overKi . ViewingK as an ordinary differential field with
derivative operator∂i and constant fieldKi , we deduce fromProposition 3.4.
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Lemma 3.8. For each i with 1 ≤ i ≤ n, there is a finite number of mutually
inequivalent hyperexponential elements fi,1, . . . , fi,ki w.r.t. xi overK, and a finite number
of independent sets Pi,1, . . . , Pi,ki overKi suchthat

H(i )(Ii ) = H(i )
( fi,1,Pi,1)

⋃
· · ·
⋃

H(i )
( fi,ki ,Pi,ki )

, (14)

whereH(i )
( fi, j Pi, j )

= {cfi, j (
∑

p∈Pi, j
cp p)|cp ∈ Ki , c is a∂i -constant}. Moreover, the union

is disjoint.

For convenience, letFi be the set consisting of fi1, . . . , fiki in (14). If f belongs toH(I ),
then (13) and (14) imply that there exist unique f1 j1 ∈ F1, . . . , fnjn ∈ Fn suchthat

f ∈
n⋂

i=1

H(i )
( fi, ji ,Pi, ji )

. (15)

Thus, f is a common associate off1 j1, . . . , fnjn . We apply the algorithm
PolynomialRatio to each element of(F1 × · · · × Fn) to get all possible inequivalent
common associates of these elements, sayf1, . . . , fk. Every f ∈ H(I ) must be equivalent
to one and only one of thefi ’s. The next lemma tells us how to compute hyperexponential
solutions of I that are equivalent to one of thefi ’s.

Lemma 3.9. Let f1k1, . . . , fnkn belong to F1, . . . , Fn, respectively. Assume that
(p1k1, . . . , pnkn) is a polynomial solution of(7), in which hi is replaced by fiki , i =
1, . . . , n. Let

h = exp

(∫
(∂1log)

(
f1k1

p1k1

)
dx1+ · · · + (∂nlog)

(
f1kn

p1kn

)
dxn

)
(16)

and ei,ki bemaxp∈Pi,ki
(degxi

p), where Piki is specified in(14), for i = 1, . . . , n. If f ∈
H(I ) is equivalent to h, then there exists p∈ P such that f = cph, for some nonzero
c ∈ C̃ and

degxi
p ≤ (ei,ki + degxi

pi,ki ), i = 1, . . . , n.

Proof. The elementh is well-defined and is a common associate off1k1, . . . , fnkn by
Proposition 3.6. Let f ∈ H(I ) be equivalent toh. Then f ∈ H(i )(Ii ) is equivalent tofiki

w.r.t. xi . Thus(∂i log) f = (∂i log) fi,ki +(∂i log)qi,ki , whereqi,ki is aKi -linear combination
of elements ofPi,ki by Lemma 3.8. It follows that

(∂i log) f = (∂i log)
fi,ki

pi,ki

+ (∂i log)(qi,ki pi,ki )

= (∂i log)h+ (∂i log)(qi,ki pi,ki ).

So, thevector

((∂1log)(q1,k1 p1,k1), . . . , (∂nlog)(qn,kn pn,kn)) = (∇ log) f − (∇ log)h (17)

is compatible. ByLemma 3.1there existsp ∈ K suchthat

(∇ log)p = ((∂1log)(q1,k1 p1,k1), . . . , (∂nlog)(qn,kn pn,kn)). (18)
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Thus, p = ci (q1,k1 p1,k1) for some∂i -constantci . Consequently,p is a polynomial inxi

with degree lessthan or equal to(ei,ki + degxi
pi,ki ), for i = 1, . . . , n, andthus p belongs

to P. Theequalities (17) and (18) imply (∇ log)( f/ph) = 0. �
Example 3.2. Consider the idealI ⊂ K[∂1, ∂2] with rank four, generated by

f1 = ∂3
1 +

x2
2 + 6x2

1 − 6x1x2

2x3
1 − x2x2

1

∂2
1,

f2 = ∂3
2 +

3x1− 2x2

x2
1 − x1x2

∂2
2 +

2x1− x2

x3
1 − x2

1x2
∂2.

A Janet basis computation reveals thatI1 = ( f1) in K[∂1] and I2 = ( f2) in K[∂2]. Using
the algorithms mentioned at the beginning ofSection 3or theexpsols function in the
Maple packageDEtools, we find that the hyperexponential solutions ofI1 are

(u1+ u2x1) exp

(∫
0 dx1

)
︸ ︷︷ ︸

α1

, u3 exp

(∫
x2

x2
1

dx1

)
︸ ︷︷ ︸

α2

,

whereu1, u2 andu3 are∂1-constants. The hyperexponential solutions ofI2 are

v1 exp

(∫
0 dx2

)
︸ ︷︷ ︸

β1

, (v2 + v3x2
2) exp

(∫ −1

x1
dx2

)
︸ ︷︷ ︸

β2

,

wherev1, v2 andv3 are∂2-constants. Applying the algorithmPolynomialRatioto (αi , β j )

with i , j = 1, 2, we see thatα1, β1 have a common associatef1 = 1, andα2, β2 have a
common associate

f2 = exp

(∫
x2

x2
1

dx1− 1

x1
dx2

)
= exp

(
−x2

x1

)
;

while neitherα1, β2 nor α2β1 have any common associate.Note that the algorithm
PolynomialRatio (αi , βi ) outputs(1, 1), for i = 1, 2. Lemma 3.9implies that the idealI
can only have hyperexponential solutions in forms:

(c1+ c2x1) f1 or (c3+ c4x2+ c5x2
2) f2,

where c1, . . . , c5 belong toQ. These constants can be determined by substituting the
respective ansatz intof1 and f2. As a matter of fact, the solutions are(c1 + c2x1) and
(c3+ c5x2

2) f2, wherec1c2 �= 0 andc3c5 �= 0. �
Now, we outline an algorithm for solvingProblem H1.

Algorithm HyperexponentialSolutions (Compute Hyperexponential Solutions of an
Ideal with Finite Rank). Given an idealI = (g1, . . . , gs) with finite rank in D, the
algorithm computes all hyperexponential solutions ofI .

1. [Janet basis]. Compute a Janet basisJ for I w.r.t. any term-order.
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2. [Linear algebra]. UseJ to compute a generator ofIi = I ∩K[∂i ], for i = 1, . . . , n.
3. [Solve ODEs]. FindH(i )(Ii ), for i = 1, . . . , n. If one of theH(i )(Ii ) is empty,

then exit [no such solution exists]. Otherwise, writeH(i )(Ii ) as (14) and setFi ←
{ fi,1, . . . , fi,ki }, for i = 1, . . . , n.

4. [Common associate]. Apply the algorithmPolynomialRatio to each vector in
(F1 × · · · × Fn) to construct common associates. If no common associate can be
constructed, exit [no such solution exists]. Otherwise, set the constructed common
associates to bef1, . . . , fk, respectively.

5. [Solution candidates]. ApplyLemma 3.9to each of thef j to construct polynomial
pj with unspecified constants such that any element ofH(I ) can be expressed as
pj f j for some j with 1≤ j ≤ k.

6. [True solutions]. For eachj with 1 ≤ j ≤ k, the system

{g1(pj f j ) = 0, . . . , gs(pj f j ) = 0}
gives rise to alinear homogeneous algebraic systemAj in the coefficients ofpj .
SolveAj to determine all the elements ofH(I ) equivalent tof j . �

Example 3.3. ComputeH(I ), where the rank two idealI is generated by

∂2
1 −

x1

x1− 1
∂1+ 1

x1− 1
, ∂3− 2x1x3+ 1

2x1

x1x3− x3
∂1 + 2x3+ 1

2x1

x1x3− x3
,

∂2 + x1

x2(x1x2− x2)
∂1− x1

x2(x1x2− x2)
.

Step 2 in HyperexponentialSolutionsyields

I1 =
(

∂2
1 −

x1

x1− 1
∂1+ 1

x1− 1

)
,

I2 =
(

∂2
2 +

2x2− 1

x2
2

∂2

)
,

I3 =
(

∂2
3 +

3− 16x2
3

8x2
3 + 2x3

∂3− 8x3+ 6

8x2
3 + 2x3

)
.

Step 3 gives:

H(1)(I1) = H(1)
(x1,{1}) ∪H

(1)
(exp(x1),{1}), H(2)(I2) = H(2)(

exp
(−1

x2

)
,{1}
) ∪H(2)

(1,{1}),

and

H(3)(I3) = H(3)(
1√
x3

,{1}
) ∪H(3)

(exp(2x3),{1}).

Step 4 gives us eight common associates. Step 5 sets up eight solution candidates:

exp

(∫ (
1

x1
dx1− 1

2x3
dx3

))
, exp

(∫
1 dx1+ 1

x2
2

dx2+ 2 dx3

)
,
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exp

(∫ (
1 dx1− 1

2x3
dx3

))
, exp

(∫ (
1 dx1+ 1

x2
2

dx2− 1

2x3
dx3

))
,

exp

(∫ (
1

x1
dx1+ 2 dx3

))
, exp

(∫ (
1

x1
dx1+ 1

x2
2

dx2+ 2 dx3

))
,

exp

(∫
1 dx1+ 2 dx3

)
, exp

(∫ (
1

x1
dx1+ 1

x2
2

dx2− 1

2x3
dx3

))
.

Step 6 produces two genuine solutions: exp(x1+ 2x3) andx1/
√

x3exp(−1/x2).

Example 3.4. ComputeH(I ), where the rank threeideal I is generated by

x1v∂1 − x2v∂2 + x1(2x1x2+ x1x3+ x2
2)∂3− 2x1x2− x1x3+ x2

1,

x1(x1− x3)(2x2− x1+ 2x3)∂3+ (x2+ x3)
2v∂2

2 + 2x1v∂2

+x1(−2x2+ x1− 2x3),

(x2+ x3)
2v∂2∂3+ x1v∂2 + 2x1(x2+ x3)(x1− x3)∂3− 2x1(x2+ x3),

(x2+ x3)
2(x1− x3)v∂2

3 +w∂3 − 2x1x2
2 − 2x2

1x2− 2x1x2x3− x3
1 − x3x2

1,

wherev = x2
1 − x1x3+ x2

2 + 2x2x3+ x2
3 and

w = −2x4
2 − 8x3x3

2 − 12x2
2x2

3 − 8x2x3
3 + 2x1x3

3 + 2x3
1x2

− 3x2
1x2

3 − 4x2
1x2x3− 2x4

3 + x4
1 + 2x1x2x2

3.

Steps 1 and 2 are standard. Step 3 yields

H(1)(I1) = H(1)
(α1,{1}) ∪H

(1)
(α2,{1,x1}), H(2)(I2) = H(2)

(1,{1}) ∪H(2)
(α2,{1,x2}),

and H(3)(I3) = H(3)
(α1,{1}) ∪H

(3)
(α2,{1}),

whereα1 = 1/(x1− x3) andα2 = exp(x1/(x2+ x3)). Step 4 finds two common associates
and step 5 sets up two solution candidates:

c

x1− x3
, exp

(
x1

x2+ x3

)
(c0+ c1x1+ c2x2+ c3x1x2),

wherec, c0, . . . , c3 are constants. The algorithm returns solutions

h1 = c

x1− x3
, h2 = exp

(
x1

x2+ x3

)
(c0+ c3x1x2),

wherec, c0 andc3 are unspecified constants withc �= 0 andc0c3 �= 0.

4. Hyperexponential solutions of submodules with finite rank

Let L be a submodule with finite rank inLm. A solution of L in K̃m is said to be
hyperexponential if it is not , and each of its components is either hyperexponential
or equal to zero. We extend the algorithmHyperexponentialSolutionsin Section 3.3to
compute hyperexponential solutions ofL.
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Let L(k) be the intersection ofL andDyk, for k = 1, . . . , m, which can be computed
by Janet basis computation w.r.t. an elimination ordering. The submoduleL(k) of Dyk is
of finite rank becauseL is. Applying the algorithmHyperexponentialSolutionsto L(k),
we obtain all possible hyperexponential solution candidates foryk, in which there may
be a finite number of unspecified constants. For eachk with 1 ≤ k ≤ m, we substitute
these candidates into a set of generators ofL to obtain a systemof linear homogeneous
equations in these unspecified constants byProposition 3.3. Solve this system and make
sure that there is at least one nonzero component in a solution (vector).

Example 4.1. ComputeH(L) whereL is generated by

(x1x3− x1x2)y1+ (x1x2− 1)∂2y1+ (1− x1x3)∂3y1,

(x2x3− x1x2)y1+ (x1x2− 1)∂1y1+ (1− x2x3)∂3y1,

∂1y2− x2x3y1− x2x3y2, ∂2y2− x1x3y1− x1x3y2,

∂2
3 y1+ (x1x2+ 1)∂3y1+ x1x2y1, ∂3y2− x1x2y1− x1x2y2.

A Janet basis computation yields

L(1) = (∂1y1− x2x3y1, ∂2y1− x1x3y1, ∂3y1− x1x2y1),

L(2) = (x2
2x2

1y2− 2x1x2∂3y2+ ∂2
3 y2, x1∂1y2− x3∂3y2, x2∂2y2− x3∂3y2).

Applying the algorithmHyperexponentialSolutionsto L(1) andL(2), weobtainy1 = c1h
and y2 = (c2 + c3x1x2x3)h, respectively, whereh = exp(x1x2x3) and c1, c2, c3 are
unspecified constants. Substituting the candidates(y1, y2) into a set of generators ofL,
we find thatc1 = c3. Thusy2 = (c2+c1x1x2x3)h. By Proposition 3.4, c4 = c2/c1 belongs
to Q. SoH(L) is equal to the union of{(0, c2h) | c2 ∈ C̃, c2 �= 0} and

{(c1h, (c1c4+ c1x1x2x3)h) | c1 ∈ C̃, c1 �= 0, c4 ∈ Q̄}.

5. Factoring submodules with finite rank

This section presents an algorithm for solvingProblem F. The algorithm hinges on
the algorithm HyperexponentialSolutionsand extends Algorithm F byLi et al. (2002).
As there are several unknown functions, notation and constructions will be more involved.
Nonetheless, the idea alters little. This section is structured as follows.Section 5.1presents
some useful facts.Section 5.2studies quotient systems.Sections 5.3and5.4generalize the
notions of Wronskian and associated systems, respectively. The idea and algorithm for
factorization are given inSections 5.5and5.6, respectively.

5.1. Some useful facts

First, we show how to find rank one factors.

Proposition 5.1. The submodule L has a rank one factor if and only if L has a
hyperexponential solution whose nonzero components are equivalent to each other.
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Proof. If is a hyperexponential solution ofL whosei th componenthi is nonzero, and
the j th component, wherej = 1, . . . , n, and j �= i , is equal tor j hi for somer j ∈ K, then
L has a rank one factor generated by

y1− r1yi , . . . , yi−1 − r i−1yi ,

∂1yi − ((∂1log)hi ))yi , . . . , ∂nyi − ((∂nlog)hi ))yi ,

yi+1 − r i+1yi , . . . , ym − rmyi .

(19)

Conversely, any factor with rank one has only one parametric derivativeyi for somei with
1 ≤ i ≤ m. It follows that the factor can be generated by generators in the form (19). This
factor has a hyperexponential solution

(r1hi , . . . , r i−1hi , hi , r i+1hi , . . . , rmhi ). �

Example 5.1. The submodule given inExample 4.1has two families of rank one factors
(∂1y1 − x3x2y1, ∂2y1 − x1x3y1, ∂3y1 − x1x2y1, y2 − (c4 + x1x2x3)y1), in whichc4 ∈ Q̄,
and(y1, ∂1y2− x3x2y2, ∂2y2− x1x3y2, ∂3y2− x1x2y2).

For adth order linear ode w.r.t.∂1, its kth order right factors have leading derivative∂k
1.

What is lder(F) if F is a factor of L? Thenext lemma tells us that there are only finitely
many choices for lder(F).

Lemma 5.2. If L ⊂ F, then

lder(F) ⊂ (lder(L) ∪ pder(L)) and pder(F) ⊂ pder(L).

Proof. If δ ∈ lder(F) andδ /∈ (lder(L) ∪ pder(L)), thenδ can be reduced by someγ in
lder(L). As L is a subset ofF , γ can be reduced by someξ in lder(F), which isnot equal
to δ. Thusδ can be reduced byξ , contradicting to the fact that lder(F) is autoreduced. The
second assertion follows from the same argument. �

Remark 5.2. The structure of factors ofL can be described by the Jordan–H¨older
theorem. SeeTsarev(2001) andLi et al. (2002) for moredetails.

We use exterior algebra notation to denote determinants. LetE = K̃m. Recall that the
application ofγ = θyi ∈ Γ to a vector in E is the application ofθ to thei th component
of . Thek-fold exterior productλ = γ1 ∧ γ2 ∧ · · · ∧ γk is understood as a mapping from
Ek to K̃:

λ( ) =

∣∣∣∣∣∣∣∣∣
γ1 1 γ1 2 · · · γ1 k

γ2 1 γ2 2 · · · γ2 k
...

... · · · ...

γk 1 γk 2 · · · γk k

∣∣∣∣∣∣∣∣∣ for = ( 1, . . . , k) ∈ Ek.

For example, letγ1 = ∂1y1, γ2 = ∂2
2 y3, 1 = (z11, z12, z13) and 2 = (z21, z22, z23), where

thezi j belong toK̃. Then

(γ1 ∧ γ2)( 1, 2) =
∣∣∣∣ (∂1y1) 1 (∂1y1) 2

(∂2
2 y3) 1 (∂2

2 y3) 2

∣∣∣∣ = ∣∣∣∣ ∂1z11 ∂1z21

∂2
2z13 ∂2

2z23

∣∣∣∣ .
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Besides being multi-linear and anti-symmetric, we also have

∂i (aλ) = (∂i (a))λ+ a
k∑

j=1

(γ1 ∧ · · · ∧ (∂i γ j ) ∧ · · · ∧ γk), (20)

where a ∈ K, i = 1, . . . , n. We regard anyK-linear combination of k-fold exterior
products of elements ofΓ as a multi-linear function fromEk to K̃. Clearly, a derivation
operator can be applied to such a combination. For a subsetS of Γ , we denote by
Λk(S) the K-linear space generated by all the k-fold exterior products of the elements
of S. The K-linear spaceΛk(Γ ) is closed underΘ . For everyλ ∈ Λk(Γ ), thereexists
λL ∈ Λk (pder(L)) s.t.

λ( 1, . . . , k) = λL( 1, . . . , k) for 1, . . . , k ∈ sol(L). (21)

The exterior expressionλL can be computed by replacing each derivative appearing inλ

by its normal form w.r.t. the Janet basis forL. Eq.(21) is crucial in the rest of this paper.

5.2. Quotients

A factor F of L helps us to find a subspace of sol(L). Can we useF to describe all
the solutions ofL? An answer is to use thequotient ofL w.r.t. F , which is introduced by
Tsarev(2001) and refined byLi et al. (2002) for the case in whichn = 2 andm = 1. The
general construction given below is similar.

Let F = (F1, . . . , Fq) be a factor ofL = (L1, . . . , L p). Assume that{F1, . . . , Fq} be
the reduced Janet (Gr¨obner) basis forF . Then, for eachi with 1 ≤ i ≤ p,

Li =
q∑

j=1

Qij (Fj ), for someQij ∈ D with 1 ≤ i ≤ p and 1≤ j ≤ q, (22)

whereQij (Fj ) means the application ofQij to Fj . Since{F1, . . . , Fq} is a Janet basis, all
∆-polynomials(

δa(Fa)

fa
− δb(Fb)

fb

)
=

q∑
j=1

Pabj
(
Fj
)
, for somePabj ∈ D, (23)

whereδa, δb are the derivatives to form the∆-polynomial ofFa andFb, and fa, fb are the
respective leading coefficients. Letu1, . . . , uq be differential indeterminates overK and
denote byUq the submodule generated byu1, . . . , uq. Thequotientof L w.r.t. F and w.r.t.
the term-order≺ is defined to be the submodule inUq generated by

Q = {Qi , Tab | 1≤ i ≤ p, 1 ≤ a < b ≤ q} ⊂
q∑

j=1

Du j ,

where

Qi =
q∑

j=1

Qij (u j ), Tab =
(

δa(ua)

fa
− δb(ub)

fb

)
−

q∑
j=1

Pabj(u j ).
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Proposition 5.3. Let = (y1, . . . , ym) and let G( , u1, . . . , uq) denote the linear
differential system{F1( ) = u1, . . . , Fq( ) = uq}. Then we have

(1) if (v1, . . . , vq) is in sol(Q), then there exists 0 in E s.t.( 0, v1, . . . , vq) is in sol(G),
so that 0 is in sol(L);

(2) if 0 ∈ sol(L), then(F1( 0), . . . , Fq( 0)) ∈ sol(Q);

(3) dim sol(Q)+ dim sol(F) = dim sol(L).

Proof. We begin to prove the first assertion. LetF be a factor of rankk and(v1, . . . , vq)

belongs to sol(Q). RegardG( ) = G( , v1, . . . , vq) as a differential system in
y1, . . . , ym. Its integrability conditions, i.e.∆-polynomialsTab(v1, . . . , vq) (1 ≤ a < b ≤
q), vanish, since alltheTab are in Q. In other words,{F1( ) − v1, . . . , Fq( ) − vq} is
a linear coherent autoreduced set. Hence,G( ) has a solution 0 in E. It follows from
(22) that 0 ∈ sol(L). The second assertion is direct from (22) and (23).

To prove the last assertion, we recall thatd = dim sol(L). Let h be the dimension of
sol(Q) over C̃, and 1, . . . , k, 1, . . . , d−k form a basis of sol(L), in which 1, . . . , k

are in sol(F). Then the vectors i = (F1( i ), . . . , Fq( i )), where 1≤ i ≤ (d − k), are
nontrivial solutions ofQ by the second assertion. If1, . . . , d−k areC̃-linearly dependent,
then a nontrivial̃C-linear combination of the i is a solution of all theFi , a contradiction to
the selection of the i . Thus,h ≥ (d− k). Fornonzero ∈ sol(Q), there is a solution 0
of G( , ) by the first assertion. Since 0 ∈ sol(L), it can be expressed as a nontrivial
C̃-linear combination of the j and i . Applying eachFl to the linear combination, we see
that is aC̃-linear combination of 1, . . . , d−k. Consequently, we geth ≤ (d − k). �

Example 5.3. Let us consider the submoduleL given inExample 4.1. Example 5.1shows
thatL has a factorF generated by

f1 = ∂1y2− x2x3y2, f2 = ∂2y2− x1x3y2,

f3 = ∂3y2− x1x3y2, f4 = y1.

A quotient Q of L and F is generated by nine elements, six of which correspond to
the reduction of generators ofL by the f ’s (see (22)), and three of which correspond to
∆-polynomials among thef ’s (see (23)). Using these nine elements, we compute a Janet
basis to getQ equal to

(u1− x2x3u4, u2− x1x3u4, u3 − x1x2u4,

∂1u4− x2x3u4, ∂2u4− x1x3u4, ∂3u4− x1x2u4).

It has a solution (x2x3h, x1x3h, x1x2h, h), whereh = exp(x1x2x3). The first assertion of
Proposition 5.3prompts us to form the systemG equal to

{∂1u02− x2x3u02= x2x3h, ∂2u02− x1x3u02= x1x3h,

∂3u02− x1x2u02 = x1x2h, u01 = h}.
By variation of parameters we find that(h, x1x2x3h) solvesG. Hence, it is a solution ofL
by Proposition 5.3. A basis for sol(L) is {(0, h), (h, x1x2x3h)}.
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5.3. Wronskian representations

A key idea in the Beke–Schlesinger algorithm is to look for right factors whose
coefficients are Wronskian-like determinants. To use this idea, we extend the notion of
Wronskians. LetF be a submodule with finite rankk. The reduced (monic) Janet basis
for F consists of{F1, . . . , Fp}. Let lder(F) = {γ1, . . . , γp} and pder(F) = {ξ1, . . . , ξk},
whereξi ≺ ξ j for 1≤ i < j ≤ k.

We call the elementωF = (ξ1 ∧ · · · ∧ ξk) the Wronskian operatorof F (w.r.t. the
term order≺). It follows from (21) andΛk(pder(F)) = {r ωF | r ∈ K} that, for every
λ ∈ Λk(Γ ), thereexists rλ ∈ K suchthat

λ( 1, . . . , k) = rλωF ( 1, . . . , k) for 1, . . . , k ∈ sol(F). (24)

Lemma 5.4. For all 1, . . . , k ∈ sol(F), 1, . . . , k are C̃-linearly independent if and
only if ωF ( 1, . . . , k) �= 0. Moreover, let 1, . . . , k form a basis of sol(F) and denote
( 1, . . . , k) by , (y1, . . . , ym) by . Then

(ωF ∧ γi )( , ) = ωF ( )Fi , i = 1, . . . , p.

Proof. If 1, . . . , k are C̃-linearly independent, Theorem 1 inKolchin (1973, p. 86)
implies that there existsλ in Λk(Γ ) s.t.λ( 1, . . . , k) �= 0. The first assertion then follows
from (24). The converse is true by the same theorem. Expanding(ωF∧γi )( , ) according
to the last column, we have

(ωF ∧ γi )( , ) = ωF ( )γi +
k∑

j=1

(−1)k+ j+1(η j ∧ γi )( )︸ ︷︷ ︸
wi j

ξ j , (25)

whereη j = ξ1∧ · · · ∧ ξ j−1∧ ξ j+1∧ · · · ∧ ξk. Since(ωF ∧ γi )( , ) vanisheson sol(F),
it can be reduced to zero by{F1, . . . , Fp}. But the right-hand side of (25) can only be
reduced byFi once. The second assertion is proved.�

Wecall {(ωF ∧γ1)( , ), . . . , (ωF ∧γp)( , )} aWronskian representationof F . Any
two Wronskian representations can only differ by a multiplicative constant inC̃, because
any two sets of fundamental solutions ofF can be transformed from one to the other by a
matrix overC̃. Note thatwi j = 0 if γi ≺ ξ j , because of the second assertion ofLemma 5.4.

Example 5.4. Let lder(F) = {y1, ∂1y2, ∂2y2, ∂
2
3 y2}. Then pder(F) = {y2, ∂3y2}. The

Wronskian operator isωF = (y2 ∧ (∂3y2)) and the representation is

{W1 = ωF ( )y1− (y2 ∧ y1)( )(∂3y2)+ ((∂3y2) ∧ y1)y2,

W2 = ωF ( )∂1y2− (y2 ∧ (∂1y2))( )(∂3y2)+ ((∂3y2) ∧ (∂1y2))y2,

W3 = ωF ( )∂2y2− (y2 ∧ (∂2y2))( )(∂3y2)+ ((∂3y2) ∧ (∂1y2))y2,

W4 = ωF ( )∂2
3 y2− (y2 ∧ (∂2

3 y2))( )(∂3y2)+ ((∂3y2) ∧ (∂2
3 y2))y2}.

The next proposition implies that thewi j in (25) ishyperexponential.
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Proposition 5.5. Let F be a submodule of rank k inLm, and = ( 1, . . . , k), where
the i form a basis ofsol(F). ThenωF ( ) is hyperexponential overK. Moreover, for all
λ ∈ Λk(Γ ), λ( ) is either zero or hyperexponential.

Proof. Lemma 5.4implies thatωF ( ) is nonzero. It follows from (24) that the logarithmic
derivative ofωF ( ) w.r.t. any xi belongs toK. Hence, ωF ( ) is hyperexponential. Any
nonzeroλ( ) is then hyperexponential by (24). �

5.4. Associated systems

We shall generalize the notion of associated equations for factoring linear ODEs. As in
the previous sections, letk be an integer with 1≤ k < d. We regard every element of
Λk(Γ ) as a function on sol(L)k. Two elements ofΛk(Γ ) are said to beequivalentif they
are identical (as functions) on sol(L)k. For anelementλ of Λk(Γ ), its equivalence class
is denoted byλ̄. It is easy to verify that the equivalence relation is compatible with linear
operations and differentiations onΛk(Γ ). TheK-linear space consisting of the equivalence
classes is called thekth Beke spacerelative to L, anddenoted byBk when L is clear
from the context. From (21) it follows that each equivalence class contains an element
of Λk(pder(L)). Consequently,Bk can beK-linearly generated by the elements in the
form (η1 ∧ η2 ∧ · · · ∧ ηk), where theηi belong to pder(L) andηi ≺ η j for all i , j with
1 ≤ i < j ≤ k. These elements are calledcanonical generatorsof Bk. They are not
necessarilyK-linearly independent.

Lemma 5.6. The kth Beke space Bk is of dimension less than or equal to
(d

k

)
and closed

under differentiation.

Example 5.5. Let pder(L) = {y1, y2, ∂3y2}. The canonical generators of the second
Beke’sspaceB2 areb1 = (y1 ∧ y2), b2 = (y1 ∧ (∂3y2)), b3 = (y2 ∧ (∂3y2)).

Sete = (dk). For anelementλ̄ of Bk, the ideal consisting of all annihilators of̄λ in D

is denoted by ann(λ̄). A finite subsetof ann(λ̄) with finite-dimensional solution space is
called asystem associated with̄λ. The following method computes an associated system
by linear algebra and differential reduction.Lemma 5.6implies thatλ̄, ∂i λ̄, . . ., ∂e

i λ̄ are
linearly dependent overK. Suppose thatpi is a smallest nonnegative integer such that
∂

pi
i λ̄+∑pi−1

j=0 fi j ∂
j
i λ̄ = 0, where fi,pi−1, . . . , fi0 ∈ K. We find the ideal generated by∂

pi
i +

pi−1∑
j=0

fi j ∂
j
i | i = 1, . . . , n

 (26)

annihilatingλ̄. The solution space of the ideal is of finite dimension, because its parametric
derivatives are inDλ = {∂ i1

1 · · · ∂ in
n | 0≤ i j ≤ pj −1, 1 ≤ j ≤ n}. Hence, (26) is a system

associated with̄λ. Considering all possibleK-linear combinations of(e+ 1) elements of
Dλ, we mayobtain an associated system withe-dimensional solution space (see Lemma 1
in Tsarev, 2001). We may also consider linear relations among mixed derivatives ofλ̄ to
get associated systems with lower-dimensional solution space.
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To factor submodules with finite rank, we need systems associated with the canonical
generators. The method for computing these associated equations given inBronstein
(1994) can be directly applied in the general case.

Example 5.6. Consider the rank three submoduleL generated by

L1 = x2
1x2(∂1y1)+ x3x2

1x2
2y2− (∂3y3)x3x2x1− (∂3y3)+ x1x2y1+ y2x1x2,

L2 = x1x2
2(∂2y1)+ x3x2

1x2
2y2− (∂3y3)x3x2x1− (∂3y3)+ x1x2y1+ y2x1x2,

L3 = (∂3y1)+ y2x1x2− (∂3y3), L4 = (∂2
3 y3)+ x2

1x2
2y2− 2x1x2(∂3y3),

L5 = (∂1y2)− (∂3y3)x3, L6 = x2(∂2y2)− (∂3y3)x3.

The set{L1, . . . , L6} is a reduced Janet basis under the lexicographical term-order defined
by y1 < y2 < y3 and∂1 < ∂2 < ∂3. Thus,

lder(F) = {∂1y1, ∂2y2, ∂3y3, ∂
2
3 y2, ∂2y2, ∂1y2}, and pder(F) = {y2, y1, ∂3y2}.

The canonical generators ofB2 areb1, b2 andb3 as given inExample 5.5. By linear algebra
and differentiation, we find idealsI1, I2, I3 annihilatingb1, b2 andb3, respectively, where
I1 = (∂1− 2t+1

x1
, ∂2 − 2t+1

x2
, ∂3 − 2x1x2),

I2 =
(
−2x2

2x2
3(t2 − 6)

x1(t + 2)
+ t (−18+ 4t + 5t2)

x2
1(t + 2)

∂1

− 2(3t − 3+ 2t2)

x1(t + 2)
∂2

1 + ∂3
1,
−2t (t2− 6)

x3
2(t + 2)

+ t (−18+ 4t + 5t2)

x2
2(t + 2)

∂2

− 2(3t − 3+ 2t2)

x2(t + 2)
∂2

2 + ∂3
2,−2x3

1x3
2 + 5x2

1x2
2∂3− 4x1x2∂

2
3 + ∂3

3

)
,

and

I3 =
(
−t3(2t + 5)

x3
1(t + 2)

+ t2(5t + 12)

x2
1(t + 2)

∂1− t (4t + 9)

x1(t + 2)
∂2

1 + ∂3
1,
−t3(2t + 5)

x3
2(t + 2)

+ t2(5t + 12)

x2
2(t + 2)

∂2 − t (4t + 9)

x2(t + 2)
∂2

2 + ∂3
2,−2x3

1x3
2 + 5x2

1x2
2∂3 − 4x1x2∂

2
3 + ∂3

3

)
,

in which t = x1x2x3.

5.5. Sketch of the factorization algorithm

Before presenting our factorization algorithm in detail, we describe it informally by
examples. Assume that we look for a rankk factor F ⊂ Lm of L. Let the vector
( 1, . . . , k) where 1, 2, . . . , k form a fundamental system of solutions ofF .

First, we enumerate all possible leading derivatives ofF by Lemma 5.2.

Example 5.7. The submoduleL given inExample 5.6might have rank two factors whose
leading derivatives are

{y1, ∂1y2, ∂2y2, ∂
2
3 y3} or {∂1y2, ∂2y2, ∂3y3, ∂1y1, ∂2y1, ∂3y1}.
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Second,for a given lder(F), we compute candidates for the Wronskian operatorωF ( )

by finding the hyperexponential solutions of one of its associated systems. If no
hyperexponential solution is found, then the factor with the leading derivatives lder(F)

does not exist byProposition 5.5.

Example 5.8. Find a factorF of L with lder(F) = {y1, ∂1y2, ∂2y2, ∂
2
3 y3}. The Wronskian

operator ofF is ωF = y2 ∧ (∂3y2). An ideal annihilatingωF is I1 in Example 5.6.
The algorithmHyperexponentialSolutionsfinds thatωF ( ) can only bec0x1x2h2, where
h = exp(x1x2x3) andc0 is a constant.

Third, we compute all candidates for canonical generators equivalent to a given
Wronskian candidate, because (24) implies that all candidates for canonical generators are
hyperexponential and equivalent to the Wronskian candidate. If the Wronskian candidate
is equivalent toh, then candidates for a canonical generatorb can be expressed asrh where
r belongs toK. Substituting rh into a system associated withb, we obtain an ideal with
finite rank. We areonly interested in its rational solutions.

Example 5.9. Besides the Wronskian operatorωF , two other canonical generators of the
second Beke space areb2 = y2 ∧ y1 andb3 = (∂3y2) ∧ y1, b2( ) is annihilated byI2,
b3( ) by I3, as described inExample 5.6. The hyperexponential solutions ofI2 (resp.I3)
equivalent toh2 arec1h2 (resp.c2x1x2h), wherec1 andc2 are constants.

Fourth, we form all the Wronskian representations forF w.r.t. a given candidate for the
Wronskian operator. This is possible because the coefficientswi j in (25) are K-linear
combinations of thebi ( ) which can beobtained by the reduction w.r.t.L.

Example 5.10. The Wronskian representation ofF is given in Example 5.4. All its
coefficients areK-linear combinations ofωF ( ), b2( ) andb3( ). These combinations can
be found by the reduction of an elementB2 by L. The Wronskian representation ofF is

{x1x2y1− c1(∂3y2)+ x1x2c2y2, x1x2(∂1y2)− x3x2(∂3y2),

x1x2(∂
2
3 y3)− 2x2

1x2
2(∂3y2)+ x3

1x3
2y2, x1x2(∂2y2)− x3x1(∂3y2)}. (27)

Fifth, the monic associateU of a candidate for the Wronskian representation has rational
coefficients. If the monic associate is a factor ofL with rankk, thenU is a reduced Janet
basis and each element ofL can be reduced to zero byU . These two constraints lead to a
system of algebraic equations in the unspecified constants appearing inU . Solving these
algebraic equations yields factors that we seek.

Example 5.11. Decide the constants in (27) by assuming that the monic associate of
(27) is a Janet basis and thatL is contained inF . We get a factor F generated by
y1 − 1/x1x2(∂3y2) + y2, (∂1y2) − x3/x1(∂3y2), (∂2y2) − x3/x2(∂3y2), and (∂2

3 y3) −
2x1x2(∂3y2)+ x2

1x2
2y2.

5.6. Factorization algorithm

For simplicity, we describe an algorithm for finding factorsF of L under the assumption
that lder(F) is given. It is easy to adjust the algorithm to compute all factors ofL by
Lemma 5.2.
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FactorWithSpecifiedLeaders (Compute Factors whose Leaders are given). Given a fi-
nite basis for a submoduleL of finite rank and an autoreduced set∆ in the union of lder(L)

and pder(L), the algorithm computes all proper factorsF of L with lder(F) = ∆.

1. [Parametric derivatives]. Find∆− ⊂ pder(L) consisting of all derivatives not
divisible by any elements of∆. If |∆−| = d, returnL. Otherwise, setk = |∆−|
ande= (dk).

2. [Candidates for the Wronskian]. Find a systemA1 associated withωF , and
compute hyperexponential solutions ofA1 by HyperexponentialSolutions. If no
hyperexponential solution is found, exit [no such factors exist]. Otherwise, organize
the solutions as equivalence classes:

{h11= p11 f11, . . . , h1t = p1t f1t }
where thef1i are hyperexponential overK, and thep1i are polynomials inx1, . . . , xn

whose coefficients are elements ofQ̄ and unspecified constants.
3. [Candidates for other canonical generators]. Construct the systemsA2, . . . , Ae

associated with other canonical generators, and compute their hyperexponential
solutionsequivalent to somef1i (1 ≤ i ≤ t). For j = 2, . . . , e, seth j i to be the
hyperexponential solution ofAj equivalent to f1i if such a solution exists, else set
h j i to be zero. Let

H = {(h11, h21, . . . , he1), . . . , (h1t , h2k, . . . , het)}
where theh1i are obtained from step 2, and theh j i with j > 1 are either zero or
hyperexponential elements equivalent toh1i .

4. [Candidates for factors]. Construct the Wronskian representation defined by∆.
Construct the matrix transforming the canonical generators to the Wronskian
coefficients. Use this matrix and the elements ofH to get all rational monic
associates{F1, . . . , F|∆|} of the candidates for factors.

5. [Select true factors]. Check if eachFi is reduced Janet basis and ifFi contains
L. Solve algebraic equations in unspecified constants when necessary. Return the
factors.

A few words need to be said aboutFactorWithSpecifiedLeaders. The firststep isclear.
The second step is a direct application of the algorithmHyperexponentialSolutions. If no
hyperexponential solution is found, then factors with leading derivatives∆ do not exist
by Proposition 5.5. In the third step, (24) implies that we need only hyperexponential
solutionsequivalent to someh1i . Sincethese solutions belong to one equivalence class,
all of them can be expressed asqi h1i , whereqi is a rational function whose coefficients
are elements of̄Q and unspecified constants. Thus,H contains at mostt elements. Finding
these solutions amounts to computing rational solutions of some ideals with finite rank,
which iseasier than computing all hyperexponential solutions of other associated systems.
This technique is introduced byBronstein(1994) for theODE case, and is extended to the
PDE case byTsarev(2001). In the fourth step, we express the Wronskian coefficients as
K-linear combinations of the canonical generators by differential reduction w.r.t.L. In
the last step there may arise an algebraic system inunspecified constants. So an algebraic
equation solver is required.
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Example 5.12. Let us find factorsG of L (in Example 5.6) whose leading derivatives are
{∂1y2, ∂2y2, ∂3y3, ∂1y1, ∂2y1, ∂3y1}. Sincepder(G) = {y2, y1}, the Wronskian operator
ωG is equal tob2 = y2 ∧ y1. The algorithm HyperexponentialSolutionsfindsb2( ) can
only beβ21 equal to

(c1+ c2x3+ c3x1x2+ c4x1x2x3+ c5x1+ c6x1x3+ c7x2+ c8x2x3)
h

x1x2

or β22 = c0h2, whereh = exp(x1x2x3) and thec’s are constants. Other two canonical
generators ofB2 are b1 = y2 ∧ (∂3y2) and b3 = (∂3y2) ∧ y1. The hyperexponential
solutions of I1 andI3 equivalent toβ21 are 0 and

β31 = h(c9+ c10x3+ x1x2c11+ x1x2c12x3

+ x1c13+ x1c14x3+ x2c15+ x2c16x3).

The respective hyperexponential solutions ofI1 and I3 equivalent toβ22 are

β12 = c0x1x2h2 and β32= c1x1x2h2.

The Wronskian representation forG by definition is

WG = {b2( )(∂1y1)− y2 ∧ (∂1y1)( )y1+ y1 ∧ (∂1y1)( )y2, b2( )(∂2y1)

− y2 ∧ (∂2y1)( )y1+ y1 ∧ (∂2y2)( )y2, b2( )(∂3y1)− y2 ∧ (∂3y1)( )y1

+ y1 ∧ (∂3y1)( )y2, b2( )(∂1y2)− y1 ∧ (∂1y2)( )y2, b2( )(∂2y2)

− y1 ∧ (∂2y2)( )y2, b2( )(∂3y2)− y1 ∧ (∂3y2)( )y2}.
Note that

y2 ∧ (∂1y2) = y2 ∧ (∂2y2) = y2 ∧ (∂3y2) = 0

since∂3y2 < ∂2y2 < ∂1y2 < y1. Hence,b1( ) = 0. Consequentlyβ12 = 0. We have two
candidates for the canonical generators, which are

(b1, b2, b3) = (0, β21, β31), (b1, b2, b3) = (0, β22, β32).

The first candidate leads to a factor

(x1s(∂1y1)+ sy1− c4(t + 1)y2, x2s(∂2y1)+ sy1+ c4(t + 1)y2,

s(∂3y1)− c4x1x2y2, s(∂1y2)− c4x2x3ty2− c9x2x3y2,

s(∂2y2)− c4x1x3ty2− c9x1x3y2, s(∂3y2)− c4x1x2ty2− c9x1x2y2),

wheret = x1x2x3 ands = (t − 1)c4+ c9. The second leads to a factor which is a special
instance of the first (c4 = 0, c9 = 1).

The reader is referred toLi et al. (2002) for examples on factorization inD.

6. Concluding remarks

The results of this article are a first step toward generalizing computer algebra
techniques for solving linear ODEs to PDE’s. The algorithmHyperexponentialSolutions
generalizes the algorithm for computing hyperexponential solutions of linear ODEs.



470 Z. Li et al. / Journal of Symbolic Computation 36 (2003) 443–471

The algorithm FactorWithSpecifiedLeadersgeneralizes the Beke–Schlesinger algorithm
for factoring linear ODEs. The notions of factors and quotients enable us to reduce the rank
of a D-finite system.

Based on the Maple packagesOre algebra andDEtools, a preliminary implemen-
tation of the algorithmHyperexponentialSolutionshas been made. The factorization
algorithm for ideals inQ̄(x1, x2)[∂1, ∂2] has been implemented in the ALLTYPES
system ofSchwarz(1998). Yet, it is challenging to have an efficient factorizer forD-
finite systems with rational function coefficients. To this end, we would like to have
efficient implementations for finding elimination idealsIi in Section 3, and computing
the solutions of Ii in K. We will study how to avoid generating too many candidates
for hyperexponential solutions inHyperexponentialSolutionsand how to constructA1
in step 2 of FactorWithSpecifiedLeaderswith lower rank so that we may have fewer
candidates for factors in step 4. To factor aD-finite system, we would have to enumerate
all possible sets of leading derivatives of a potential factor. The number of these sets may
be an exponential function in rank. Would there be a fast way to decide if a set of leading
derivatives will not lead to any true factor? Would there be a fast way to decide if an ideal
with finite rank has no hyperexponential solutions?
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