Condensed Matter > Statistical Mechanics

Simulating rare events in dynamical processes

Cristian Giardina, Jorge Kurchan, Vivien Lecomte, Julien Tailleur (Submitted on 24 Jun 2011 (v1), last revised 21 Sep 2011 (this version, v2))

Atypical, rare trajectories of dynamical systems are important: they are often the paths for chemical reactions, the haven of (relative) stability of planetary systems, the rogue waves that are detected in oil platforms, the structures that are responsible for intermittency in a turbulent liquid, the active regions that allow a supercooled liquid to flow... Simulating them in an efficient, accelerated way, is in fact quite simple.
In this paper we review a computational technique to study such rare events in both stochastic and Hamiltonian systems. The method is based on the evolution of a family of copies of the system which are replicated or killed in such a way as to favor the realization of the atypical trajectories. We illustrate this with various examples.

Subjects: \quad Statistical Mechanics (cond-mat.stat-mech); Mathematical Physics (math-ph); Probability (math.PR); Chaotic Dynamics (nlin.CD)
Journal reference: J. Stat. Phys. 145, 787 (2011)
DOI: $\quad 10.1007 /$ s10955-011-0350-4
Cite as: arXiv:1106.4929 [cond-mat.stat-mech] (or arXiv:1106.4929v2 [cond-mat.stat-mech] for this version)

Submission history

From: Julien Tailleur [view email]
[v1] Fri, 24 Jun 2011 09:59:25 GMT (2331kb,D)
[v2] Wed, 21 Sep 2011 12:09:36 GMT (2334kb,D)
Which authors of this paper are endorsers?

Download:

- PDF
- Other formats

Current browse context: cond-mat.stat-mech
< prev | next >
new | recent | 1106
Change to browse by:
cond-mat
math
math-ph
math.PR
nlin
nlin.CD
References \& Citations

- NASA ADS

Bookmark (what is this?)

Link back to: arXiv, form interface, contact.

