

Cornell University <u>Library</u>

arXiv.org > cond-mat > arXiv:1106.4929

Condensed Matter > Statistical Mechanics

dynamical processes

accelerated way, is in fact quite simple.

this with various examples.

Simulating rare events in

Search or Article-id

All papers 🚽 Go!

(Help | Advanced search)

Download:

• PDF

• Other formats

Current browse context: cond-mat.stat-mech

< prev | next >

new | recent | 1106

Change to browse by:

cond-mat math math-ph math.PR nlin nlin.CD

References & Citations

NASA ADS

Bookmark(what is this?)

📄 🕸 X 💀 🖬 🖬 📲 🏭 💇

Subjects:	Statistical Mechanics (cond-mat.stat-mech) ; Mathematical Physics (math-ph); Probability (math.PR);
lournal reference:	Chaotic Dynamics (nlin.CD) J. Stat. Phys. 145, 787 (2011)
DOI:	10.1007/s10955-011-0350-4
Cite as:	arXiv:1106.4929 [cond-mat.stat-mech]
One do.	(or arXiv:1106.4929v2 [cond-mat.stat-mech] for this
	version)

Cristian Giardina, Jorge Kurchan, Vivien Lecomte, Julien Tailleur

(Submitted on 24 Jun 2011 (v1), last revised 21 Sep 2011 (this version, v2))

Atypical, rare trajectories of dynamical systems are important: they are often

the paths for chemical reactions, the haven of (relative) stability of planetary

systems, the roque waves that are detected in oil platforms, the structures

that allow a supercooled liquid to flow ... Simulating them in an efficient,

both stochastic and Hamiltonian systems. The method is based on the evolution of a family of copies of the system which are replicated or killed in

that are responsible for intermittency in a turbulent liquid, the active regions

In this paper we review a computational technique to study such rare events in

such a way as to favor the realization of the atypical trajectories. We illustrate

Submission history

From: Julien Tailleur [view email] [v1] Fri, 24 Jun 2011 09:59:25 GMT (2331kb,D) [v2] Wed, 21 Sep 2011 12:09:36 GMT (2334kb,D)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.