Physics > Classical Physics

Practical use of variational principles for modeling water waves

Didier Clamond (JAD), Denys Dutykh (LAMA)

(Submitted on 16 Feb 2010)

This paper describes a method for deriving approximate equations for water waves. The method is based on a `relaxed' variational principle, i.e., on a Lagrangian involving as many variables as possible. This formulation is particularly suitable for the construction of approximate water wave models, since it allows more freedom while preserving the variational structure. The advantages of this relaxed formulation are illustrated with various examples in shallow and deep waters, as well as arbitrary depths. Using subordinate constraints (e.g., irrotationality and free surface impermeability) in various combinations, several model equations are derived, some being well-known, other being new. The models obtained are studied analytically and exact travelling wave solutions are constructed when possible.

Comments: 29 pages, 50 references. Other author's papers can be downloaded at this http URL
Subjects: Classical Physics (physics.class-ph); Analysis of PDEs (math.AP); Pattern Formation and Solitons (nlin.PS); Exactly Solvable and Integrable Systems (nlin.SI)
Cite as: arXiv:1002.3019v1 [physics.class-ph]

Submission history

From: Denys Dutykh [view email] [via CCSD proxy]
[v1] Tue, 16 Feb 2010 13:09:44 GMT (40kb)

Download:

- PDF
- PostScript
- Other formats

Current browse context:
physics.class-ph
< prev | next >
new | recent | 1002
Change to browse by:
math
math.AP
nlin
nlin.PS
nlin.SI
physics

References \& Citations

- CiteBase

Bookmark (what is this?)

x CiteULike logo

Connotea logo

BibSonomy logo

Mendeley logo

Facebook logo
del.icio.us logo

Digg logo
Reddit logo

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

