Mathematics > Differential Geometry

Spheres with more than 7 vector fields: all the fault of Spin(9)

Maurizio Parton, Paolo Piccinni

(Submitted on 3 Jul 2011 (v1), last revised 29 Apr 2012 (this version, v2))
We give an interpretation of the maximal number of linearly independent vector fields on spheres in terms of the $\operatorname{Spin}(9)$ representation on $\mathrm{R}^{\wedge} 16$. This casts an insight on the role of $\mathrm{Spin}(9)$ as a subgroup of $\mathrm{SO}(16)$ on the existence of vector fields on spheres, parallel to the one played by complex, quaternionic and octonionic structures on $R^{\wedge} 2, R^{\wedge} 4$ and $R^{\wedge} 8$, respectively.

Comments: 14 pages. Revised version. The proof of the main theorem, now without induction, is in the completely new Section 6. Notations have been simplified in all the paper
Subjects: Differential Geometry (math.DG); Rings and Algebras (math.RA)
MSC classes: 15B33, 53C27, 57R25
Cite as: arXiv:1107.0462 [math.DG]
(or arXiv:1107.0462v2 [math.DG] for this version)

Submission history

From: Maurizio Parton [view email]
[v1] Sun, 3 Jul 2011 14:06:39 GMT (20kb,D)
[v2] Sun, 29 Apr 2012 15:40:25 GMT (26kb,D)
Which authors of this paper are endorsers?

