

Mathematics > Classical Analysis and ODEs

arXiv.org > math > arXiv:1107.3267

Search or Article-id

(Help | Advanced search) All papers - Go!

Download:

- PDF
- PostScript
- Other formats

Current browse context: math.CA

< prev | next >

new | recent | 1107

Change to browse by:

math math.FA

References & Citations NASA ADS

^n\$

Dachun Yang, Sibei Yang

(Submitted on 17 Jul 2011)

Let \Omega be a strongly Lipschitz domain of \mathbb{R}^n\$, whose complement in $\mathrm{R}^n\$ is unbounded. Let $L\$ be a second order divergence form elliptic operator on \$L^2 (\Omega)\$ with the Dirichlet boundary condition, and the heat semigroup generated by \$L\$ have the Gaussian property \$(G {\mathrm{diam}(\Omega)})\$ with the regularity of their kernels measured by $\sum u(0,1]$, where $\dim diam()$ the diameter of \Omega\$. Let \Phi\$ be a continuous, strictly increasing, subadditive and positive function on \$(0,\infty)\$ of upper type 1 and of strictly critical lower type $p_{\rm p}(\rho(n+mu),1]$. In this paper, the authors introduce the Orlicz-Hardy space \$H_{\Phi,\,r}(\Omega)\$ by restricting arbitrary elements of the Orlicz-Hardy space \$H_{\Phi}(\mathbb{R}^n)\$ to \$\boz\$ and establish its atomic decomposition by means of the Lusin area function associated with $\left(e^{-tL}\right)$, Applying this, the authors obtain two equivalent characterizations of \$H_{\Phi,\,r}(\boz)\$ in terms of the nontangential maximal function and the Lusin area function associated with the heat semigroup generated by \$L\$.

Real-variable Characterizations of

Lipschitz Domains of \$\mathbb{R}

Orlicz-Hardy Spaces on Strongly

Comments: Subjects:	65 pages, Rev. Mat. Iberoam. (to appear) Classical Analysis and ODEs (math.CA); Functional Analysis (math.FA)
MSC classes:	Primary: 42B30, Secondary: 42B35, 42B20, 42B25, 35J25, 42B37, 47B38
Cite as:	arXiv:1107.3267 [math.CA] (or arXiv:1107.3267v1 [math.CA] for this version)

Submission history

From: Dachun Yang [view email] [v1] Sun, 17 Jul 2011 00:42:27 GMT (36kb) Link back to: arXiv, form interface, contact.