Cartan MASAs in von Neumann Algebras are Norming and a New Proof of Mercer's Theorem

Jan Cameron, David R. Pitts and Vrej Zarikian

ABSTRACT. In this note we observe that a result of Sinclair and Smith together with the Feldman-Moore description of a von Neumann algebra with a Cartan MASA shows that Cartan MASAs are norming. We also use the outline in [8, Remark 2.17] to give a new proof of Mercer's Theorem [6, Corollary 4.3].

In a 1991 paper, Mercer proves the following result.

Theorem 1 ([6, Corollary 4.3]). For i = 1, 2, let \mathcal{M}_i be a von Neumann algebra with separable predual and let $\mathcal{D}_i \subseteq \mathcal{M}_i$ be a Cartan MASA. Suppose \mathcal{A}_i is a σ -weakly closed subalgebra of \mathcal{M}_i which contains \mathcal{D}_i and which generates \mathcal{M}_i as a von Neumann algebra.

If $\theta : \mathcal{A}_1 \to \mathcal{A}_2$ is an isometric algebra isomorphism such that $\theta(\mathcal{D}_1) = \mathcal{D}_2$, then θ extends to a von Neumann algebra isomorphism $\overline{\theta} : \mathcal{M}_1 \to \mathcal{M}_2$. Furthermore, if \mathcal{M}_i is identified with its Feldman-Moore representation, so $\mathcal{M}_i \subseteq \mathcal{B}(L^2(R_i))$, then $\overline{\theta}$ may be taken to be a spatial isomorphism.

Our purpose in this note is to give a new proof of this result based on the conceptual outline for C^* diagonals in [8]. Our proof seems more transparent, and avoids the technicalities involving chains and loops found in Mercer's original proof. Furthermore, the outline can be adapted to other contexts as well, see [9].

We begin with an observation, of independent interest, regarding norming algebras. While we do not directly use the full strength of this result, we certainly use the fact that the MASA \mathcal{D} , in the notation below, norms a certain C^* -subalgebra \mathcal{C} of the von Neumann algebra \mathcal{M} . Note that the result below is implicit in [11] for the case when \mathcal{M} is a finite von Neumann algebra.

Proposition 2. Let \mathcal{M} be a von Neumann algebra with separable predual, and suppose that $\mathcal{D} \subseteq \mathcal{M}$ is a Cartan MASA. Then \mathcal{D} is norming for \mathcal{M} in the sense of Pop-Sinclair-Smith [10].

Proof. We will use the notation found in [3]. By [3, Theorem 1], there exists a countable, standard equivalence relation R on a finite measure space (X, \mathcal{B}, μ) , a cocycle $\sigma \in H^2(R, \mathbb{T})$, and an isomorphism of \mathcal{M} onto $\mathbf{M}(R, \sigma)$ which carries \mathcal{D} onto the diagonal subalgebra $\mathbf{A}(R, \sigma)$ of $\mathbf{M}(R, \sigma)$. We may therefore assume that $\mathcal{M} = \mathbf{M}(R, \sigma)$ and that $\mathcal{D} = \mathbf{A}(R, \sigma)$. With this identification, \mathcal{M} acts on the separable Hilbert space $L^2(R, \nu)$, where ν is the right counting measure associated with μ . By [3, Proposition 2.9], $J\mathcal{D}J$ is an abelian subalgebra of \mathcal{M}' and $(J\mathcal{D}J \vee \mathcal{D})''$ is a MASA in $\mathcal{B}(L^2(R, \nu))$. Therefore, the C^* -subalgebra of $\mathcal{B}(L^2(R, \nu))$ generated by $J\mathcal{D}J$ and \mathcal{D} has a cyclic vector. An application of [11, Proposition 4.1] completes the proof. \Box

Let $(\mathcal{M}, \mathcal{D})$ be a pair consisting of a von Neumann algebra \mathcal{M} with separable predual and a Cartan MASA \mathcal{D} in \mathcal{M} . A *Cartan bimodule algebra* is a σ -weakly closed subalgebra \mathcal{A} of \mathcal{M} which contains \mathcal{D} and which generates \mathcal{M} as a von Neumann algebra. As in the proof of Proposition 2, we may identify \mathcal{M} with $\mathbf{M}(R, \sigma)$ and \mathcal{D} with $\mathbf{A}(R, \sigma)$. By the Spectral Theorem for Bimodules [7, Theorem 2.5], there exists an essentially unique Borel set $\Gamma(\mathcal{A}) \subseteq R$ such that

(1)
$$\mathcal{A} = \{ a \in \mathcal{M} : a(x, y) = 0 \text{ for all } (x, y) \notin \Gamma(\mathcal{A}) \}.$$

In fact, $\Gamma(\mathcal{A})$ is a reflexive and transitive relation on X, and R equals the equivalence relation generated by $\Gamma(\mathcal{A})$ [7, Theorem 3.2].

²⁰⁰⁰ Mathematics Subject Classification. 47L30, 46L10, 46L07.

Key words and phrases. Norming algebra, Cartan MASA, C^* -diagonal.

Zarikian was partially supported by Nebraska IMMERSE.

It follows from (1) that \mathcal{A} contains an abundance of (groupoid) normalizers of \mathcal{D} . Recall that $v \in \mathcal{M}$ is a normalizer of \mathcal{D} if $v\mathcal{D}v^*, v^*\mathcal{D}v \subseteq \mathcal{D}$. If, in addition, v is a partial isometry, then we say that v is a groupoid normalizer of \mathcal{D} , and write $v \in \mathcal{GN}(\mathcal{M}, \mathcal{D})$. Now suppose ϕ is a Borel isomorphism between Borel sets dom(ϕ) $\subseteq X$ and range(ϕ) $\subseteq X$ whose graph $\Gamma(\phi) = \{(\phi(x), x) : x \in \text{dom}(\phi)\}$ is contained in R. Such a ϕ will be called a partial R-isomorphism. Then $F(\phi) := \chi_{\Gamma(\phi)} \in \mathcal{GN}(\mathcal{M}, \mathcal{D})$. Indeed,

$$F(\phi)dF(\phi)^* = (d \circ \phi^{-1})\chi_{\operatorname{range}(\phi)}$$
 and $F(\phi)^*dF(\phi) = (d \circ \phi)\chi_{\operatorname{dom}(\phi)}$

for all $d \in \mathcal{D}$. In general $v \in \mathcal{GN}(\mathcal{M}, \mathcal{D})$ may be written $v = F(\phi)u$, where ϕ is a partial *R*-isomorphism and $u \in \mathcal{D}$ is unitary [5, Proposition 2.2]. It follows from this discussion that

 $\mathfrak{GN}(\mathcal{M}, \mathcal{D}) \cap \mathcal{A} = \{F(\phi)u : \phi \text{ is a partial } R \text{-isomorphism such that } \Gamma(\phi) \subseteq \Gamma(\mathcal{A}), \text{ and } u \in \mathcal{D} \text{ is unitary}\}.$

By [7, Corollary 2.7], we have that

(2)
$$\mathcal{A} = \overline{\operatorname{span}}^{\sigma}(\mathfrak{GN}(\mathcal{M}, \mathcal{D}) \cap \mathcal{A}),$$

justifying the opening statement of this paragraph.

We say that a map $\theta : \mathcal{A}_1 \to \mathcal{A}_2$ between Cartan bimodule algebras is a *Cartan bimodule algebra iso*morphism if it is an isometric algebra isomorphism such that $\theta(\mathcal{D}_1) = \mathcal{D}_2$. With this terminology, Theorem 1 says that a Cartan bimodule algebra isomorphism extends to a von Neumann algebra isomorphism of the generated von Neumann algebras. The starting point for our proof of Theorem 1 is Mercer's structure theorem for Cartan bimodule algebra isomorphisms:

Theorem 3 ([6], Propositions 2.1 and 2.2). Let $\theta : \mathcal{A}_1 \to \mathcal{A}_2$ be a Cartan bimodule algebra isomorphism. Then there exists a Borel isomorphism $\tau : X_1 \to X_2$ and a Borel function $c : \Gamma(\mathcal{A}_2) \to \mathbb{T}$ such that

- i) μ_2 and $\mu_1 \circ \tau^{-1}$ are mutually absolutely continuous.
- ii) $(\tau \times \tau)(R_1) = R_2$ and $(\tau \times \tau)(\Gamma(\mathcal{A}_1)) = \Gamma(\mathcal{A}_2)$.
- iii) $\theta(a)(x,y) = c(x,y)a(\tau^{-1}(x),\tau^{-1}(y))$ for all $a \in \mathcal{A}_1$ and all $(x,y) \in \Gamma(\mathcal{A}_2)$.

Furthermore,

iv) c(x, x) = 1 for all $x \in X_2$.

- v) If $(x, y), (y, x) \in \Gamma(\mathcal{A}_2)$, then $c(y, x) = \overline{c(x, y)}$.
- vi) If $(x, y), (y, z) \in \Gamma(\mathcal{A}_2)$, then

$$c(x,z)\sigma_1(\tau^{-1}(x),\tau^{-1}(y),\tau^{-1}(z)) = c(x,y)c(y,z)\sigma_2(x,y,z)$$

In particular,

- vii) If $d \in \mathcal{D}_1$, then $\theta(d) = d \circ \tau^{-1}$.
- viii) If ϕ is a partial R_1 -isomorphism such that $\Gamma(\phi) \subseteq \Gamma(\mathcal{A}_1)$, then there exists a unitary $u \in \mathcal{D}_2$ such that $\theta(F(\phi)) = F(\tau \circ \phi \circ \tau^{-1})u$.

In order to prove Theorem 1, Mercer extends the function c in Theorem 3 above from $\Gamma(\mathcal{A}_2)$ to all of R_2 , such that (v) and (vi) still hold. This requires an intricate analysis of R_2 and its finite subequivalence relations. Our proof, on the other hand, extends θ directly, without extending c first.

Before embarking on our proof, we draw two corollaries of Theorem 3.

Corollary 4. Let $\theta : \mathcal{A}_1 \to \mathcal{A}_2$ be a Cartan bimodule algebra isomorphism. Then $\theta(\mathfrak{GN}(\mathcal{M}_1, \mathcal{D}_1) \cap \mathcal{A}_1) = \mathfrak{GN}(\mathcal{M}_2, \mathcal{D}_2) \cap \mathcal{A}_2$.

Proof. Immediate from Theorem 3 (viii).

Corollary 5. Let $\theta : A_1 \to A_2$ be a Cartan bimodule algebra isomorphism. Then θ is σ -weakly continuous.

Proof (sketch). By the Krein-Smulian Theorem, it suffices to show that if $\{a_i : i \in I\} \subseteq A_1$ is a bounded net and $a_i \to a$ WOT, then

(3)
$$\langle \theta(a_i)\chi_{\Gamma(\phi)},\chi_{\Gamma(\psi)}\rangle \to \langle \theta(a)\chi_{\Gamma(\phi)},\chi_{\Gamma(\psi)}\rangle$$

for all partial R_2 -isomorphisms ϕ, ψ . Let $g = \left[\frac{d(\mu_1 \circ \tau^{-1})}{d\mu_2}\right] \in L^1(X_2, \mu_2)$ (Theorem 3 (i)). Straightforward calculations using Theorem 3 (iii) show that (3) is equivalent to

(4)
$$\int_{\operatorname{dom}(\phi')\cap\operatorname{dom}(\psi')} a_i(\psi'(y),\phi'(y))h(y)d\mu_1(y) \to \int_{\operatorname{dom}(\phi')\cap\operatorname{dom}(\psi')} a(\psi'(y),\phi'(y))h(y)d\mu_1(y)d$$

where $\phi' = \tau^{-1} \circ \phi \circ \tau$, $\psi' = \tau^{-1} \circ \psi \circ \tau$, and

$$h(y) = c(\tau(\psi'(y)), \tau(\phi'(y)))\sigma_2(\tau(\psi'(y)), \tau(\phi'(y)), \tau(y))g^{-1}(\tau(y))$$

for all $y \in \text{dom}(\phi') \cap \text{dom}(\psi')$. But the assumption $a_i \to a$ WOT forces (4) to hold for any $h \in L^1(X_1, \mu_1)$ and any partial R_1 -isomorphisms ϕ', ψ' .

We now begin our proof in earnest. The first goal is to extend a restriction of θ to a *-isomorphism Θ of certain σ -weakly dense C*-algebras (Corollary 7).

Proposition 6. Let \mathcal{A} be a Cartan bimodule subalgebra of $(\mathcal{M}, \mathcal{D})$. Define $\mathcal{A}^0 = \overline{\operatorname{span}}(\mathcal{GN}(\mathcal{M}, \mathcal{D}) \cap \mathcal{A})$ (norm closure) and $\mathcal{C} = C^*(\mathcal{GN}(\mathcal{M}, \mathcal{D}) \cap \mathcal{A})$. Then

i) $\mathcal{C} = C^*(\mathcal{A}^0) \text{ and } \mathcal{D} \subseteq \mathcal{A}^0 \subseteq \mathcal{C};$ ii) $\mathcal{C} = \overline{\operatorname{span}}(\mathcal{GN}(\mathcal{M}, \mathcal{D}) \cap \mathcal{C});$ iii) $\overline{\mathcal{A}^0}^{\sigma} = \mathcal{A}; \text{ and}$ iv) $\overline{\mathcal{C}}^{\sigma} = \mathcal{M}.$

In particular, the pair $(\mathcal{C}, \mathcal{D})$ is a C^* -diagonal in the sense of Kumjian [4].

Proof. (i) and (ii) are routine. (iii) is just (2) above. (iv) follows from the calculation

$$\overline{\mathcal{C}}^{\sigma} = \overline{C^*(\mathcal{A}^0)}^{\sigma} = W^*(\mathcal{A}^0) = W^*(\overline{\mathcal{A}^0}^{\sigma}) = W^*(\mathcal{A}) = \mathcal{M}.$$

Now (ii) says that $(\mathcal{C}, \mathcal{D})$ is a regular inclusion. Moreover, as \mathcal{D} is a MASA in \mathcal{M} , it is a MASA in \mathcal{C} . Since \mathcal{D} is injective, the pair $(\mathcal{C}, \mathcal{D})$ is a C^* -diagonal [9, Section 2].

Corollary 7. Let $\theta : A_1 \to A_2$ be a Cartan bimodule algebra isomorphism. Then

- i) there exists a *-isomorphism $\Theta : \mathfrak{C}_1 \to \mathfrak{C}_2$ such that $\Theta(x) = \theta(x)$ for all $x \in \mathcal{A}_1^0$ (notation as in Proposition 6);
- ii) $\Theta(\mathfrak{GN}(\mathfrak{M}_1, \mathfrak{D}_1) \cap \mathfrak{C}_1) = \mathfrak{GN}(\mathfrak{M}_2, \mathfrak{D}_2) \cap \mathfrak{C}_2; and$
- iii) if ϕ is a partial R_1 -isomorphism such that $F(\phi) \in \mathcal{C}_1$, then there exists a unitary $u \in \mathcal{D}_2$ such that $\Theta(F(\phi)) = F(\tau \circ \phi \circ \tau^{-1})u$.

Proof. By Corollary 4, $\theta(\mathcal{GN}(\mathcal{M}_1, \mathcal{D}_1) \cap \mathcal{A}_1) = \mathcal{GN}(\mathcal{M}_2, \mathcal{D}_2) \cap \mathcal{A}_2$. It follows that $\theta(\mathcal{A}_1^0) = \mathcal{A}_2^0$. By Proposition 6, the pair $(\mathcal{C}_i, \mathcal{D}_i)$ is a C^* -diagonal and $C^*(\mathcal{A}_i^0) = \mathcal{C}_i$, for i = 1, 2. An application of [8, Theorem 2.16] establishes (i).

Since Θ is a *-isomorphism and $\Theta(\mathcal{D}_1) = \mathcal{D}_2$, (ii) holds.

For (iii), let ϕ be a partial R_1 -isomorphism such that $v = F(\phi) \in \mathcal{C}_1$. Then there exists a partial R_2 isomorphism ψ and a unitary $u \in \mathcal{D}_2$ such that $\Theta(v) = F(\psi)u$. We aim to show that $\psi = \phi_{\tau}$, where $\phi_{\tau} = \tau \circ \phi \circ \tau^{-1}$. We have that

$$\chi_{\operatorname{dom}(\psi)} = \Theta(v)^* \Theta(v) = \Theta(v^* v) = \chi_{\operatorname{dom}(\phi)} \circ \tau^{-1} = \chi_{\tau(\operatorname{dom}(\phi))} = \chi_{\operatorname{dom}(\phi_{\tau})},$$

and so dom $(\psi) = \text{dom}(\phi_{\tau})$. For $d \in \mathcal{D}_1$ we have that

$$\Theta(v^*dv) = v^*dv \circ \tau^{-1} = \left[(d \circ \phi)\chi_{\operatorname{dom}(\phi)} \right] \circ \tau^{-1} = (d \circ \tau^{-1} \circ \phi_\tau)\chi_{\operatorname{dom}(\phi_\tau)}$$

and

$$\Theta(v)^*\Theta(d)\Theta(v) = \Theta(v)^*(d\circ\tau^{-1})\Theta(v) = (d\circ\tau^{-1}\circ\psi)\chi_{\operatorname{dom}(\psi)}.$$

Thus,

$$d(\tau^{-1}(\psi(x))) = d(\tau^{-1}(\phi_{\tau}(x)))$$

for all $d \in \mathcal{D}_1$ and all $x \in \operatorname{dom}(\psi) = \operatorname{dom}(\phi_{\tau})$. Therefore, $\psi = \phi_{\tau}$.

As the next step in our proof, we show that the *-isomorphism $\Theta: \mathcal{C}_1 \to \mathcal{C}_2$ of Corollary 3 is spatial by constructing an implementing unitary $U: L^2(R_1) \to L^2(R_2)$. For this, the following definition and technical "disjointification" lemma will be useful.

Definition 8. Let $v, w \in \mathcal{GN}(\mathcal{M}, \mathcal{D})$. We say that v and w are *disjoint* if $\Gamma(\phi) \cap \Gamma(\psi) = \emptyset$, where ϕ and ψ are the partial *R*-isomorphisms associated with v and w, respectively.

Remark 9. Notice that disjoint elements of $\mathcal{GN}(\mathcal{M}, \mathcal{D})$ are orthogonal in $L^2(\mathbb{R}, \nu)$. Also, by Corollary 7, if $v, w \in \mathfrak{GN}(\mathfrak{M}_1, \mathfrak{D}_1) \cap \mathfrak{C}_1$ are disjoint, then so are $\Theta(v), \Theta(w) \in \mathfrak{GN}(\mathfrak{M}_2, \mathfrak{D}_2) \cap \mathfrak{C}_2$; indeed, if $\Gamma(\phi) \cap \Gamma(\psi) = \emptyset$, then

$$\Gamma(\tau \circ \phi \circ \tau^{-1}) \cap \Gamma(\tau \circ \psi \circ \tau^{-1}) = (\tau \times \tau)(\Gamma(\phi) \cap \Gamma(\psi)) = \emptyset.$$

Lemma 10. Let $v_1, v_2, ..., v_n \in \mathfrak{GN}(\mathcal{M}, \mathcal{D})$. Then there exist pairwise disjoint $w_1, w_2, ..., w_N \in \mathfrak{GN}(\mathcal{M}, \mathcal{D})$ $(N \leq 2^n - 1)$ such that the following conditions hold:

- i) For all $1 \leq j \leq N$, $w_j = v_{i(j)}p_j$ for some $1 \leq i(j) \leq n$ and some projection $p_j \in \mathcal{D}$.
- ii) For all $a_1, a_2, ..., a_n \in \mathcal{D}$ there exist $b_1, b_2, ..., b_N \in \mathcal{D}$ such that $\sum_{i=1}^n v_i a_i = \sum_{i=1}^N w_i b_i$.

Proof. Suppose $v_i = F(\phi_i)u_i$, where ϕ_i is a partial *R*-isomorphism and $u_i \in \mathcal{D}$ is unitary. Each $\Gamma(\phi_i)$ is a Borel subset of R [1, Proposition 3.3.1]. An exercise in set theory shows that there exist pairwise disjoint Borel sets $G_1, G_2, ..., G_N$ $(N \leq 2^n - 1)$ such that

- 1) For all $1 \leq j \leq N$, $G_j \subseteq \Gamma(\phi_{i(j)})$ for some $1 \leq i(j) \leq n$. 2) For all $1 \leq i \leq n$, $\Gamma(\phi_i) = \bigsqcup_{G_j \subseteq \Gamma(\phi_i)} G_j$.

For each $1 \leq j \leq N$, set $B_j = \pi_2(G_j)$, a Borel subset of dom $(\phi_{i(j)})$ [2, p. 291]. Define ψ_j to be the restriction of $\phi_{i(j)}$ to B_j . Then ψ_j is a partial *R*-isomorphism such that $\Gamma(\psi_j) = G_j$. Define $p_j = \chi_{B_j}$, a projection in \mathcal{D} , and $w_j = v_{i(j)} p_j$, an element of $\mathcal{GN}(\mathcal{M}, \mathcal{D})$. Since

$$w_j = F(\phi_{i(j)})u_{i(j)}\chi_{B_j} = F(\phi_{i(j)})\chi_{B_j}u_{i(j)} = F(\psi_j)u_{i(j)},$$

we see that $w_1, w_2, ..., w_N$ are pairwise disjoint. Suppose $a_1, a_2, ..., a_n \in \mathcal{D}$. Then

$$\sum_{i=1}^{n} v_i a_i = \sum_{i=1}^{n} F(\phi_i) u_i a_i = \sum_{i=1}^{n} \left(\sum_{\Gamma(\psi_j) \subseteq \Gamma(\phi_i)} F(\psi_j) \right) u_i a_i = \sum_{j=1}^{N} F(\psi_j) \left(\sum_{\Gamma(\psi_j) \subseteq \Gamma(\phi_i)} u_i a_i \right)$$
$$= \sum_{j=1}^{N} F(\psi_j) u_i(j) \left(u_{i(j)}^* \sum_{\Gamma(\psi_j) \subseteq \Gamma(\phi_i)} u_i a_i \right) = \sum_{j=1}^{N} w_j b_j.$$

Remark 11. If $v_1, v_2, ..., v_n \in \mathfrak{GN}(\mathcal{M}, \mathcal{D}) \cap \mathfrak{C}$ for some C^* -algebra \mathfrak{C} containing \mathcal{D} , then $w_1, w_2, ..., w_N \in \mathfrak{SN}(\mathcal{M}, \mathcal{D})$ $\mathfrak{GN}(\mathcal{M}, \mathcal{D}) \cap \mathfrak{C}$ also, because of (i).

For i = 1, 2, we denote by $f_i \in L^2(R_i, \nu_i)$ the characteristic function of the diagonal of R_i . By [3, Proposition 2.5], f_i is cyclic and separating for \mathcal{M}_i . Recalling that $\mu_1 \circ \tau^{-1}$ and μ_2 are equivalent measures, define $g = \left[\frac{d(\mu_1 \circ \tau^{-1})}{d\mu_2}\right] \in L^1(X_2, \mu_2)$. We will simultaneously regard $g^{1/2}$ as an element of $L^2(X_2, \mu_2)$ and as an element of $L^2(\dot{R}_2,\nu_2)$ supported on the diagonal of R_2 . We claim that $g^{1/2}$ is cyclic for \mathcal{M}_2 . Indeed, there exist $d_n \in L^{\infty}(X_2, \mu_1 \circ \tau^{-1}), n \in \mathbb{N}$, such that $d_n \to g^{-1/2}$ in $L^2(X_2, \mu_1 \circ \tau^{-1})$. A simple calculation shows that $d_n g^{1/2} \to 1$ in $L^2(X_2, \mu_2)$, equivalently that $d_n g^{1/2} \to f_2$ in $L^2(R_2, \nu_2)$. It follows that

$$f_2 \in \overline{\mathcal{D}_2 g^{1/2}}$$
 (closure in $L^2(R_2, \nu_2)$)

which implies the claim. Combining the previous discussion with Proposition 6 (iv), we see that $\mathcal{C}_1 f_1$ is dense in $L^2(R_1, \nu_1)$ and $\mathcal{C}_2 g^{1/2}$ is dense in $L^2(R_2, \nu_2)$.

We define a surjective linear mapping

$$U_0: \mathfrak{C}_1 f_1 \to \mathfrak{C}_2 g^{1/2}: af_1 \mapsto \Theta(a)g^{1/2}$$

We claim that U_0 is isometric, and therefore extends uniquely to a unitary $U: L^2(R_1) \to L^2(R_2)$. It suffices to show that

(5)
$$\|\Theta(v)\Theta(d)g^{1/2}\|_{L^2(R_2)} = \|vdf_1\|_{L^2(R_1)}$$

for all $v \in \mathfrak{GN}(\mathfrak{M}_1, \mathfrak{D}_1) \cap \mathfrak{C}_1$ and all $d \in \mathfrak{D}_1$. Indeed, if (5) holds, then by Remark 9 and the Pythagorean Theorem, $\|\Theta(a)g^{1/2}\|_{L^2(R_2)} = \|af_1\|_{L^2(R_1)}$ for all $a = \sum_{j=1}^N v_j d_j$ with $v_1, v_2, ..., v_N \in \mathfrak{GN}(\mathfrak{M}_1, \mathfrak{D}_1) \cap \mathfrak{C}_1$ pairwise disjoint and $d_1, d_2, ..., d_N \in \mathfrak{D}_1$. But then by Lemma 10 and Remark 11, $\|\Theta(a)g^{1/2}\|_{L^2(R_2)} = \|af_1\|_{L^2(R_1)}$ for all $a \in \operatorname{span}(\mathfrak{GN}(\mathfrak{M}_1, \mathfrak{D}_1) \cap \mathfrak{C}_1)$, and so by Proposition 6 (ii), $\|\Theta(a)g^{1/2}\|_{L^2(R_2)} = \|af_1\|_{L^2(R_1)}$ for all $a \in \mathfrak{C}_1$. It remains to show (5), but this follows by the calculation

$$\begin{split} \|\Theta(v)\Theta(d)g^{1/2}\|_{L^{2}(R_{2})}^{2} &= \int_{R_{2}} \chi_{\Gamma(\phi_{\tau})}(x,y)|\Theta(d)(y)|^{2}g(y)d\nu_{2}(x,y) \\ &= \int_{X_{2}} \chi_{\operatorname{dom}(\phi_{\tau})}(y)|\Theta(d)(y)|^{2}g(y)d\mu_{2}(y) \\ &= \int_{X_{2}} \chi_{\tau(\operatorname{dom}(\phi))}(y)|d(\tau^{-1}(y))|^{2}d(\mu_{1}\circ\tau^{-1})(y) \\ &= \int_{X_{1}} \chi_{\operatorname{dom}(\phi))}(y)|d(y)|^{2}d\mu_{1}(y) \\ &= \int_{R_{1}} \chi_{\Gamma(\phi)}(x,y)|d(y)|^{2}d\nu_{1}(x,y) = \|vdf_{1}\|_{L^{2}(R_{1})}^{2}. \end{split}$$

We claim that $\Theta(a) = UaU^*$ for all $a \in \mathcal{C}_1$ (as intended). Indeed,

$$U^*\Theta(a)Ubf_1 = U^*\Theta(a)\Theta(b)g^{1/2} = U^*\Theta(ab)g^{1/2} = abf_1$$

for all $a, b \in \mathcal{C}_1$.

To conclude our proof of Theorem 1, we define $\overline{\theta}(x) = UxU^*$ for all $x \in \mathcal{M}_1$. Since $\overline{\theta}|_{\mathcal{C}_1} = \Theta$, $\overline{\theta}$ is a von Neumann algebra isomorphism of \mathcal{M}_1 and \mathcal{M}_2 , by Proposition 6 (iv). Since $\overline{\theta}|_{\mathcal{A}_1^0} = \theta|_{\mathcal{A}_1^0}$, $\overline{\theta}|_{\mathcal{A}} = \theta$, by Proposition 6 (iii) and Corollary 5.

References

- William Arveson, An invitation to C*-algebras, Springer-Verlag, New York, 1976, Graduate Texts in Mathematics, No. 39. MR 0512360 (58 #23621), Zbl 0344.46123
- Jacob Feldman and Calvin C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289–324. MR 58 #28261a, Zbl 0369.22009
- Ergodic equivalence relations, cohomology, and von Neumann algebras. II, Trans. Amer. Math. Soc. 234 (1977), no. 2, 325–359. MR 58 #28261b, Zbl 0369.22010
- 4. Alexander Kumjian, On C*-diagonals, Canad. J. Math. 38 (1986), no. 4, 969–1008. MR 88a:46060, Zbl 0627.46071
- Richard Mercer, Bimodules over Cartan subalgebras, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), vol. 20, 1990, pp. 487–502. MR 1065846 (91f:46081), Zbl 0722.46021
- <u>_____</u>, Isometric isomorphisms of Cartan bimodule algebras, J. Funct. Anal. 101 (1991), no. 1, 10–24. MR 1132304 (92k:46102), Zbl 0772.46030
- P. S. Muhly, K. Saito and B. Solel, Coordinates for triangular operator algebras, Ann. Math. 127 (1988), 245–278. MR 0932297 (89h:46088), Zbl 0649.47036
- David R. Pitts, Norming algebras and automatic complete boundedness of isomorphisms of operator algebras, Proc. Amer. Math. Soc. 136 (2008), no. 5, 1757–1768. MR 2373606, Zbl 1137.47061
- 9. _____, working title: Structure for regular inclusions, (2011), preprint.
- Florin Pop, Allan M. Sinclair, and Roger R. Smith, Norming C*-algebras by C*-subalgebras, J. Funct. Anal. 175 (2000), no. 1, 168–196. MR 2001h:46105, Zbl 1003.46031
- Allan M. Sinclair and Roger R. Smith, Hochschild cohomology for von Neumann algebras with Cartan subalgebras, Amer. J. Math. 120 (1998), no. 5, 1043–1057. MR 1646053 (99j:46087), Zbl 0913.46050

Dept. of Mathematics, Vassar College, Poughkeepsie, NY, 12604 jacameron@vassar.edu

Dept. of Mathematics, University of Nebraska-Lincoln, Lincoln, NE, 68588-0130 dpitts2@math.unl.edu

Dept. of Mathematics, U. S. Naval Academy, Annapolis, MD, 21402 <code>zarikian@usna.edu</code>