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Cartan MASAs in von Neumann Algebras are Norming

and a New Proof of Mercer’s Theorem

Jan Cameron, David R. Pitts and Vrej Zarikian

Abstract. In this note we observe that a result of Sinclair and Smith together with the Feldman-Moore
description of a von Neumann algebra with a Cartan MASA shows that Cartan MASAs are norming. We
also use the outline in [8, Remark 2.17] to give a new proof of Mercer’s Theorem [6, Corollary 4.3].

In a 1991 paper, Mercer proves the following result.

Theorem 1 ([6, Corollary 4.3]). For i = 1, 2, let Mi be a von Neumann algebra with separable predual and
let Di ⊆ Mi be a Cartan MASA. Suppose Ai is a σ-weakly closed subalgebra of Mi which contains Di and
which generates Mi as a von Neumann algebra.

If θ : A1 → A2 is an isometric algebra isomorphism such that θ(D1) = D2, then θ extends to a von
Neumann algebra isomorphism θ : M1 → M2. Furthermore, if Mi is identified with its Feldman-Moore
representation, so Mi ⊆ B(L2(Ri)), then θ may be taken to be a spatial isomorphism.

Our purpose in this note is to give a new proof of this result based on the conceptual outline for C∗-
diagonals in [8]. Our proof seems more transparent, and avoids the technicalities involving chains and loops
found in Mercer’s original proof. Furthermore, the outline can be adapted to other contexts as well, see [9].

We begin with an observation, of independent interest, regarding norming algebras. While we do not
directly use the full strength of this result, we certainly use the fact that the MASA D, in the notation
below, norms a certain C∗-subalgebra C of the von Neumann algebra M. Note that the result below is
implicit in [11] for the case when M is a finite von Neumann algebra.

Proposition 2. Let M be a von Neumann algebra with separable predual, and suppose that D ⊆ M is a
Cartan MASA. Then D is norming for M in the sense of Pop-Sinclair-Smith [10].

Proof. We will use the notation found in [3]. By [3, Theorem 1], there exists a countable, standard equiv-
alence relation R on a finite measure space (X,B, µ), a cocycle σ ∈ H2(R,T), and an isomorphism of M
onto M(R, σ) which carries D onto the diagonal subalgebra A(R, σ) of M(R, σ). We may therefore assume
that M = M(R, σ) and that D = A(R, σ). With this identification, M acts on the separable Hilbert space
L2(R, ν), where ν is the right counting measure associated with µ. By [3, Proposition 2.9], JDJ is an abelian
subalgebra of M′ and (JDJ ∨D)′′ is a MASA in B(L2(R, ν)). Therefore, the C∗-subalgebra of B(L2(R, ν))
generated by JDJ and D has a cyclic vector. An application of [11, Proposition 4.1] completes the proof. �

Let (M,D) be a pair consisting of a von Neumann algebra M with separable predual and a Cartan MASA
D in M. A Cartan bimodule algebra is a σ-weakly closed subalgebra A of M which contains D and which
generates M as a von Neumann algebra. As in the proof of Proposition 2, we may identify M with M(R, σ)
and D with A(R, σ). By the Spectral Theorem for Bimodules [7, Theorem 2.5], there exists an essentially
unique Borel set Γ(A) ⊆ R such that

(1) A = {a ∈ M : a(x, y) = 0 for all (x, y) /∈ Γ(A)}.

In fact, Γ(A) is a reflexive and transitive relation on X , and R equals the equivalence relation generated by
Γ(A) [7, Theorem 3.2].

2000 Mathematics Subject Classification. 47L30, 46L10, 46L07.
Key words and phrases. Norming algebra, Cartan MASA, C∗-diagonal.
Zarikian was partially supported by Nebraska IMMERSE.

1

http://arxiv.org/abs/1202.6408v1


It follows from (1) that A contains an abundance of (groupoid) normalizers of D. Recall that v ∈ M

is a normalizer of D if vDv∗, v∗Dv ⊆ D. If, in addition, v is a partial isometry, then we say that v is a
groupoid normalizer of D, and write v ∈ GN(M,D). Now suppose φ is a Borel isomorphism between Borel
sets dom(φ) ⊆ X and range(φ) ⊆ X whose graph Γ(φ) = {(φ(x), x) : x ∈ dom(φ)} is contained in R. Such
a φ will be called a partial R-isomorphism. Then F (φ) := χΓ(φ) ∈ GN(M,D). Indeed,

F (φ)dF (φ)∗ = (d ◦ φ−1)χrange(φ) and F (φ)
∗dF (φ) = (d ◦ φ)χdom(φ)

for all d ∈ D. In general v ∈ GN(M,D) may be written v = F (φ)u, where φ is a partial R-isomorphism and
u ∈ D is unitary [5, Proposition 2.2]. It follows from this discussion that

GN(M,D) ∩A = {F (φ)u : φ is a partial R-isomorphism such that Γ(φ) ⊆ Γ(A), and u ∈ D is unitary}.

By [7, Corollary 2.7], we have that

(2) A = spanσ(GN(M,D) ∩A),

justifying the opening statement of this paragraph.
We say that a map θ : A1 → A2 between Cartan bimodule algebras is a Cartan bimodule algebra iso-

morphism if it is an isometric algebra isomorphism such that θ(D1) = D2. With this terminology, Theorem
1 says that a Cartan bimodule algebra isomorphism extends to a von Neumann algebra isomorphism of
the generated von Neumann algebras. The starting point for our proof of Theorem 1 is Mercer’s structure
theorem for Cartan bimodule algebra isomorphisms:

Theorem 3 ([6], Propositions 2.1 and 2.2). Let θ : A1 → A2 be a Cartan bimodule algebra isomorphism.
Then there exists a Borel isomorphism τ : X1 → X2 and a Borel function c : Γ(A2) → T such that

i) µ2 and µ1 ◦ τ−1 are mutually absolutely continuous.
ii) (τ × τ)(R1) = R2 and (τ × τ)(Γ(A1)) = Γ(A2).
iii) θ(a)(x, y) = c(x, y)a(τ−1(x), τ−1(y)) for all a ∈ A1 and all (x, y) ∈ Γ(A2).

Furthermore,

iv) c(x, x) = 1 for all x ∈ X2.

v) If (x, y), (y, x) ∈ Γ(A2), then c(y, x) = c(x, y).
vi) If (x, y), (y, z) ∈ Γ(A2), then

c(x, z)σ1(τ
−1(x), τ−1(y), τ−1(z)) = c(x, y)c(y, z)σ2(x, y, z).

In particular,

vii) If d ∈ D1, then θ(d) = d ◦ τ−1.
viii) If φ is a partial R1-isomorphism such that Γ(φ) ⊆ Γ(A1), then there exists a unitary u ∈ D2 such

that θ(F (φ)) = F (τ ◦ φ ◦ τ−1)u.

In order to prove Theorem 1, Mercer extends the function c in Theorem 3 above from Γ(A2) to all of
R2, such that (v) and (vi) still hold. This requires an intricate analysis of R2 and its finite subequivalence
relations. Our proof, on the other hand, extends θ directly, without extending c first.

Before embarking on our proof, we draw two corollaries of Theorem 3.

Corollary 4. Let θ : A1 → A2 be a Cartan bimodule algebra isomorphism. Then θ(GN(M1,D1) ∩ A1) =
GN(M2,D2) ∩A2.

Proof. Immediate from Theorem 3 (viii). �

Corollary 5. Let θ : A1 → A2 be a Cartan bimodule algebra isomorphism. Then θ is σ-weakly continuous.

Proof (sketch). By the Krein-Smulian Theorem, it suffices to show that if {ai : i ∈ I} ⊆ A1 is a bounded
net and ai → a WOT, then

(3) 〈θ(ai)χΓ(φ), χΓ(ψ)〉 → 〈θ(a)χΓ(φ), χΓ(ψ)〉
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for all partial R2-isomorphisms φ, ψ. Let g =
[

d(µ1◦τ
−1)

dµ2

]

∈ L1(X2, µ2) (Theorem 3 (i)). Straightforward

calculations using Theorem 3 (iii) show that (3) is equivalent to

(4)

∫

dom(φ′)∩dom(ψ′)

ai(ψ
′(y), φ′(y))h(y)dµ1(y) →

∫

dom(φ′)∩dom(ψ′)

a(ψ′(y), φ′(y))h(y)dµ1(y),

where φ′ = τ−1 ◦ φ ◦ τ , ψ′ = τ−1 ◦ ψ ◦ τ , and

h(y) = c(τ(ψ′(y)), τ(φ′(y)))σ2(τ(ψ
′(y)), τ(φ′(y)), τ(y))g−1(τ(y))

for all y ∈ dom(φ′) ∩ dom(ψ′). But the assumption ai → a WOT forces (4) to hold for any h ∈ L1(X1, µ1)
and any partial R1-isomorphisms φ′, ψ′. �

We now begin our proof in earnest. The first goal is to extend a restriction of θ to a *-isomorphism Θ of
certain σ-weakly dense C∗-algebras (Corollary 7).

Proposition 6. Let A be a Cartan bimodule subalgebra of (M,D). Define A0 = span(GN(M,D)∩A) (norm
closure) and C = C∗(GN(M,D) ∩A). Then

i) C = C∗(A0) and D ⊆ A0 ⊆ C;
ii) C = span(GN(M,D) ∩ C);

iii) A0
σ
= A; and

iv) C
σ
= M.

In particular, the pair (C,D) is a C∗-diagonal in the sense of Kumjian [4].

Proof. (i) and (ii) are routine. (iii) is just (2) above. (iv) follows from the calculation

C
σ
= C∗(A0)

σ
=W ∗(A0) =W ∗(A0

σ
) =W ∗(A) = M.

Now (ii) says that (C,D) is a regular inclusion. Moreover, as D is a MASA in M, it is a MASA in C. Since
D is injective, the pair (C,D) is a C∗-diagonal [9, Section 2]. �

Corollary 7. Let θ : A1 → A2 be a Cartan bimodule algebra isomorphism. Then

i) there exists a *-isomorphism Θ : C1 → C2 such that Θ(x) = θ(x) for all x ∈ A0
1 (notation as in

Proposition 6);
ii) Θ(GN(M1,D1) ∩ C1) = GN(M2,D2) ∩ C2; and
iii) if φ is a partial R1-isomorphism such that F (φ) ∈ C1, then there exists a unitary u ∈ D2 such that

Θ(F (φ)) = F (τ ◦ φ ◦ τ−1)u.

Proof. By Corollary 4, θ(GN(M1,D1) ∩A1) = GN(M2,D2) ∩A2. It follows that θ(A
0
1) = A0

2. By Proposi-
tion 6, the pair (Ci,Di) is a C

∗-diagonal and C∗(A0
i ) = Ci, for i = 1, 2. An application of [8, Theorem 2.16]

establishes (i).
Since Θ is a *-isomorphism and Θ(D1) = D2, (ii) holds.
For (iii), let φ be a partial R1-isomorphism such that v = F (φ) ∈ C1. Then there exists a partial R2-

isomorphism ψ and a unitary u ∈ D2 such that Θ(v) = F (ψ)u. We aim to show that ψ = φτ , where
φτ = τ ◦ φ ◦ τ−1. We have that

χdom(ψ) = Θ(v)∗Θ(v) = Θ(v∗v) = χdom(φ) ◦ τ
−1 = χτ(dom(φ)) = χdom(φτ ),

and so dom(ψ) = dom(φτ ). For d ∈ D1 we have that

Θ(v∗dv) = v∗dv ◦ τ−1 =
[

(d ◦ φ)χdom(φ)

]

◦ τ−1 = (d ◦ τ−1 ◦ φτ )χdom(φτ )

and

Θ(v)∗Θ(d)Θ(v) = Θ(v)∗(d ◦ τ−1)Θ(v) = (d ◦ τ−1 ◦ ψ)χdom(ψ).

Thus,

d(τ−1(ψ(x))) = d(τ−1(φτ (x)))

for all d ∈ D1 and all x ∈ dom(ψ) = dom(φτ ). Therefore, ψ = φτ . �
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As the next step in our proof, we show that the *-isomorphism Θ : C1 → C2 of Corollary 3 is spatial by
constructing an implementing unitary U : L2(R1) → L2(R2). For this, the following definition and technical
“disjointification” lemma will be useful.

Definition 8. Let v, w ∈ GN(M,D). We say that v and w are disjoint if Γ(φ) ∩ Γ(ψ) = ∅, where φ and ψ
are the partial R-isomorphisms associated with v and w, respectively.

Remark 9. Notice that disjoint elements of GN(M,D) are orthogonal in L2(R, ν). Also, by Corollary 7, if
v, w ∈ GN(M1,D1) ∩ C1 are disjoint, then so are Θ(v),Θ(w) ∈ GN(M2,D2)∩ C2; indeed, if Γ(φ) ∩ Γ(ψ) = ∅,
then

Γ(τ ◦ φ ◦ τ−1) ∩ Γ(τ ◦ ψ ◦ τ−1) = (τ × τ)(Γ(φ) ∩ Γ(ψ)) = ∅.

Lemma 10. Let v1, v2, ..., vn ∈ GN(M,D). Then there exist pairwise disjoint w1, w2, ..., wN ∈ GN(M,D)
(N ≤ 2n − 1) such that the following conditions hold:

i) For all 1 ≤ j ≤ N , wj = vi(j)pj for some 1 ≤ i(j) ≤ n and some projection pj ∈ D.

ii) For all a1, a2, ..., an ∈ D there exist b1, b2, ..., bN ∈ D such that
∑n

i=1 viai =
∑N

j=1 wjbj.

Proof. Suppose vi = F (φi)ui, where φi is a partial R-isomorphism and ui ∈ D is unitary. Each Γ(φi) is a
Borel subset of R [1, Proposition 3.3.1]. An exercise in set theory shows that there exist pairwise disjoint
Borel sets G1, G2, ..., GN (N ≤ 2n − 1) such that

1) For all 1 ≤ j ≤ N , Gj ⊆ Γ(φi(j)) for some 1 ≤ i(j) ≤ n.
2) For all 1 ≤ i ≤ n, Γ(φi) =

⊔

Gj⊆Γ(φi)
Gj .

For each 1 ≤ j ≤ N , set Bj = π2(Gj), a Borel subset of dom(φi(j)) [2, p. 291]. Define ψj to be the restriction
of φi(j) to Bj. Then ψj is a partial R-isomorphism such that Γ(ψj) = Gj . Define pj = χBj

, a projection in
D, and wj = vi(j)pj , an element of GN(M,D). Since

wj = F (φi(j))ui(j)χBj
= F (φi(j))χBj

ui(j) = F (ψj)ui(j),

we see that w1, w2, ..., wN are pairwise disjoint. Suppose a1, a2, ..., an ∈ D. Then

n
∑

i=1

viai =

n
∑

i=1

F (φi)uiai =

n
∑

i=1





∑

Γ(ψj)⊆Γ(φi)

F (ψj)



 uiai =

N
∑

j=1

F (ψj)





∑

Γ(ψj)⊆Γ(φi)

uiai





=

N
∑

j=1

F (ψj)ui(j)



u∗i(j)
∑

Γ(ψj)⊆Γ(φi)

uiai



 =

N
∑

j=1

wjbj .

�

Remark 11. If v1, v2, ..., vn ∈ GN(M,D) ∩ C for some C∗-algebra C containing D, then w1, w2, ..., wN ∈
GN(M,D) ∩ C also, because of (i).

For i = 1, 2, we denote by fi ∈ L2(Ri, νi) the characteristic function of the diagonal of Ri. By [3,
Proposition 2.5], fi is cyclic and separating for Mi. Recalling that µ1 ◦ τ

−1 and µ2 are equivalent measures,

define g =
[

d(µ1◦τ
−1)

dµ2

]

∈ L1(X2, µ2). We will simultaneously regard g1/2 as an element of L2(X2, µ2) and

as an element of L2(R2, ν2) supported on the diagonal of R2. We claim that g1/2 is cyclic for M2. Indeed,
there exist dn ∈ L∞(X2, µ1 ◦ τ−1), n ∈ N, such that dn → g−1/2 in L2(X2, µ1 ◦ τ−1). A simple calculation
shows that dng

1/2 → 1 in L2(X2, µ2), equivalently that dng
1/2 → f2 in L2(R2, ν2). It follows that

f2 ∈ D2g1/2 (closure in L2(R2, ν2)),

which implies the claim. Combining the previous discussion with Proposition 6 (iv), we see that C1f1 is
dense in L2(R1, ν1) and C2g

1/2 is dense in L2(R2, ν2).
We define a surjective linear mapping

U0 : C1f1 → C2g
1/2 : af1 7→ Θ(a)g1/2.
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We claim that U0 is isometric, and therefore extends uniquely to a unitary U : L2(R1) → L2(R2). It suffices
to show that

(5) ‖Θ(v)Θ(d)g1/2‖L2(R2) = ‖vdf1‖L2(R1)

for all v ∈ GN(M1,D1) ∩ C1 and all d ∈ D1. Indeed, if (5) holds, then by Remark 9 and the Pythagorean

Theorem, ‖Θ(a)g1/2‖L2(R2) = ‖af1‖L2(R1) for all a =
∑N

j=1 vjdj with v1, v2, ..., vN ∈ GN(M1,D1) ∩ C1

pairwise disjoint and d1, d2, ..., dN ∈ D1. But then by Lemma 10 and Remark 11, ‖Θ(a)g1/2‖L2(R2) =

‖af1‖L2(R1) for all a ∈ span(GN(M1,D1)∩C1), and so by Proposition 6 (ii), ‖Θ(a)g1/2‖L2(R2) = ‖af1‖L2(R1)

for all a ∈ C1. It remains to show (5), but this follows by the calculation

‖Θ(v)Θ(d)g1/2‖2L2(R2)
=

∫

R2

χΓ(φτ )(x, y)|Θ(d)(y)|2g(y)dν2(x, y)

=

∫

X2

χdom(φτ )(y)|Θ(d)(y)|2g(y)dµ2(y)

=

∫

X2

χτ(dom(φ))(y)|d(τ
−1(y))|2d(µ1 ◦ τ

−1)(y)

=

∫

X1

χdom(φ))(y)|d(y)|
2dµ1(y)

=

∫

R1

χΓ(φ)(x, y)|d(y)|
2dν1(x, y) = ‖vdf1‖

2
L2(R1)

.

We claim that Θ(a) = UaU∗ for all a ∈ C1 (as intended). Indeed,

U∗Θ(a)Ubf1 = U∗Θ(a)Θ(b)g1/2 = U∗Θ(ab)g1/2 = abf1

for all a, b ∈ C1.
To conclude our proof of Theorem 1, we define θ(x) = UxU∗ for all x ∈ M1. Since θ|C1

= Θ, θ is a
von Neumann algebra isomorphism of M1 and M2, by Proposition 6 (iv). Since θ|A0

1

= θ|A0

1

, θ|A = θ, by

Proposition 6 (iii) and Corollary 5.
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