

Cornell University Library We gratefully acknowledge support from the Simons Foundation and member institutions

### arXiv.org > math > arXiv:1107.4293

Mathematics > Numerical Analysis

# An analysis of the practical DPG method

## Jay Gopalakrishnan, Weifeng Qiu

(Submitted on 21 Jul 2011 (v1), last revised 29 May 2012 (this version, v2))

In this work we give a complete error analysis of the Discontinuous Petrov Galerkin (DPG) method, accounting for all the approximations made in its practical implementation. Specifically, we consider the DPG method that uses a trial space consisting of polynomials of degree \$p\$ on each mesh element. Earlier works showed that there is a "trial-to-test" operator \$T\$, which when applied to the trial space, defines a test space that guarantees stability. In DPG formulations, this operator \$T\$ is local: it can be applied element-by-element. However, an infinite dimensional problem on each mesh element needed to be solved to apply \$T\$. In practical computations, \$T\$ is approximated using polynomials of some degree \$r > p\$ on each mesh element. We show that this approximation maintains optimal convergence rates, provided that \$r\ge p+N\$, where \$N\$ is the space dimension (two or more), for the Laplace equation. We also prove a similar result for the DPG method for linear elasticity. Remarks on the conditioning of the stiffness matrix in DPG methods are also included.

Comments:Mathematics of Computation, 2012Subjects:Numerical Analysis (math.NA)Cite as:arXiv:1107.4293 [math.NA](or arXiv:1107.4293v2 [math.NA] for this version)

#### **Submission history**

From: Weifeng Qiu Dr. [view email] [v1] Thu, 21 Jul 2011 15:05:02 GMT (21kb) [v2] Tue, 29 May 2012 15:52:14 GMT (21kb)

Which authors of this paper are endorsers?

Link back to: arXiv, form interface, contact.

Search or Article-id

All papers 🚽 Go!

(Help | Advanced search)

## Download:

- PDF
- PostScript
- Other formats

Current browse context: math.NA

< prev | next >

new | recent | 1107

Change to browse by: math