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Abstract. We study M-tensors and various properties of M-tensors are given. Spe-

cially, we show that the smallest real eigenvalue of M-tensor is positive corresponding to a

nonnegative eigenvector. We propose an algorithm to find the smallest positive eigenvalue

and then apply the property to study the positive definiteness of a multivariate form.
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1. Introduction

M-matrices [8, 12, 26] are known to have many applications in modeling dynamic sys-

tems in economics, ecology, and engineering [23]. Various properties of M-matrices were

used in establishing stability results for dynamic systems in general [23, 24]. Especially, it

follows from the famous Perron-Frobenius theorem for nonnegative matrices that for any

M-matrix A, all real eigenvalues of A are positive [12, 26]. The theory of M-matrices

has many applications in many fields such as computational mathematics, mathematical

physics, mathematical economics, wireless communications, etc. [8, 26]. Since avoidance

conditions were linked to a stability type of result via Lyapunov-type functions, the theory

of M-matrices was also used to certify avoidance conditions [25]. On the other hand, testing

positive definiteness of a multivariate form is an important problem in the stability study
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of nonlinear autonomous systems via Lyapunovs direct method in automatic control [16].

Researchers in automatic control studied the conditions of such positive definiteness inten-

sively [1, 2, 3, 11]. For n ≥ 3 and m ≥ 4, this problem is a hard problem in mathematics.

There are only a few methods to solve the problem [2, 3, 16]. In practice, when n > 3 and

m ≥ 4, these methods are computationally expensive. Note that an eigenvalue method was

proposed in [16] to solve the problem. In [14], a method for computing the largest eigenvalue

of an irreducible nonnegative tensor was applied to test the positive definiteness of a class of

of multivariate forms. Motivated by these applications and methods, we study higher-order

M-tensors in this paper. We show that all real eigenvalues of an M-tensor are positive.

Hence, testing the positive definiteness of an even-order multivariate form is equivalent to

testing a tensor is an M-tensor.

A tensor can be regarded as a higher-order generalization of a matrix, which takes the

form

A = (Ai1···im) , Ai1···im ∈ R, 1 ≤ i1, . . . , im ≤ n.

Such a multi-array A is said to be an m-order n-dimensional square real tensor with nm

entries Ai1···im. In this regard, a vector is a first-order tensor and a matrix is a second-

order tensor. Tensors of order more than two are called higher-order tensors. M-tensor we

defined in this paper is ultimately related to the nonnegative tensor. It is a higher order

generalization of the so-called M-matrix.

Nonnegative tensors, arising from multilinear pagerank [13], spectral hypergraph theory

[4], and higher-order Markov chains [15], etc., form a singularly important class of tensors

and have attracted more and more attention since they share some intrinsic properties

with those of the nonnegative matrices. One of those properties is the Perron-Frobenius

theorem on eigenvalues. In [5], Chang, Pearson, and Zhang generalized the Perron-Frobenius

theorem from nonnegative matrices to irreducible nonnegative tensors. Later, Yang and

Yang [28] generalized the weak Perron-Frobenius theorem to general nonnegative tensors,

and proved that the spectral radius is an eigenvalue of a nonnegative tensor. Numerical

methods for finding the spectral radius of nonnegative tensors are subsequently proposed.

Ng, Qi, and Zhou [15] provided an iterative method to find the largest eigenvalue of an

irreducible nonnegative tensor. The Ng-Qi-Zhou method is efficient but it is not always

convergent for irreducible nonnegative tensors. Zhang and Qi [29] established an explicit

linear convergence rate of the Ng-Qi-Zhou method for essentially positive tensors [19]. Liu,

Zhou and Ibrahim [14] modified the Ng-Qi-Zhou method such that the modified algorithm is

always convergent for finding the largest eigenvalue of an irreducible nonnegative tensor. The

linear convergence rate of the algorithm was established in [30] for weakly positive tensors.

Chang, Pearson and Zhang [7] introduced primitive tensors and established convergence

of the Ng-Qi-Zhou method for primitive tensors. Friedland, Gaubert and Han [9] pointed

out that the Perron-Frobenius theorem for nonnegative tensors has a very close link with
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the Perron-Frobenius theorem for homogeneous monotone maps, initiated by Nussbaum

[17, 18] and further studied by Gaubert and Gunawardena [10]. Friendland, Gaubert and

Han [9] gave a weaker definition for irreducible nonnegative tensors, and established the

Perron-Frobenius theorem in this context.

By using the eigenvalue theory of nonnegative tensors, we give some properties of M-

tensors. We prove that the smallest eigenvalue of an M-tensor is positive with a nonnegative

eigenvector. Let A be a tensor with nonpositive off-diagonal entries. Two necessary and

sufficient conditions for A as an M-tensor are given. Specially, we prove that A is an M-

tensor if and only if its all real eigenvalues are positive. We also give a sufficient condition

for a tensor to be an M-tensor, which is easily verified. Finally, we propose an algorithm

for computing the smallest real eigenvalue. The proposed algorithm is always convergent

for any M-tensor. Furthermore, we link M-tensors with a class of multivariate forms and

then apply the proposed method to study the positive definiteness of a multivariate form.

It should be pointed out that the class of multivariate forms studied in [14] is a special case

of our model. We do not need the assumption that the diagonal entries are positive.

This paper is organized as follows. In Section 2, we will recall some preliminary results.

We will introduce M-tensors and characterize some basic properties of M-tensors in Section

3. In Section 4, we will propose an iterative algorithm for finding the smallest real eigenvalue

of an M-tensor, and some numerical results are reported. In Section 5, we will present an

algorithm to for testing positive definiteness of a class of multivariate forms. We conclude

the paper with some remarks in Section 6.

2. Preliminaries

We start this section with some fundamental notions and properties on tensors. An m-

order n-dimensional tensor A is called nonnegative (or, respectively, positive) if Ai1···im ≥ 0

(or, respectively, Ai1···im > 0). The tensor A is called symmetric if its entries Ai1···im are

invariant under any permutation of their indices {i1 · · · im} [20]. The m-order n-dimensional

unit tensor, denoted by I, is the tensor whose entries are δi1...im with δi1...im = 1 if and only if

i1 = · · · = im and otherwise zero. A tensor A is called reducible, if there exists a nonempty

proper index subset I ⊂ {1, 2, . . . , n} such that

Ai1···im = 0, ∀i1 ∈ I, ∀i2, . . . , im 6∈ I.

Otherwise, we say A is irreducible.

Analogous with that of matrices, the theory of eigenvalues and eigenvectors is one of the

fundamental and essential components in tensor analysis. Wide range of practical applica-

tions can be found in [13, 21, 22]. Compared with that of matrices, eigenvalue problems for

higher-order tensors are nonlinear due to their multilinear structure.
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Definition 2.1 Let C be the complex field. A pair (λ, x) ∈ C × (Cn\{0}) is called an

eigenvalue-eigenvector pair of A, if they satisfy:

Axm−1 = λx[m−1], (1)

where n-dimensional column vectors Axm−1 and x[m−1] are defined as

Axm−1 :=

(

n
∑

i2,...,im=1

Aii2···imxi2 · · ·xim

)

1≤i≤n

and x[m−1] :=
(

xm−1
i

)

1≤i≤n
,

respectively.

This definition was introduced in [6, 13, 20]. We call ρ(A) the spectral radius of tensor A if

ρ(A) = max{|λ| : λ is an eigenvalue of A},

where |λ| denotes the modulus of λ. An immediate consequence on the spectral radius

follows directly from Corollary 3 in [20].

Lemma 2.1 Let A be an m-order n-dimensional tensor. Suppose that B = a(A + bI),

where a and b are two real numbers. Then µ is an eigenvalue of B if and only if µ = a(λ+b)

and λ is an eigenvalue of A. In this case, they have the same eigenvectors.

Clearly, from this lemma, we have ρ(B) ≤ |a| (ρ(A) + |b|).

Nice properties such as the Perron-Frobenius theorem for eigenvalues of nonnegative

square tensors have been established in [5].

Theorem 2.1 If A is an irreducible nonnegative tensor of order m and dimension n, then

there exist λ0 > 0 and x0 > 0, x0 ∈ Rn such that

Axm−1
0 = λ0x

[m−1]
0 .

Moreover, if λ is an eigenvalue with a nonnegative eigenvector, then λ = λ0. If λ is an

eigenvalue of A, then |λ| ≤ λ0.

Clearly, by this theorem, λ0 is the largest eigenvalue of A.

Yang and Yang [28] asserted that the spectral radius of a nonnegative tensor is an

eigenvalue. In the following we state the results of [28, Theorem 2.3 and Lemma 5.8] for

reference.
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Theorem 2.2 Assume that A is a nonnegative tensor of order m dimension n, then ρ(A) is

an eigenvalue of A with a nonzero nonnegative eigenvector. Moreover, for any x > 0, x ∈ Rn

we have

min
1≤i≤n

(Axm−1)i

xm−1
i

≤ ρ(A) ≤ max
1≤i≤n

(Axm−1)i

xm−1
i

.

The following continuity of the spectral radius was given in the proof of [28, Theorem 2.3].

Lemma 2.2 Let A be a nonnegative tensor of order m and dimension n, and ε > 0 be a

sufficiently small number. If Aε = A+ E where E denotes the tensor with every entry being

ε, then

lim
ε→0

ρ(Aε) = ρ(A).

Now we state an iterative algorithm for calculating the largest eigenvalue of a nonnegative

tensor A, which is proposed in [14, 15] based on Theorems 2.1 and 2.2.

Algorithm 1

Step 0. Choose x(1) > 0, x(1) ∈ Rn and ρ > 0. Let B = A+ ρI, and set k := 1.

Step 1. Compute

y(k) = B
(

x(k)
)m−1

,

λk = min
x
(k)
i

>0

(

y(k)
)

i
(

x
(k)
i

)m−1 ,

λ̄k = max
x
(k)
i

>0

(

y(k)
)

i
(

x
(k)
i

)m−1 .

Step 2. If λ̄k = λk, then let λ = λ̄k and stop. Otherwise, compute

x(k+1) =

(

y(k)
)[ 1

m−1 ]
∥

∥

∥
(y(k))[

1
m−1 ]

∥

∥

∥

,

replace k by k + 1 and go to Step 1.

Step 3. Output λ− ρ, the largest eigenvalue of A.

It is proved in [14] that Algorithm 1 is always convergent for irreducible nonnegative

tensors; see the following theorem.
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Theorem 2.3 Suppose A be an irreducible nonnegative tensor. Let B = A + ρI, where

ρ > 0. Assume that λ is the largest eigenvalue of B. Then, Algorithm 1 produces a value of

λ in a finite number of steps, or generates two sequences {λk} and {λ̄k} which converge to

λ. Furthermore, λ− ρ is the largest eigenvalue of A.

Note that for any nonnegative tensor A, A + E is an irreducible nonnegative tensor.

Therefore, if we set B = A+ ρI + E in Algorithm 1, then by Lemma 2.2, we can prove that

the modified algorithm is also convergent in the similar way.

3. M-tensors

We now extend the notion of M-matrices to higher-order tensors and introduce the

definition of an M-tensor.

Definition 3.1 Let A be an m-order and n-dimensional tensor. A is called an M-tensor

if there exist a nonnegative tensor B and a real number c > ρ(B), where ρ(B) is the spectral

radius of B, such that

A = cI − B.

Clearly, when m = 2, if A is an M-tensor then A is an M-matrix.

Note that the off-diagonal entries of an M-tensor are nonpositive. Denote Z the set of

m-order and n-dimensional real tensors whose off-diagonal entries are nonpositive.

Note that eigenvalues defined in Definition 2.1 exist for an M-tensor [20]. We will show

that every eigenvalue of an M-tensor has a positive real part, and hence all of its real

eigenvalues are positive.

Theorem 3.1 Let A be an M-tensor and denote by τ(A) the minimal value of the real

part of all eigenvalues of A. Then τ(A) > 0 is an eigenvalue of A with a nonnegative

eigenvector. Moreover, there exist a nonnegative tensor B and a real number c > ρ(B) such

that τ(A) = c− ρ(B). If A is irreducible, then τ(A) is the unique eigenvalue with a positive

eigenvector.

Proof. Since A is an M-tensor, by Definition 3.1, there exist a nonnegative tensor B and

a real number c > ρ(B) such that

A = cI − B.

Let λ be an eigenvalue of A and Reλ be the real part of λ. By Lemma 2.1, c − λ is an

eigenvalue of B. Since ρ(B) is the spectral radius of B,

ρ(B) ≥ |c− λ| ≥ c− Reλ > ρ(B)− Reλ,
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which implies that Reλ > 0, and hence

ρ(B) ≥ max
λ∈λ(A)

{c− Reλ} = c− min
λ∈λ(A)

{Reλ} = c− τ(A). (2)

On the other hand, Theorem 2.2 shows that ρ(B) is an eigenvalue of B. By Lemma 2.1,

c− ρ(B) is a real eigenvalue of A, and hence

c− ρ(B) ≥ τ(A),

which, together with (2), implies

τ(A) = c− ρ(B).

Therefore, τ(A) is an eigenvalue of A. Since ρ(B) has a nonnegative eigenvector x∗, x∗ is

also an eigenvector of τ(A). Moreover, if A is irreducible, then B is also irreducible. Hence

ρ(B) is the unique eigenvalue of B with a positive eigenvector. Thus, we complete the proof.

We state a few of the alternative necessary and sufficient conditions of a tensor in Z to

be an M-tensor.

Theorem 3.2 A tensor in Z is an M-tensor if and only if any of its eigenvalues has a

positive real part.

Proof. Let A ∈ Z, and suppose that every eigenvalue of A has a positive real part. Let

a = max
1≤i≤n

{Ai...i}. Then B = aI − A is nonnegative. By Lemma 2.1 and Theorem 2.2,

a − ρ(B) is a real eigenvalue of A. It follows that a − ρ(B) > 0. Thus A = aI − B is an

M-tensor.

Now, let A = cI −B be an M-tensor. Then, B is nonnegative and c > ρ(B). Let λ be an

eigenvalue of A. Let Reλ be the real part of λ. Suppose Reλ ≤ 0. Since λ is an eigenvalue

of A, there exists a nonzero vector x ∈ Cn such that

Axm−1 = λx[m−1],

which yields

Bxm−1 = (c− λ)x[m−1].

It follows from Definition 1.1 that c− λ is an eigenvalue of B. Since c > ρ(B) and Reλ ≤ 0,

we have

|c− λ| ≥ c− Reλ ≥ c > ρ(B),

which contradicts the maximality of ρ(B). We complete the proof.

Another equivalent condition for anM-tensor is presented as follows, which is more easily

certified than the one in Theorem 3.2.
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Theorem 3.3 A tensor A ∈ Z is an M-tensor if and only if all of its real eigenvalues are

positive.

Proof. The necessity of the condition follows directly from Theorem 3.2. Suppose now that

all real eigenvalues of A ∈ Z are positive. Let B = aI − A where a = max
1≤i≤n

{Ai...i}. Then B

is nonnegative and hence it follows from Theorem 2.2 that ρ(B) is an eigenvalue of B. By

Lemma 2.1, a− ρ(B) is a real eigenvalue of A, it must be positive. That is, a > ρ(B), and

therefore A is an M-tensor.

Clearly, we easily obtain the following results from the above theorems.

Corollary 3.1 If A ∈ Z is an M-tensor, then max
1≤i≤n

{Ai...i} > 0.

Proof. Let a = max
1≤i≤n

{Ai...i} and B = aI −A. Then B ≥ 0 and hence ρ(B) is an eigenvalue

of B. So, a − ρ(B) is a real eigenvalue of A. Since A is an M-tensor, by Theorem 3.3,

a− ρ(B) > 0, which implies a > ρ(B) ≥ 0.

Note that, If the tensor A ∈ Z then A can be deposed into the form A = λI − B with

λ ≥ max
1≤i≤n

{Ai...i} and B ≥ 0. Thus, we have the following sufficient and necessary condition

for a tensor being an M-tensor, which is a generalization of Theorem 7 in [27].

Corollary 3.2 Let A ∈ Z. Decompose the tensor A into the form A = λI − B, where

λ ≥ max
1≤i≤n

{Ai...i}. Then A is an M-tensor if and only if λ > ρ(B).

Proof. Clearly, B ≥ 0. By Theorem 2.2, ρ(B is an eigenvalue of B. By Lemma 2.1, λ−ρ(B)

is a real eigenvalue of A. If A be an M-tensor then we have, by Theorem 3.3, λ− ρ(B) > 0,

i.e., λ > ρ(B). If λ > ρ(B) then, by Definition 3.1, A is an M-tensor.

Note that this result provides us an easy method for determining whether a tensor A

is an M-tensor. We only need to compute the spectral radius of the tensor λI − A, where

λ ≥ max
1≤i≤n

{Ai...i}.

Finally, we give a sufficient condition for a tensor to be an M-tensor, which is easily

verified. First, we state a definition which is a generalization from matrices to tensors

[8, 26].

Definition 3.2 Let A be an m-order and n-dimensional tensor. A is diagonally dominant

8



if
n
∑

i2,...,im=1,δii2...im=0

|Aii2...im | ≤ |Aii...i|, i = 1, 2, . . . , n, (3)

where the symbol δii2...im = 0 is defined as the entry of the unit tensor I. A is strictly

diagonally dominant if the strict inequality holds in (3) for all i. A is irreducibly diagonally

dominant if A is irreducible, diagonally dominant, and the strict inequality in (3) holds for

at least one i.

Theorem 3.4 If a tensor A ∈ Z is strictly or irreducibly diagonally dominant with all

nonnegative diagonal entries, then A is an M-tensor.

Proof. Let λ be an eigenvalue of A with a nonzero eigenvector x. Denote

|xi| = max
1≤j≤n

|xj |.

Then
n
∑

i2,...,im=1

Aii2...imxi2 · · ·xim = λxm−1
i , (4)

which implies that

|λ− Aii...i| ≤
n
∑

i2,...,im=1;δii2...im=0

|Aii2...im |.

Hence, the diagonal dominance of A implies that

|Reλ−Ai...i| ≤ |λ−Ai...i| ≤ |Ai...i|. (5)

Since Aj...j ≥ 0 for j = 1, 2, . . . , n, (5) yields

Reλ− Ai...i ≥ −Ai...i. (6)

Suppose that A is strictly diagonally dominant. Then the strict inequality holds in (3)

for all j, so the strict inequality holds in (6). This yields Reλ > 0, i.e., any eigenvalues of A

has a positive real part. By Theorem 3.2, A ∈ Z is an M-tensor.

Suppose now that A is irreducibly diagonally dominant. Define

J = {l : |xl| = max
1≤i≤n

|xi|, |xl| > |xi|for some i}.

If J = ∅, then (4) and the diagonal dominance of A imply that for i = 1, 2, . . . , n,

|λ− Aii...i| ≤
n
∑

i2,...,im=1;δii2...im=0

|Aii2...im | ≤ |Aii...i|.
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Let

|Akk...k| >
n
∑

i2,...,im=1;δki2...im=0

|Aki2...im|

for some k. We have

|Reλ− Ak...k| ≤ |λ− Ak...k| < |Ak...k| = Ak...k

which implies that Reλ > 0.

If J 6= ∅, then the irreducibility of A implies that there exist l ∈ J and i2, . . . , im 6∈ J

such thatAli2...im 6= 0. Hence (4) yields

|λ−All...l| ≤
n
∑

i2,...,im=1;δli2...im=0

|Ali2...im |
|xi2|

|xl|
· · ·

|xim|

|xl|
<

n
∑

i2,...,im=1;δli2...im=0

|Ali2...im | ≤ |All...l|,

which implies that Reλ > 0. By Theorem 3.2, A ∈ Z is an M-tensor.

4. An Algorithm

Theorem 3.3 shows that a tensor A ∈ Z is an M-tensor if and only if the smallest real

eigenvalue of A is positive. In this section we propose an algorithm to determine whether

or not a tensor with nonpositive off-diagonal entries is an M-tensor.

Lemma 4.1 Let A be an m-order and n-dimensional tensor. Define

LA = min
1≤i≤n

{Aii...i − Ci}, UA = max
1≤i≤n

{Aii...i + Ci}, (7)

where

Ci =
n
∑

i2,...,im=1,δii2...im=0

|Aii2...im|, i = 1, 2, . . . , n.

Then LA and UA are the lower and upper bounds of real eigenvalues of A, respectively.

Proof. Let λ be a real eigenvalue of A with an eigenvector x 6= 0. That is,

n
∑

i2,...,im=1

Aii2...imxi2 · · ·xim = λxm−1
i , i = 1, 2, . . . , n. (8)

Let |xk| = max1≤i≤n |xi|. Then (8) implies that

|λ− Akk...k| ≤
n
∑

i2,...,im=1,δki2...im=0

|Aki2...im |
|xi2 |

|xk|
· · ·

|xim |

|xk|
≤ Ck,
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which yields Akk...k − Ck ≤ λ ≤ Akk...k + Ck. This shows LA ≤ λ ≤ UA.

For a tensor A ∈ Z, we define a tensor C as

C = UAI −A, (9)

where UA is defined in (7). Clearly, the tensor C is a nonnegative tensor. By Lemma 2.1 and

Theorem 2.1, UA−ρ(C) is the smallest eigenvalue of A. By Theorem 3.3 and Definition 3.1,

if UA − ρ(C) is positive then A is an M-tensor. Based on this observation, in the following,

we establish an algorithm for computing the smallest eigenvalue of a tensor A ∈ Z. If the

smallest eigenvalue is positive then A is an M-tensor. Otherwise, A is not an M-tensor.

Based on the above discussion, we propose the following algorithm to determine whether

or not a tensor A with nonpositive off-diagonal entries is an M-tensor.

Algorithm 2

Step 0. Compute the upper bound of real eigenvalues, UA by the formula (7) and let C =

UAI − A.

Step 1. By using Algorithm 1, compute λ, the largest eigenvalue of C.

Step 2. Let µ = UA−λ. If µ > 0 then A is an M-tensor. Otherwise, A is not an M-tensor.

In order to show the viability of Algorithm 2, we used Matlab Version 7.7(R2008b) to

test it on some tensors with nonpositive off-diagonal entries which are randomly generated

by the following procedure.

Procedure 1.

1. Give (m,n,Ad), where n and m are the dimension and the order of the randomly

generated tensor, respectively, and Ad > 0.

2. Randomly generate an m-order n-dimensional tensor D such that all elements of D are

in the interval (0, 1).

3. Let A = (Ai1···im), where Ai···i = Ad + Di···i, i = 1, 2, ..., n, otherwise, Ai1···im =

−Di1···im , 1 ≤ i1, . . . , im ≤ n.

Our numerical results are reported in Table 1 In this table, n andm specify the dimension

and the order of the randomly generated tensor, respectively. Ad is a parameter in Procedure

11



1. Given (m,n,Ad), we generate 100 tensors and determine whether or not they are M-

tensors by Algorithm 2. In the Yes column we show the number of tensors which are

M-tensors. In the No column, we give the number of tensors which are not M-tensors.

CPU(s) denotes the average computer time in seconds used for Algorithm 2. The results

reported in Table 1 show that Algorithm 2 performs well for these tensors.

5. An Application: The positive definiteness of a multivariate form

In this section we apply the proposed algorithm for testing the positive definiteness of a

class of multivariate forms.

An mth degree homogeneous polynomial form of n variables f(x), where x ∈ Rn, can be

denoted as

f(x) :=

n
∑

i1,i2,...,im=1

Ai1i2...imxi1xi2 · · ·xim . (10)

When m is even, f(x) is called positive definite if

f(x) > 0, ∀x ∈ Rn, x 6= 0. (11)

Testing positive definiteness of a multivariate form is an important problem in the stability

study of nonlinear autonomous systems [2, 3, 16]. It is proved in [22] that f(x) is positive

definite if and only if its corresponding tensor A = (Ai1...im) is symmetric and all of real

eigenvalues are positive. That is, testing positive definiteness of a class of even-order mul-

tivariate forms is equivalent to determine whether or not the even-order symmetric tensor

is an M-tensor. It should be pointed out that the positive definiteness of a special class

of multivariate forms was studied in [14]. It can be regarded as our special case. Some

numerical results can be referred [14]. We omit them here.

6. Conclusions

We have defined and studied M-tensors. An M-tensor is the generation of an M-matrix.

Many important characterizations of M-matrices has been extended to M-tensors. We have

proposed two sufficient and necessary conditions, a necessary condition, and a sufficient

condition of an M-tensor. We have shown that the smallest eigenvalue of an M-tensor is

positive, and then proposed an algorithm to determine whether or not a tensor with nonpos-

itive off-diagonal entries is an M-tensor. Finally, we link an M-tensor with a multivariate

form and apply the algorithm to judge the positive definiteness of the multivariate form.

Numerical results are reported.
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m n Ad Yes No CPU(s)

3 10 5 0 100 0.0025

3 10 10 0 100 0.0030

3 10 100 100 0 0.0028

3 10 1000 100 0 0.0028

3 20 5 0 100 0.0094

3 20 10 0 100 0.0102

3 20 100 0 100 0.0088

3 20 1000 100 0 0.0084

3 30 5 0 100 0.0181

3 30 10 0 100 0.0187

3 30 100 0 100 0.0186

3 30 1000 100 0 0.0195

3 40 5 0 100 0.0352

3 40 10 0 100 0.0358

3 40 100 0 100 0.0362

3 40 1000 100 0 0.0355

3 50 5 0 100 0.0619

3 50 10 0 100 0.0619

3 50 100 0 100 0.0598

3 50 1000 0 100 0.0692

4 10 5 0 100 0.0592

4 10 10 0 100 0.0603

4 10 100 0 100 0.0611

4 10 1000 0 100 0.0620

4 20 5 0 100 0.2945

4 20 10 0 100 0.3097

4 20 100 0 100 0.3187

4 20 1000 0 100 0.3116

4 30 5 0 100 1.3233

4 30 10 0 100 1.3125

4 30 100 0 100 1.3170

4 30 1000 0 100 1.3453

4 40 5 0 100 6.5375

4 40 10 0 100 6.5358

4 40 100 0 100 6.4925

4 40 1000 0 100 6.5520

4 50 5 0 100 15.2086

4 50 10 0 100 15.1844

4 50 100 0 100 15.2102

4 50 1000 0 100 15.2039

Table 1: Output of Algorithm 2 for randomly generated tensors.
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There are some questions are still in study. For example, whether the condition “there

exists x ∈ Rn, x ≥ 0 such that Axm−1 > 0” is a necessary and sufficient condition for a

tensor A ∈ Z to be an M-tensor?
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[24] D. D. Šiljak, Decentralized Control of Complex Systems, Academic Press, Boston, 1991.
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