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Abstract

In this paper, some V-cycle multigrid algorithms are presented for the coupling
system arising from discretization the Dirichlet exterior problem by coupling the
natural boundary element method and finite element method. The convergence of
these multigrid algorithms is obtained even with only one smoothing on all levels
and the rate of convergence is uniformly bounded independent of the number of
levels and the mesh sizes of all levels which indicates that these multigrid algorithms
are optimal. Some numerical results are also reported.

1 Introduction

In many fields of scientific and engineering computing, it is necessary to solve boundary
values problems of partial differential equations over unbounded domains. The standard
techniques such as the finite element method, which is effective for most problems in
bounded domain, will meet some difficulties and the corresponding computing cost
will be very high for unbounded domain problems. So for problems of this kind, it
is a good choice to use the coupling method of boundary element method and finite
element method because it enables us to combine the advantages of boundary element
method for treating domains extended to infinity with those of finite element method
in treating the complicated bounded domain problems. Research toward this direction
is of great importance both in theory and practical computation.

Generally speaking, the procedure of this kind of coupling is described as follows.
The unbounded domain is divided into two subregions, a bounded inner one and an
unbounded outer one, by introducing a artificial common boundary. Then, the problem
is reduced to an equivalent one in the bounded region. There are many approaches to
accomplish this reduction (refer to [3, 4, 5, 7, 8, 9, 11, 12, 14, 16, 17, 19, 21]). Natural
boundary reduction method is one of them.

∗
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Natural boundary reduction method and its coupling with finite element method,
which is also known as the exact artificial boundary condition method, are suggested
and developed first by K. Feng in 1980, D. Yu in 1982 and H. Han in 1985. And a
very similar method, the so-called DtN method, has also been devised by J. B. Keller
and D. Givoli in 1989. In this reduction, the problem over unbounded exterior domain
is reduced into an bounded problem with a hyper-singular integral equation on the
artificial boundary by using a Green function to get the exact artificial boundary con-
dition with hyper-singular integral. It is fully compatible with the variational principle
over the domain, and the boundary element are also fully compatible with the domain
elements. This coupling is natural and direct. Moreover, the coupled bilinear form
preserves automatically the symmetry and coerciveness of the original bilinear form,
which result that not only the analysis of the discrete problem is simplified, but also
the error estimates and the numerical stability are restored (see [8] [19]). In this paper,
we follow this approach.

With a discretization scheme, construction of efficient algorithms for solving the
resulting discrete system is also of great importance. So, our aim is to construct efficient
algorithms for the resulting discrete system of the coupling of natural boundary element
method and finite element method .

It is well known that multigrid algorithms are among the most efficient methods for
solving discretization equations arising from various finite element approximations of
boundary value problem on bounded domain (for multigrid method, refer to [1, 10] for
detail). And during the last three decades, there has been intensive research toward
such methods. The purpose of this paper is to construct multigrid algorithms for
discretization equations arising from the coupling of the natural boundary element
method and finite element method for the Dirichlet exterior problem and to investigate
their convergence.

In the following sections, some V-cycle multigrid algorithms of this kind are con-
structed and we obtain the convergence of these multigrid algorithms even with only
one smoothing on all levels. The rate of convergence is shown to be uniformly bounded
independent of the number of levels and the mesh sizes of all levels which indicates that
these multigrid algorithms are optimal.

The remainder of the paper is organized as follows: In section 2, we present our
model problem and introduce the natural boundary reduction method. Multigrid algo-
rithm is described and analyzed in section 3. And some numerical results are reported
in section 4.

2 Model problem and natural boundary reduction

We adopt the notations for Sobolev space, their norms and semi-norms as presented in
[2, 6]. Let Ω be a Lipschitz bounded domain in R

2, Ωc = R
2 \ (Ω∪ ∂Ω), f ∈ L2(Ωc) be

a given compactly supported function. We consider the following model problem

{
−4u = f, in Ωc,

u = 0, on ∂Ω,
(2.1)
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subject to the asymptotic conditions

u(x, y) = α+O(1/r) , |∇u(x, y)| = O(1/r2) ,

as r =
√
x2 + y2 → ∞ where α is a constant.

Define

H1
4(Ωc) = {v| v√

r2 + 1 ln(r2 + 2)
,
∂v

∂x
,
∂v

∂y
∈ L2(Ωc) , v|∂Ω = 0}

and

a(w, v) =

∫ ∫

Ωc

∇w · ∇vdxdy , ∀w, v ∈ H1
4(Ωc) .

Then the corresponding variational form of (2.1) can be written as:
Find u ∈ H1

4
(Ωc) such that

a(u, v) = (f, v) , ∀v ∈ H1
4(Ωc) . (2.2)

According to the hypothesis on f , we choose a circle disc Ω0 containing Ω̄ and
supp f . Let Ω1 = Ωc ∩ Ω0, Ω2 = Ωc

0 = R
2 \ (Ω0 ∪ ∂Ω0) and Γ = ∂Ω0. Then we have

a(u, v) = a1(u, v) + a2(u, v) , (2.3)

where ai(u, v) =
∫ ∫

Ωi
∇u · ∇vdxdy , i = 1, 2.

Next, we introduce the natural boundary reduction method and derive a coupled
variational form equivalent to (2.3).

From Green’s formula on Ω2, we have

a2(u, v) =

∫

Γ

∂

∂n
u(z) · v(z)dz +

∫ ∫

Ω2

fvdxdy . (2.4)

Let V (z, z′) be the Green’s function for the Laplace operator on the domain Ω2, which
satisfies {

−4V (z, z′) = δ(z − z′), ∀z, z′ ∈ Ω2,
V (z, z′)|z∈Γ = 0, ∀z′ ∈ Ω2,

subject to the same asymptotic conditions as u. By taking w = V (z, z ′), v = u in
Green’s second formula

∫ ∫

Ω2

(w4v − v4w)dz′ =

∫

Γ
(w
∂v

∂n
− v

∂w

∂n
)dz′ ,

we get (refer to [19])

u(z) =

∫ ∫

Ω2

f(z′)V (z, z′)dz′ −
∫

Γ

∂

∂n′
V (z, z′)u(z′)dz′ , ∀z ∈ Ω2 ,

where n and n′ denote the exterior normal vectors on Γ (viewed as the boundary of
Ω2) at the respective points z and z ′. Thus we obtain

∂u

∂n
(z) =

∫ ∫

Ω2

f(z′)
∂

∂n
V (z, z′)dz′ −

∫

Γ

∂2

∂n∂n′
V (z, z′)u(z′)dz′ , ∀z ∈ Γ . (2.5)
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Let

Ku(z) = −
∫

Γ

∂2

∂n∂n′
V (z, z′)u(z′)dz′ , z ∈ Γ . (2.6)

Then, it follows from (2.4), (2.5), (2.6) and the fact that supp f ⊂ Ω0 that

a2(u, v) =

∫

Γ
Ku(z) · v(z)dz . (2.7)

Define H1
∗ (Ω1) = {v| v ∈ H1(Ω1), v|∂Ω = 0} and

b(u, v) = a1(u, v)+ < Ku, v >Γ , (2.8)

where < ·, · >Γ denotes the L2 inner product on Γ. With (2.3) and (2.7), we can rewrite
the variation form (2.2) as:
Find u ∈ H1

∗ (Ω1) such that

b(u, v) =

∫ ∫

Ω1

fvdxdy , ∀v ∈ H1
∗ (Ω1) . (2.9)

Remark 2.1 The operator K : H
1

2 (Γ) 7→ H−
1

2 (Γ) is shown to be just the Dirichlet-
Neumann operator (Steklov-Poincaré operator) for Ω2 in [18]. So, it is symmetric
and semi-positive definite with respect to the inner product < ·, · >Γ (see [19]), which
indicates that b(u, v) is symmetric, bounded and coercive in H 1

∗ (Ω1). Thus, it follows
from the well known Lax-Milgram Theorem that the variational problem (2.9) has unique
solution u ∈ H1

∗ (Ω1).

Remark 2.2 As Γ is a circle, the Green’s function V (z, z ′) can be expressed explicitly.
For example, in the case that the center of the circle Γ is the origin and its radius is R,

V (z, z′) =
1

4π
ln
R4 + r2r′2 − 2R2rr′ cos(θ − θ′)

R2(r2 + r′2 − 2rr′ cos(θ − θ′))
, z = (r, θ) , z′ = (r′, θ′) ∈ Ω2 .

Moreover, we have (refer to [19])

∂2

∂n∂n′
V (z, z′) =

1

4π sin2((θ − θ′)/2)
, z = (r, θ) , z′ = (r′, θ′) ∈ Γ .

It is worth pointing out that these explicit expressions ensure the practical use of the
natural boundary reduction method in practical computation. And these expressions also
imply another advantage of the natural boundary reduction method compared with many
other approaches: we need not to solve any boundary integral equation associated with
the unbounded subdomain and instead only calculation of certain singular integrations
is needed.

Remark 2.3 In order to show how to calculate the singular integrations involved in
the bilinear form, we divide the artificial boundary Γ into m circular arcs with the same
length. Let {φi}m

i=1 be the set of the nodal basis functions on Γ. Noticing that, in polar
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coordinates (r, θ), the nodal basis functions associated with Γ are piecewise linear with
respect to the variable θ, we can obtain (refer to [19])

< Kφi, φj >Γ = − 1
4π

∫ 2π
0

∫ 2π
0

φi(θ)φj (θ′)

sin2((θ−θ′)/2)
dθdθ′

= 4m2

π3

∑
∞

k=1
1
k3 sin4 kπ

m cos 2k(i−j)π
m , i, j = 1, · · · ,m .

From this expression, we can easily find that the stiffness matrix of K is symmetric and
circulant, which also allows for more efficiency and implies only small memory storage
for such stiffness matrix. Moreover, since the series converges quickly, suitable short
finite sum can be used to simplify the calculation.

3 Multigrid algorithm

In this section, we introduce the multigrid algorithm and analyze its convergence.
First, we introduce some multi-level triangulations and notations. Because of the

appearance of curved triangles, if we use the usual approach to refine mesh by obtaining
the k + 1 level triangulation Tk+1 by dividing the triangle in the k level into four by
connecting the midpoint of each edge and construct the corresponding finite element
space, then, unfortunately, the resulting spaces are not nested. And obviously non-
nested spaces will cause some additional difficulty and trouble for the analysis of the
convergence of the multigrid algorithm. In order to avoid this additional difficulty
caused by non-nested spaces, we do not use the usual approach to refine mesh, but
introduce another approach by employing the initial triangulation as a parametrization
of Ω1 and obtaining the refinement step from subdividing the reference triangle which
leads to a sequence of nested spaces. (refer to [15])

More precisely, let Γ be parameterized by a 1-periodic function ψ : [0, 1] → Γ such
that

β(z) := |ψ′(z)| > 0

for all z ∈ [0, 1]. And let 0 = z
(1)
0 < z

(1)
1 < · · · < z

(1)
N1

= 1, N1 ∈ N, be a uniform

partition of [0, 1] with z
(1)
i − z

(1)
i−1 = h1 := 1/N1, i = 1, 2, · · · , N1. We denote by

Ωh1 the polygonal domain whose vertices on Γ are ψ(z
(1)
0 ), ψ(z

(1)
1 ), · · · , ψ(z

(1)
N1

). Let
T1 be a regular triangulation of Ω̄h1 by triangles of diameter satisfying diam τi ≤
h1 supz∈[0,1] β(z) for all τi ∈ T1. Then there exists affine mapping Gi such that Gi(τ̂ ) =
τi for each τi ∈ T1 where τ̂ = 4((0, 0), (1, 0), (0, 1)) is the reference triangle. Next,
we replace each triangle τi ∈ T1 with two vertices on Γ by the corresponding curved
triangle. Without loss of generality we may suppose that the vertices p0, p1, p2 of

a curved triangle τi satisfy p1 = ψ(z
(1)
j ), p2 = ψ(z

(1)
j+1), respectively. Then, a C∞-

mapping G̃i with G̃i(τ̂ ) = τi is given by (refer to [20])

G̃i = Gi + Ui

with

Ui(t) =
t1

1 − t2
[ψ((1 − t2)z

(1)
j + t2z

(1)
j+1) − (1 − t2)ψ(z

(1)
j ) − t2ψ(z

(1)
j+1)] .
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We denote this initial triangulation with non-curved and curved triangles by T̃1. Sub-
dividing in the usual way the reference triangle τ̂ in 4, 16, 64, · · · triangles yields a
sequence of meshes

T̃1 ⊂ T̃2 ⊂ T̃3 ⊂ · · ·
with step width diam τi ≤ hj supt∈[0,1] β(t) for all τi ∈ T̃j, where hj = 2−jh1.

The finite element spaces on these meshes are considered to be piecewise linear
and continuous. Let the degrees of freedom on the mesh T̃j be Ñj and denote the
corresponding nodal basis function by φj,k, k = 1, 2, · · · , Ñj . With the notation Wj =
span {φj,k, k = 1, 2, · · · , Ñj} for j = 1, 2, · · · , J , we obtain

W1 ⊂W2 ⊂ · · · ⊂WJ ⊂ H1
∗ (Ω1) .

Then the corresponding J -level discrete variational problem of (2.9) is:
Find uJ ∈WJ such that

b(uJ , v) =

∫ ∫

Ω1

fvdxdy , ∀v ∈WJ . (3.1)

It is not difficult to obtain that (3.1) has a unique solution (refer to [19]). And the
corresponding error estimates in H1, L2 and L∞ norm can be found in [19].

In what follows, we denote c or C with or without subscript a generic positive con-
stant, which can take different values in different occurrences but always be independent
of the mesh size and the number of levels.

Define operators Ak : Wk 7→ Wk, Âk : Wk 7→ Wk, Sk : WJ 7→ Wk, Ŝk : WJ 7→ Wk

and Tk : WJ 7→ Wk, k = 1, 2, · · · , J , by

(Akw, v) = b(w, v) , ∀w, v ∈Wk , (3.2)

(Âkw, v) = a1(w, v) , ∀w, v ∈Wk , (3.3)

b(Skw, v) = b(w, v) , ∀w ∈WJ , v ∈Wk , (3.4)

a1(Ŝkw, v) = a1(w, v) , ∀w ∈WJ , v ∈Wk , (3.5)

(Tkw, v) = (w, v) , ∀w ∈WJ , v ∈Wk . (3.6)

From above definitions, we can easily obtain

TkAJ = AkSk , (3.7)

and
TkÂJ = ÂkŜk . (3.8)

Let Qk be a certain smoother, then the V-cycle multigrid algorithm can be described
as follows:
Algorithm 3.1

Set B1 = A−1
1 . For k > 1 define Bk : Wk 7→Wk in terms of Bk−1 as follows:

Let g ∈Wk,
1. Set x0 = 0.
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2. Define xi for i = 1, 2, · · · ,m(k) by

xi = xi−1 +Qt
k(g −Akxi−1) .

3. Set ym(k) = xm(k) + qk, where qk is defined by

qk = Bk−1Tk−1(g −Akxm(k)) .

4. Define yi for i = m(k) + 1,m(k) + 2, · · · , 2m(k) by

yi = yi−1 +Qk(g −Akyi−1) .

5. Set Bkg = y2m(k).

where Qt
k denotes the adjoint of Qk with respect to inner product (·, ·) and we take

m(k) = 1 for all k which is suffices in our analysis. The case m(k) > 1 and the cases
with only pre-smoothing or post-smoothing can be analyzed similarly.

Let Pk = I −QkAk, k = 1, 2, · · · , J , Dk = QkAkSk for k > 1 and D1 = S1, then it
is easy to check that the error operator associated with the discretization equation

Aku = f (3.9)

is given by
Ẽk = I −BkAkSk = EkE

∗
k (3.10)

where the superscript ∗ denotes the adjoint with respect to the inner product b(·, ·) and

Ek = (I −Dk)(I −Dk−1) · · · (I −D1) . (3.11)

In order to analyze the convergence of the multigrid algorithm, we make some
assumptions, which will be verified later. Let D̃k = AkSk/λk = TkAJ/λk for k > 1 and
D̃1 = S1, where λk denotes the largest eigenvalue of Ak.

(A1) There exists a constant Cb > 0 independent of k such that

b(v, v) ≤ Cb

J∑

k=0

b(D̃kv, v) , ∀v ∈WJ . (3.12)

(A2) There exist 0 < ζ < 1 and C̃ > 0 independent of k such that

b(D̃kw,w) ≤ (C̃ζk−j)2b(w,w) , ∀w ∈Wj , j ≤ k . (3.13)

For the smoother Qk, we assume the following two condition are satisfied.
(A3) There exits a constant CQ ≥ 1 independent of k such that

(v, v)

λk
≤ CQ(Q̄kv, v) , ∀v ∈Wk , (3.14)

where Q̄k = (I − P ∗
kPk)A

−1
k .

(A4) There exists a positive constant σ < 2 independent of k satisfying

b(Dkv,Dkv) ≤ σb(Dkv, v) , ∀v ∈WJ . (3.15)

With these assumptions, we can obtain the convergence theorem of multigrid algo-
rithm given below by following the frame work of [1]. For the self-containedness of this
paper, we still provide a proof here.
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Theorem 3.1 If (A1), (A2), (A3) and (A4) are satisfied, then there exists a positive
constant δ < 1 independent of h and J such that

0 ≤ b((I −BJAJ)v, v) ≤ δb(v, v) , ∀u ∈WJ . (3.16)

Proof. From (3.10), it is obvious that the lower inequality holds since

b((I −BJAJ)v, v) = b(E∗
Jv,E

∗
Jv) := |||E∗

Jv|||2 ≥ 0 .

And by the fact that |||E∗
Jv||| = |||EJv|||, we only need to estimate |||EJv||| for the

upper inequality.
From (3.11), we get

Ek = (I −Dk)Ek−1 , (3.17)

from which follows

b(Ekv,Ekv) = b(Ek−1v,Ek−1v) − 2b(Ek−1v,DkEk−1v) + b(DkEk−1v,DkEk−1v) ,

i.e.
b(Ek−1v,Ek−1v) − b(Ekv,Ekv) = b((2I −Dk)Ek−1v,DkEk−1v) . (3.18)

Let E0 = I. Then it follows from (3.18) that

b(v, v) − b(EJv,EJv) =

J∑

i=1

b((2I −Dk)Ek−1v,DkEk−1v) . (3.19)

Define D̄k = Q̄kAkSk = (I−P ∗
kPk)Sk for k > 1 and D̄k = S1. From Pk = I−QkAk

and the definition of P ∗
k , it is easy to check that P ∗

k = I −Qt
kAk. Combining this with

(3.2), (3.4) and the definition of Dk, we have

b(D̄kEk−1v,Ek−1v) = b((I − (I −Qt
kAk)(I −QkAk))SkEk−1v,Ek−1v)

= b((Qt
k +Qk)AkSkEk−1v,Ek−1v)

−b(Qt
kAkQkAkSkEk−1v,Ek−1v)

= b((Qt
k +Qk)AkSkEk−1v, SkEk−1v)

−b(Qt
kAkQkAkSkEk−1v, SkEk−1v)

= ((Qt
k +Qk)AkSkEk−1v,AkSkEk−1v)

−(Qt
kAkQkAkSkEk−1v,AkSkEk−1v)

= 2(AkSkEk−1v,QkAkSkEk−1v)
−(AkQkAkSkEk−1v,QkAkSkEk−1v)

= b((2I −Dk)Ek−1v,DkEk−1v) .

(3.20)

Thus, (3.19) and (3.20) imply

b(v, v) − b(EJv,EJv) =

J∑

i=1

b(D̄kEk−1v,Ek−1v) . (3.21)
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From (A1), (3.2), (3.4), triangle inequality, the fact D̃1 = D̄1 = S1 and E0 = I, we
have

b(v, v) ≤ Cb
∑J

i=1 b(D̃kv, v)

= Cb[b(D̃1v, v) +
∑J

i=2 b(AkSkv, v)/λk ]

= Cb[b(D̃1v, v) +
∑J

i=2 ‖AkSkv‖2
0/λk]

≤ Cb[b(D̃1v, v) + 2
∑J

i=2(‖AkSkEk−1v‖2
0 + ‖AkSk(I −Ek−1)v‖2

0)/λk]

= Cb[b(D̄1E0v,E0v) + 2
∑J

i=2 ‖AkSkEk−1v‖2
0/λk

+2
∑J

i=2 b(AkSk(I −Ek−1)v, (I −Ek−1)v)/λk]

≤ 2Cb[b(D̄1E0v,E0v) +
∑J

i=2 ‖AkSkEk−1v‖2
0/λk

+
∑J

i=2 b(D̃k(I −Ek−1)v, (I −Ek−1)v)] .
(3.22)

For k = 2, 3, · · · , J , (A3), (3.2) and (3.4) imply that

∑J
i=2 ‖AkSkEk−1v‖2

0/λk ≤ CQ
∑J

i=2(Q̄kAkSkEk−1v,AkSkEk−1v)

= CQ
∑J

i=2 b(Q̄kAkSkEk−1v,Ek−1v)

= CQ
∑J

i=2 b(D̄kEk−1v,Ek−1v) .

(3.23)

Let ṽ = (I −Ek−1)v. Noting (3.17), we get

Ei−1 −Ei = DiEi−1 ,

from which follows

I −Ek =
k∑

i=1

DiEi−1 . (3.24)

Let wi = DiEi−1v. By (3.24), (3.2), (3.4), Cauchy-Schwarz inequality, (A2) and (A4),
it follows

∑J
k=2 b(D̃kṽ, ṽ) ≤ ∑J

k=2

∑k−1
i=1

∑k−1
j=1 b(D̃kDiEi−1v,DjEj−1v)

=
∑J

k=2

∑k−1
i=1

∑k−1
j=1(AkSkDiEi−1v,AkSkDjEj−1v)/λk

≤ ∑J
k=2

∑k−1
i=1

∑k−1
j=1 ‖AkSkDiEi−1v‖0‖AkSkDjEj−1v‖0/λk

=
∑J

k=2

∑k−1
i=1

∑k−1
j=1 b(D̃kwi, wi)

1/2b(D̃kwj , wj)
1/2

≤ C̃2
∑J

k=2

∑k−1
i=1

∑k−1
j=1 ζ

2k−i−jb(wi, wi)
1/2b(wj , wj)

1/2

≤ C̃2
∑J

k=2

∑k−1
i=1

∑k−1
j=1 ζ

2k−i−j[b(wi, wi) + b(wj , wj)]/2

= C̃2
∑J

k=2

∑k−1
i=1

∑k−1
j=1 ζ

k−jζk−ib(wi, wi)

≤ ζC̃2

1−ζ

∑J
k=2

∑k−1
i=1 ζ

k−ib(wi, wi)

= ζC̃2

1−ζ

∑J−1
i=1

∑J
k=i+1 ζ

k−ib(wi, wi)

≤ ζ2C̃2

(1−ζ)2
∑J−1

i=1 b(DiEi−1v,DiEi−1v)

≤ σζ2C̃2

(1−ζ)2
∑J−1

i=1 b(DiEi−1v,Ei−1v) .

(3.25)
On the other hand, from (3.20) and (A4), we have

b(D̄kEi−1v,Ei−1v) = b((2I −Dk)Ei−1v,DkEi−1v)
≥ (2 − σ)b(DkEi−1v,Ei−1v) .

(3.26)
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Noting b(D̄JEJ−1v,EJ−1v) = (Q̄JAJEJ−1v,AJEJ−1v) ≥ 0, with (3.25) and (3.26), we
obtain ∑J

k=2 b(D̃k ṽ, ṽ) ≤ σζ2C̃2

(1−ζ)2
∑J−1

i=1 b(DiEi−1v,Ei−1v)

≤ σ
2−σ ( ζ

1−ζ )2C̃2
∑J−1

k=1 b(D̄kEk−1v,Ek−1v)

≤ σ
2−σ ( ζ

1−ζ )2C̃2
∑J

k=1 b(D̄kEk−1v,Ek−1v) .

(3.27)

Thus, from (3.22), (3.23), (3.27) and (3.21), it follows

b(v, v) ≤ Cm
∑J

k=1 b(D̄kEk−1v,Ek−1v)
= Cm[b(v, v) − b(EJv,EJv)]

where Cm = 2Cb[CQ + σ
2−σ ( ζ

1−ζ )2C̃2]. Let δ = 1 − 1/Cm < 1, then

b(EJv,EJv) ≤ (1 − 1/Cm)b(v, v) = δb(v, v) .

This completes the proof. �

With Theorem 3.1, it is obvious that we only need to verify (A1), (A2), (A3) and
(A4) to achieve the convergence of the multigrid algorithm. To this end, we still need
some notations. Let D̂k = ÂkŜk/λ̂k = TkÂJ/λ̂k for k > 1 and D̂1 = Ŝ1, where λ̂k

denotes the largest eigenvalue of Âk. It is well known that (A1) and (A2) hold for
a1(·, ·) which are denoted as (A1D) and (A2D) respectively here (refer to [1]).

(A1D) There exists a constant Ca > 0 independent of k such that

a1(v, v) ≤ Ca

J∑

k=0

a1(D̂kv, v) , ∀v ∈WJ , (3.28)

(A2D) There exist 0 < ζa < 1 and C̃a > 0 independent of k such that

a1(D̂kw,w) ≤ (C̃aζ
k−j
a )2a1(w,w) , ∀w ∈Wj , j ≤ k . (3.29)

Next, we show that (A.1) and (A.2) also hold for b(·, ·). First, some lemmas are
introduced.

Let ŵ denote the discrete harmonic extension of w|Γ, which is defined by
{
a1(ŵ, v̂) = 0 , ∀v̂ ∈W 0

J ,
ŵ|∂Ω = 0 , ŵ|Γ = w|Γ ,

where W 0
J = {v| v ∈WJ , v|Γ = 0}. Then, it follows (refer to [13])

Lemma 3.1 For any w ∈WJ , we have

< Kw,w >Γ≤ |ŵ|1,Ω1
. (3.30)

With this lemma, we can obtain the following lemma.

Lemma 3.2 For any w ∈WJ , we have

a1(w,w) ≤ b(w,w) ≤ C0a1(w,w) . (3.31)

10



Proof. Since the lower inequality is obvious, we only need to prove the upper
inequality. To this end, let w̃ ∈ WJ be the discrete harmonic extension of w|Γ, which
is defined by {

a1(w̃, ψ) = 0 , ∀ψ ∈W 0
J ,

w̃|∂Ω = 0 , w̃|Γ = w|Γ .

Set w1 = w − w̃ ∈W 0
J . Then we get

a1(w,w) = |w1|21,Ω1
+ |w̃|21,Ω1

, (3.32)

and
b(w,w) = |w1|21,Ω1

+ |w̃|21,Ω1
+ < Kw,w >Γ . (3.33)

With (3.32), (3.33) and Lemma 3.1, we obtain

b(w,w) = |w1|21,Ω1
+ |w̃|21,Ω1

+ < Kw,w >Γ

≤ |w1|21,Ω1
+ 2|w̃|21,Ω1

≤ C0a1(w,w) .

This completes the proof. �

The following two lemmas can be found in [1].

Lemma 3.3 Suppose Ā and Ã are two symmetric positive definite operators on WJ .
Then for all w ∈WJ ,

C1(Āw,w) ≤ (Ãw,w) ≤ C2(Āw,w) (3.34)

if and only if
C1(Ã

−1w,w) ≤ (Ā−1w,w) ≤ C2(Ã
−1w,w) (3.35)

where C1 and C2 are the same constants in both inequalities.

Lemma 3.4 Assume that two symmetric positive definite operators Ā and Ã on WJ

with corresponding bilinear forms ā(·, ·) and ã(·, ·) such that

C1ã(w,w) ≤ ā(w,w) ≤ C2ã(w,w) ∀w ∈WJ . (3.36)

Then (A1) holds for Ã if and only if (A1) holds for Ā.

With the help of Lemma 3.2, lemma 3.4 and (A1D), we obtain

Theorem 3.2 (A.1) holds for b(·, ·).

Next, we show that assumption (A.2) also holds for b(·, ·).

Theorem 3.3 (A.2) holds for b(·, ·).

11



Proof. For k = 1, there is nothing to prove. For k > 1, with (3.3), (3.5), (3.8),
(3.2), (3.4) and (3.7), we have

a1(D̂kw,w) = λ̂−1
k ‖ÂkŜkw‖2

0 = λ̂−1
k ‖TkÂJw‖2

0 (3.37)

and
b(D̃kw,w) = λ−1

k ‖AkSkw‖2
0 = λ−1

k ‖TkAJw‖2
0 . (3.38)

Then , from (3.37) and (A2D), we have

λ̂−1
k ‖TkÂJw‖2

0 = a1(D̂kw,w)

≤ (C̃aζ
k−j
a )2a1(w,w)

= (C̃aζ
k−j
a )2(Â−1

J ÂJw, ÂJw) .

(3.39)

Set v = ÂJw. Then, it follows

λ̂−1
k ‖Tkv‖2

0 ≤ (C̃aζ
k−j
a )2(Â−1

J v, v) .

From the above inequality, Lemma 3.2 and Lemma 3.3, we obtain

λ−1
k ‖Tkv‖2

0 ≤ λ̂−1
k ‖Tkv‖2

0

≤ (C̃aζ
k−j
a )2(Â−1

J v, v)

≤ C2(C̃aζ
k−j
a )2(A−1

J v, v) .

Let C̃ = C
1/2
2 C̃a, ζ = ζa and v = AJw in the above inequality, we obtain from (3.38)

that
b(D̃kw,w) = λ−1

k ‖TkAJw‖2
0

≤ (C̃ζk−j)2b(w,w)

This completes the proof. �

Next, we introduce some smoothers such that (A3) and (A4) are satisfied. Due to
the appearance of the item < Kw,w >Γ in the bilinear form, it makes the nodal basis
function on the artificial boundary do not have local support and results that smoothers
constructed in [1] can not be used directly because they may not satisfy (A3) or (A4)
any more in this case. So, for the smoothers, we should choose and check carefully to
overcome this difficulty.

Before presenting smoothers satisfying (A3) and (A4), we make some insight of
smoothers of the form Qk = µ

λk
I, where µ is a parameter. In the following, we will

discuss the condition under which (A3) and (A4) are satisfied by this kind of smoothers.
First, we check the assumption (A3). Noting that for this kind of smoother, we

have Pk = I − µ
λk
Ak and

b((I − P ∗
kPk)v, v) = b(v, v) − b(Pkv, Pkv)

= b(v, v) − [b(v, v) − 2µ
λk
b(Akv, v) + µ2

λ2

k

b(Akv,Akv)]

= 2µ
λk
‖Akv‖2

0 − µ2

λ2

k

b(Akv,Akv) .

(3.40)
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From the fact that b(Akv,Akv) ≤ λk‖Akv‖2
0, it follows

µ2

λ2
k

b(Akv,Akv) ≤
µ2

λ2
k

λk‖Akv‖2
0 =

µ2

λk
‖Akv‖2

0 . (3.41)

Thus, with (3.40) and (3.41), we obtain

b((I − P ∗
kPk)v, v) ≥

µ(2 − µ)

λk
‖Akv‖2

0 . (3.42)

For 0 < µ < 2, we chose CQ = 1/(µ(2 − µ)) ≥ 1. Then, it follows from (3.42) that

CQ(Q̄Akv,Akv) = CQ((I − P ∗
kPk)A

−1
k Akv,Akv)

= CQb((I − P ∗
kPk)v, v)

≥ CQ
µ(2−µ)

λk
‖Akv‖2

0

= ‖Akv‖2
0/λk .

Setting w = Akv, we have (A3) holds for this kind of smoother.
To check (A4), we notice that for this kind of smoother, it follows from (3.2) and

(3.4) that

b(Dkv,Dkv) =
µ2

λ2
k

b(AkSkv,AkSkv) (3.43)

and
b(Dkv, v) = µb(AkSkv, v)/λk

= µb(AkSkv, Skv)/λk

= µ‖AkSkv‖2
0/λk .

(3.44)

Since b(AkSkv,AkSkv) ≤ λk‖AkSkv‖2
0, we obtain from (3.43) and (3.44) that

b(Dkv,Dkv) = µ2

λ2

k

b(AkSkv,AkSkv)

≤ µ2

λ2

k

λk‖AkSkv‖2
0

= µb(Dkv, v) .

Taking σ = µ, for 0 < µ < 2, we get that (A4) holds.
Thus, we obtain

Theorem 3.4 For 0 < µ < 2, smoothers of the form Qk = µ
λk
I satisfy (A3) and (A4).

Remark 3.1 Since the largest eigenvalue of the matrix is involved in the construct of
this kind of smoothers, which is not easy to obtain in practical computation, it makes
some difficulty in using this kind of smoothers directly in practical computation. But
this theorem is still important and useful in both construction smoothers for practical
computation and providing us with a better understanding of the role the smoother plays
in the convergence of the multigrid algorithm (see the analysis below).
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Let us consider smoothers of the form

Qk =
1

η
I . (3.45)

In order to get smoother of this kind such that (A3) and (A4) are satisfied, η should sat-
isfy some condition. Next, we will give some conditions of this kind based on Theorem
3.4.

In this paper, two cases are considered.
The first one is the case η ≥ λk. In this case, it is obvious that there exists a

positive constant µ ≤ 1 such that 1
η = µ

λk
. From Theorem 3.4, it follows the desired

smoothers. This case is of great importance for the practical computation and many
practical smoothers can be obtained from this case. As mentioned above, it is not easy
to get the largest eigenvalue of the matrix, but a upper bound of the largest eigenvalue
of the matrix can be easily obtained in many different ways and by using many different
methods. All these upper bounds can be used to construct smoothers of the form (3.45)
for the purpose of the practical computation.

The second case is λk

2 < η ≤ λk. In this case, we can see that there exists a
constant 1 ≤ µ < 2 such that 1

η = µ
λk

. Also, for this case, we still can obtain desired
smoothers. This case indicates that the multigrid algorithm is still convergent for any
upper bounds η of λk/2 even if η < λk. It is a really interesting result, which may
provide us a better insight and understanding of the role the smoother plays in the
convergence of the multigrid algorithm. On the other hand, it also implies that if you
can obtain some upper bounds of λk/2 in any way or by using any methods, all these
bounds can also be used to construct smoothers of form (3.45) for practical use and
the convergence of the multigrid algorithm is still ensured in this case. So, it is quite
interesting and useful both in the theory and in the practical computation.

To sum up, we obtain the following theorem

Theorem 3.5 Let λk

2 < η, then smoothers of the form (3.45) satisfy (A3) and (A4).

With Theorem 3.2, Theorem 3.3, Theorem 3.5 and Theorem 3.1, we complete the
construction and analysis of multigrid algorithm.

4 Numerical results

Let us consider the following model problem for our numerical experiment

{
−4u = f, in Ωc,

u = 0, on ∂Ω,
(4.1)

subject to the asymptotic conditions

u(x, y) = α+O(1/r) , |∇u(x, y)| = O(1/r2) , r =
√
x2 + y2 → ∞ ,

where

f =

{
4

(x2+y2)2
, 1 < x2 + y2 < 9

4 ,

0 , 9
4 ≤ x2 + y2 ,
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Table 1: Numerical experiments for J = 3

m N ‖u− uh‖D ITn

128 2048 2.9060e-3 10
256 8192 7.4122e-4 10
512 32768 1.8700e-4 9
1024 131072 4.6633e-5 8

Table 2: Numerical experiments for J = 4

m N ‖u− uh‖D ITn

128 2048 2.9354e-3 12
256 8192 7.5595e-4 11
512 32768 1.9390e-4 10
1024 131072 4.9087e-5 9
2048 524288 1.2272e-5 8

Ω is unit circle disc and α = 1.
We make the coupling at the circle Γ with radius 2. The exact solution of the

model problem and the computational solution of the finest level are denoted as u and
uh respectively. The discrete norm ‖ · ‖D is defined as

‖w‖D = hJ(
∑

i

w(xi)
2)

1

2

where the sum is taken over all nodes xi of the finest level finite element space UJ . It
is well known that this discrete norm is equivalent to the standard L2 norm.

In what follows, the number of circular arcs Γ is divided into on the finest level and
the number of unknowns of the finest level are denoted as m and N respectively. ITn
stands for the number of iterations needed to achieve the corresponding error ‖u−uh‖D.
In all our numerical experiments, multigrid algorithm with only pre-smoothing is used
and on all levels only one smoothing is done.

The results for the cases J = 3, J = 4 and J = 5 are presented in Table 1, Table 2
and Table 3 respectively.

From these tables, we find that, for all the cases, the number of iterative steps is
independent of the mesh size even if the number of unknowns is very large, which match
with our theory well.
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