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Abstract

Bilinear approach is applied to derive integrable multi-component generalizations of the so-
called 141 dimensional special Toda lattice, the Volterra lattice, a simple differential-difference
equation found by Adler, Moser, Weiss, Veselov and Shabat and another integrable lattice
reduced from the discrete BKP equation. Their soliton solutions expressed by pfaffians and the

corresponding bilinear Bécklund transformations are obtained.

1 Introduction

Integrable multi-component generalization of soliton equations is one of the most exciting topics in
soliton theory. Much research on this subject has been conducted. For example, for the celebrated
KdV equation, many coupled extensions of the KdV equation have been proposed in the literature
(see, e.g., [1]-[10]). Several approaches have been developed to search for various integrable coupled
versions of soliton equations. One of them is the bilinear approach. Very recently, a vector potential
KdV equation and vector Ito equation have been proposed based on their bilinear forms [11].

The purpose of this paper is to apply the bilinear approach for multi-component generalizations
of soliton equations to differential-difference case. We will consider integrable multi-component
generalizations of the following four bilinear differential-difference equations:

Dy(D: — sinh(D,)) f(n) - f(n) = (1)
sinh(%Dn)(Dt + 2sinh(Dy))f(n) - f(n) = 0, (1.2)
(D2 cosh(D,) — %Dt sinh(Dy))f(n) - f(n) =0, (1.3)
sinh(%Dn)(Dt cosh(D,) — %sinh(Dn)) F(n)- f(n) =0, (1.4)
where the bilinear operators Df and exp(D,,) are defined by [12, 13, 14]
Dfa-b= (; - aat/)k a(Ob(t)i—r,  exp(6Dn)a(n) - b(n) = a(n + 8)b(n — ).
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As a result, new multi-component generalizations of these four integrable differential-difference
equations (1.1)-(1.4) are proposed.

This paper is organized as follows. Section 2 is devoted to integrable multi-component gener-
alization of equation (1.1). Soliton solutions expressed by pfaffians and the corresponding bilinear
Bécklund transformation are obtained for the multi-component version of equation (1.1). In section
3, we will consider an integrable multi-component generalization of equation (1.2). Soliton solutions
expressed by pfaffians and the corresponding bilinear Backlund transformations are presented for
the multi-component version of equation (1.2). Next in section 4, an integrable multi-component
generalization of equation (1.3) is found. We also give its soliton solutions expressed by pfaffians
and the corresponding bilinear Bécklund transformation. Furthermore, we derive an integrable
multi-component generalization of equation (1.4) in section 5. Soliton solutions expressed by pfaffi-
ans and the corresponding bilinear Backlund transformation are deduced for the multi-component
version of equation (1.4). Section 6 summarizes the obtained results and gives some discussions.
Finally, in Appendix A, some essential elements of Pfaffians (such as definition of Pfaffian and
Pfaffian identities) are introduced, while some bilinear operator identities are listed in Appendix
B.

2 An integrable multi-component generalization of equation (1.1),

its soliton solutions and Backlund transformation

Equation (1.1) can be obtained from a (2+1)-dimensional bilinear equation by reduction [15]. By

the dependent variable transformation u(n) = In ! Sfé:)l), equation (1.1) is transformed into

1 1
u(n) = o (w(n+1) + ug(n))errth—uln) _ 5 (ur(n) + ug(n - 1))etm-uln=1), (2.1)

which is a reduced equation of the so-called special 241 dimensional Toda lattice [16]. Therefore,
we may call equation (1.1) the 141 dimensional special Toda lattice. Some results concerning (1.1)
or (2.1) have been achieved. For example, a Lax pair for equation (2.1) was given in [17]. In this
section, we will consider an integrable multi-component generalization of equation (1.1).

Based on the fact that equation (1.1) can be rewritten as

(D¢ — sinh(Dy))g(n) - f(n) =0, g(n) = fi(n), (2.2)
we now propose a natural coupled form
(D¢ —sinh(Dy,))gu(n) - f(n) =0, for p=1,2,---, M, (2.3)
< of ()
S guln) = 20 (2.4)
pn=1

for equation (1.1). By the dependent variable transformation

u(n) = nM v (n _gun+1)  gu(n)

equations (2.3) and (2.4) are transformed into

1 1
vpe(n) — 5[%(" + 1) + v (n)]et DM 1y (n) + v, (0 — 1)]er™M e =0 (2.5)

2
foru=1,2,--- , M,
M
Zvu(n) = w(n). (2.6)

p=1



In the following, we will show that equations (2.3) and (2.4) are an integrable multi-component
generalization of equation (1.1) in the sense of having soliton solutions and bilinear Bécklund
transformation.

Using a perturbational method we obtain a 3-soliton solution to the coupled 1+1 dimensional
special Toda lattice (2.3) and (2.4), which is expressed as follows,

f(n) =1+ explm] + exp[nz] + expns]
+a1,2b12 exp[n1 + n2] + a1,3b1 3 expln + n3] + az,3b2,3 exp[nz + 73]
+a1,2a1,3a2,301,2b1 302 3 expm1 + N2 + 3], (2.7)
gu(n) = cu(1) exp[m] + cu(2) exp[nz] + cu(3) exp[ns]
+cu(1,2) exp[m + n2] + cu(1,3) explm + n3) + ¢u(2, 3) exp[nz + 1]

+cll«(172’3) EXP[U1+772+773L for H= 1527"' )Mv (28)
with
n+mnj,0 PJ? —1
exp(;) = Py exp(gjt), ¢ = —55 (2.9)
J
P, — P P, — P,)(P;P, +1
PP & Kk S W € B 015 LR Y (2.10)

T PP -1 7T (Pi+ P)(PiP - 1)
cu(ds k) = ajr(cu(f) — cu(k)),
Cu(l, 2, 3) = a172a1,3a2,3[b2730M(1) + b3716'u(2) + b1,2Cu(3)] (2.11)
for j,k=1,2,3and p=1,2,--- , M,
where njo, Pj, (j = 1,2,3), are constants and ¢, (1), c,(2) and c,(3) are parameters that satisfy
M . P21
EM:]_ () = QJTJ
These expressions suggest that N-soliton solutions to equations (2.3) and (2.4) may be expressed
by pfaffians. In fact, we find that the pfaffian solutions are

f(n) :pf(d07a17a27”' 7aN7b17b27"' 7bN760)7 (212)
gu(n) = pf(d()?al?aQa’ o ,CLN,bl,bQ,‘ o 7bN7/8M)7 for n= 1727'” 7M7 (213)

where the entries of these pfaffians are defined as follows,

pf(dOa a]) = eXP(Wj)a Pf(do, b]) = _17 pf(d()vﬁO) = 1a pf(a]aﬁu) = 0’ (214)

pf(aj, ar) = —ajpexp(n; +nk),  pfaj, br) =k, pf(do, Bu) =0, (2.15)
pE(bj,br) = ik E(b; f0) =1 Py B) = cu(i). phlas. o) =0, (216)
for j,k=1,2,--- ,N and for pu=1,2,--- , M,
with
, P2 -1 P _ P
N n+1n;.0 7 o ]7k
e < 2P, t) TR
b _ (Pj = Py)(PjPy + 1) 5o — 1 for j =k,
TP+ P (PP, — 1) P T 0 forj#£k.
Here P; and njo are constants and ¢, (j),(j = 1,2,--- , N), are parameters satisfying leﬁl eulj) =
P21



In what follows, we will show that f(n) and g,(n) given by (2.12) and (2.13) satisfy equations
(2.3) and (2.4). Firstly, it is noted that the linear equation (2.4) and the structure of soliton
solutions expressed by (2.12) and (2.13) are similar to those of the vector Ito equation considered
in [11]. Therefore, we can show that f(n) and g,(n) given by (2.12) and (2.13) satisfy the linear
equation (2.4) following the deduction procedure for the vector Ito equation in [11]. Next, we will
show that f(n) and g,(n) satisfy the bilinear equation (2.3) , which is equivalent to

20 1) — gum) P2 L g4 1) 0= 1)+ Sgu(n— D f 1) =0 (217)

With the help of the new characters d; and d_; defined by the following entries,

pf(czb a’]) = (PJ - 1) eXp(nj)a pf(dla b]) = O) pf(dbﬁ()) = 07

. 1 5 .
pf(dflv a]) = (F - 1) eXP(Uj)a pf(dfb b]) = 07 pf(dflaﬁO) = 07
J

pf(d1, B) =0, pf(d_1,8.) =0, pt(do,dr) = pf(do,d_1) = pf(d1,d-1) =0,
forj:1727”'7N7 M:1727"'M7

and simplified notation {------ } for {ai, a9, - ,an,b1,ba2, -+ , by}, we obtain the following differ-
ence formulae for f(n) and g,(n),

f(n) = pf(d07 607 """ )7 ~ (218)
f(n + 1) = pf(doaﬁ()) """ ) - pf(d())C{la """ )’ (219)
f(n - 1) = pf(dﬂaﬁ()a """ ) - pf(d07d717 """ )? (220)
gu(n) = pf(dO) ﬂ,uv """ )7 ~ (221)
gu(n+ ]-) = pf(d07ﬁu7 """ ) +pf(d07cfl)ﬂ,u7505 """ )) (222)
gu(n —1) = pf(do, By, -+ ) + pf(do,d—1, By, Boy -+ ), (2.23)
and the following differential formulae [11],
a!};(tn) - _% |:pf(d07 (Zlv """ ) - pf(d07 J—l """ ) - pf(d07 gl? J_l, 505 """ ) ) (224)
0 ~ ~
ggl(fn) = % [pf(d()vdl?ﬁ,luﬂOa """ ) _pf(dﬂad—laﬂuaﬂﬂv """ )
"‘pf(dOvJLCZ—l,ﬁ;u """ )j| . (225)

Substituting these relations (2.18)-(2.25) into eq.(2.17), we find that the bilinear equation is reduced
to the pfaffian identity (see,[14, 11] or Appendix A),

pf(d—1,do, -~~~ )p(d1, B, Bo,do, ) = pf(dy, do, - )pf(d_1, By, B, do -+ -)
+pf(ﬂu7d07 """ )pf(d—ladhﬁOadO? """ ) _pf(607d07 """ )pf(d—ladhﬂ;ud()? """ ) =0.
Therefore, f(n) and g,(n) satisfy the bilinear equation (2.3). Here, the key point is to introduce

the new character d; and d_; to deduce the difference formulae for f(n) and g,(n), then by the
dispersion relation (2.9) we can deduce the differential formulae.



In the following, we will present a bilinear Backlund transformation for Eqgs. (2.3) and (2.4).
In fact, we obtain the following Béacklund transformation

1 _1 1 _1
e2Pr(gy - f' = f-g) =X 2P (gu ' — [ g,) + (kue2Pr — ke 2Pm)f - f1 0 (2.26)

1

(2D, = e” + AP 4 9)f - f =0, (2.27)
1

(2D; = e+ Xe™ P +9) (g '+ [+ g.) =0, (2.28)

foru=1,2,--- M

between equations (2.3), (2.4) and

(D¢ = sinh(Dy))g,(n) - f'(n) =0, for p=1,2,---, M, (2.29)
oy = 01 ()
; gu(n) = =5 =, (2.30)

where we have assumed that

g1(n) + ga(n) + -+ gu(n) = fr(n), g1(n) +ga(n) +--- + gy (n) = fi(n) (2.31)

such that Eqgs. (2.4) and (2.30) are satisfied automatically. Here \,v,k, (n = 1,2,---, M) are
arbitrary constants. From the assumption (2.31), we know that, in order to show that (2.26)-(2.28)
constitute a BT, it suffices to prove that

P = 2(D; — sinh(Dy))gu(n) - f(n)]'(n)? — 2/>(n)(Ds — sinh(D,))gl,(n) - f'(n) = 0.

For this purpose, we have, by using (2.26)-(2.28) and (B1)-(B4),

Po= <3(Dif - )guf + Fdl) + 20 F Dilgy- '+ £ gl
~2sinh(3 D) {37 (g f — £ g)] - (73 F - ) = (3P0 - ) - [ ¥ g £ — £ )]}
= DS ) guf' + F9) + 201 Dilgu - I+ f - 9p)
~25inh(g D)5 g '~ [ gf) + huetP - ] AP )
25 (DD S ) - | P g f )+ e P
= =2Duf ) guf' + F9) + 201 Dilgu - I+ £ - 9,)
Mgt (€ f ) = (€ Prgu fOFF = FF P f - gu) + (e f - ) fg)]
(€7 f - fguf" = FF'(€rgu- )= (P f-g ) [+ Fap (e f- 1)
= (2Dt 5P A fUgu 4 Sl + FF@D~ 1P AP (g £+ £ gL
= 0.

_l’_

> =

Therefore, we have proved that (2.26)-(2.28) constitute a bilinear BT between equations (2.3), (2.4)
and equations (2.29),(2.30) under the assumption (2.31).



3 An integrable multi-component generalization of equation (1.2),

its soliton solutions and Backlund transformation

It is known that equation (1.2) may serve as the bilinear form for the Volterra lattice or the
differential-difference analogue of the KdV equation. By the dependent variable transformations

u(n) = % or v(n) = %({f)n*l), equation (1.2) can be transformed into

ut(n) +u(n)(u(n +1) —u(n—1)) =0 (3.1)
or

vi(n) +v2(n)(v(n +1) —v(n —1)) = 0. (3.2)

Obviously, u(n) = v(n)v(n—1) is a Miura-type transformation between equation (3.1) and equation
(3.2). In [18, 19], integrable multi-component generalizations of equation (3.2) were proposed and
studied. In this section, we will give another integrable multi-component generalization of the
lattice (1.2).

Based on the fact that equation (1.2) can be rewritten as

(Dt + 2sinh(Dy))g(n) - f(n) =0, g(n) = f(n+1) = f(n),

we now propose a natural coupled form

(D¢ + 2sinh(Dy,))gu(n) - f(n) =0, for p=1,2,---, M, (3.3)
M
S guln) = fln+1) — f(n). (3.4
p=1

By the dependent variable transformation

fln+1)
fn)

equations (3.3) and (3.4) are transformed into

Vit(n) + [Vi(n + 1) 4+ Vo (n)]eV D=V [V (n) 4V, (n — 1)]eVW-V0=D —
fory=1,2,--- , M,

M
Z Vu(n) _ eU(n-‘rl) - eU(n)_
pn=1

U(n)=In

In the following, we will show that equations (3.3) and (3.4) are an integrable multi-component
generalization of equation (1.2) in the sense of having soliton solutions and bilinear Béacklund
transformation.

First of all, we construct soliton solutions of the coupled Volterra lattice (3.3) and (3.4). Using
a perturbation method, we obtain a 3-soliton solution to Egs. (3.3) and (3.4) that takes the same
form of (2.7) and (2.8) but with different coefficients and different dispersion relations. In this case,

exp(n) = P explqit),  qj = (1 - F})/F;,
and the values of of a;,b;k,cu(j), cu(j, k) and ¢, (1,2,3) are
P —F o P; — Py
T PP -1 PFT PP -1
cu(d, k) = ajp(cu(i) — cu(k)),  cu(1,2,3) = a12a1,3a2,3[b2,3¢,(1) + b3,164(2) + b1,2cu(3)],
for j,k=1,2,3and p=1,2,--- , M,

aj,k



where Pj,n;o are constants and c,(j) ,(j = 1,2,3), are free parameters satisfying Zﬂ/lzl cu(j) =
P; — 1. The above expressions suggest that the N-soliton solutions expressed by pfaffians to the
equations (3.3) and (3.4) may also take the following form

f(n) = pf(d07a1,a27"' ,&N,bl,bQ,"' abNaBO)y (35)
gu(n) :pf(d0701702,"' 7aNab17b27"' 7bNa/3u)a for H = ]-327"' aMa (36)

and the entries of pfaffians (3.5) and (3.6) are defined in the same form as (2.14)-(2.16), but with

, 1—P? P,—P 1 forj=kFk
N\ — prtnio J o 1Tk P orJ ’
exp(n;) = P exp ( P t> y bk =ajk Pb 1 0jik { 0 forj #k,

and P; and njo are constants and ¢, (j) are parameters satisfying Zﬁil cu(j) = Pj — 1.

What we want to do next is to show that f(n) and g,(n) given by (3.5) and (3.6) do satisfy
equations (3.3) and (3.4). Based on the similarity between (3.3) and (2.3), we can show that f(n)
and g,(n) satisfy the bilinear equation (3.3) in the same way as done in section 2. Besides, we have

f(n+1> :pf(d07a17a27“' 7aN7b17b27"' 7bN7ﬁ0)
—pf(do, d1,a1,a2, - ,an,bi,ba, - ,by), (3.7)

where a new character d; is defined by

pf((ibaj) = (P] - 1) eXP(nj)7 pf(czlvbj) = 07 pf(dl7d0) = Oa pf(dlaﬁO) = 07 pf(dlaﬁ,u) = 07
forj=1,2,--- N, pu=1,2,---M.

Therefore, in the following, we only prove that f(n) and g,(n) satisfy the linear equation (3.4).
Following the procedure described in [11], we first expand g,(n) with respect to the final character
By, and obtain

gu(n) = pf(d()?al?aQ?"' ;an, b1, b, 7bN7/6u)7

N
= Zcu(j)(_l)NJrjpf(dOva17a27'” 7aNabl7b27'” 7IA)j7"' 7bN)
j=1

where the notion & indicates the letter o is missing. The sum of g,(n) over u gives

N

M
Zgu(n) = Z(_l)NJrJ(P] - ]-)pf(d07a17a27 Tt ,GN,bl,bQ, T 76_77' T 7bN)7
pn=1 7=1

= pf(do, By, a1, a2, -+ ,an,b1, b2, ,by),
where the entries with the new character §; are defined by
pf(do, By) =0, pf(By,a;) =0, pf(G5,b;)=1—F;. forj,k=1,2,--- N.
On the other hand, we know from the difference formulae (3.5) and (3.7) that
f(n+1) = f(n) = —pf(do, d1,a1,a2, - ,an,br,ba, - ,by). (3.8)

Exactly following the deduction procedure for the vector KdV equation given in [11], we can show
that

pf(d()aﬁz)k?alaa@a'” 7G’N7b17b27'” 7bN) = _pf<d07d17a17a27'” 7aNabl7b27'” 7bN)



That means that f(n) and g,(n) satisfy the linear equation

Zgu fn+1) = f(n).

In what follows, we will present Bécklund transformations for Eqgs. (3.3) and (3.4). Firstly,
based on the similarity between (3.3) and (2.3), we can easily work out a Bécklund transformation

D0 (g f = fgl) = A2 (g f — [ gl) + (kuerPn —kAeT2P0) L fL (3.9)

1
(=D — XeD” +xe Pr ) fff =0, (3.10)
1 _
(=Dp = se”" + 2™ +9) (g '+ f - 95) =0, (3.11)
n= 17 27 T 7M

between equations (3.3), (3.4) and

(Dt + 2sinh(Dy))g,(n) - f'(n) =0, for p=1,2,---, M, (3.12)

Zg“ (n+1)— f'(n), (3.13)

where we have assumed that

g1(n) +ga(n) +---+gu(n) = f(n+1) = f(n), g1(n)+go(n) +---+gy(n) = f'(n+1)— f'(n)

such that Eqs.(3.4) and (3.13) are satisfied automatically. Here \,~v,k, (x = 1,2,---, M) are
arbitrary constants.
Next, we give another Backlund transformation:

k

(B%Dn — )\BféD”)gu : fl = (kMG*%Dn - Tue%Dn)f : g;,u m = ]-7 27 T 7M (314)

1
—Dy— =Py xe P o) f =0, 3.15

A

1
(=D — XeD" + e Pn +0)g, -ng =0, p=1,2,---, M (3.16)

between equations (3.3),(3.4) and

(Dt + 2sinh(Dy))g,(n) - f'(n) =0, for p=1,2,---, M, (3.17)
Zgu (n+1) — f'(n), (3.18)

where we have also assumed that

g1(n)+g2(n)+ - +gum(n) = f(n+1)=f(n), gi(n)+ga(n)+ - -+gy(n) = f'(n+1)=f'(n)  (3.19)

such that Eqgs.(3.4) and (3.18) are satisfied automatically and A, 0, k,, (n = 1,2, --- , M) are arbitrary
constants. In fact, in order to show that (3.14)-(3.16) constitute a BT, it suffices to prove that

Py = (D¢ + 2sinh(Dy))gyu(n) - £(n)]g,(n)f'(n) — gu(n) f(n) (D¢ + 2sinh(Dy))g,,(n) - f'(n) = 0.



For this purpose, we have, by using (3.14)-(3.16) and (B3)-(B6),
1 1 _1
Pu= " (Digu-g)ff' = (Dif - f)gug), + 2sinh(5 Dp) (€270 gy f1) - (7270 f - g))
.1 1 _1
~2sinh(L D)0 - gl) - (HPe g, £
’ / / / . 1 ip / -1ip /
= (Dugu g ) ST = (Def - [1)gugy — 2sinh(5Dn)(e2 7" - gy) - (€727 gu - )
.1 _1 _1 ky .1 1 _1
+2Asinh(5 D) (2", - ) - (7270 f - ) = 2=F sinh(5Da)(e2 7" f - gp) - (727" f - )
= (Digu-g)If = (Def - F)gug), + Naugle P f - = (e Prgu- gl ) ff]
1 1 _1 ky _1
~25inh(3 Do) (e3P - gl) [ ¥Png - f 4+ i g

= [(De=AeP)gu- g ff =D = Ae PV f - Flgug), — %(eD"f - f1)gug;, + %ff’eD"gH g,
- 0.

Therefore, we have proved that (3.14)-(3.16) are another bilinear BT between (3.3),(3.4) and
(3.17),(3.18) under the assumption (3.19).

4 An integrable multi-component generalization of equation (1.3),

its soliton solutions and Backlund transformation

Equation (1.3) has been introduced in [20] (up to some changes). By the dependent variable

transformation 1 f(n—1)
-
uln) = 3+ <1f(+1))

equation (1.3) can be transformed into the following simple differential-difference equation
(u(n+1)+un—1)+ (u(n+1)+un—1))(u(n—1) —u(n+1)) =0, (4.1)

which has appeared in the literature as a Béacklund transformation for the KdV equation and has
been studied by several authors (see, e.g. [20, 21, 22]). Some coupled extensions of (4.1) have
been proposed (see, e.g. [23, 24]). In this section, we will give another integrable multi-component
generalization of the lattice (1.3).

Based on the fact that equation (1.3) can be rewritten as

(Dy cosh(D,) — %sinh(Dn))g(n) f(n) =0, g(n) = fu(n),

we now propose a natural coupled form

(Dy cosh(D,) — %Sinh(Dn))gM(n) fn) =0, forp=1,2,--- M, (4.2)
. af(n)
;Qu(”) = ot (4.3)

By the dependent variable transformation v,(n) = g,(n)/f(n), U(n) = (In f(n)):, equations



(4.2) and (4.3) are transformed into

(vp(n+1)+vu(n—1)) + (vu(n+1) —v,(n—1))(Un+1)—Un—-1)— =) =0,
M

> vu(n) =U(n).

pn=1

Direct calculations tell us that 3-soliton solutions to the coupled semi-discrete equations (4.2)
and (4.3) are also in the form of (2.7) and (2.8) but with

2
r-1 by = a;, = L= DB+ Py)
20P2+1)" T (PP +1)(PiBy — 1)

cu(gi k) = ajr(cu(j) —cu(k)), cu(1,2,3) = a12a1,3a2,3[b2,3¢, (1) + b3,1¢,(2) + b1 2¢,(3)]
for j,k=1,2,3and p=1,2,--- , M,

+ .
exp(n;) = P, 7% exp(qjt), qj =

. C e , P21 .
where Pj, n; are constants and c,,(j) are parameters satisfying ny:l cu(j) = s forj =1,2,3.
J

These expressions suggest that the N-soliton solutions expressed by pfaffians to the coupled
equations (4.2) and (4.3) may be as follows,

f(n) = pf(dO,ahaQ)"' ,CLN,bl,bQ,"' abNaBO)a (44)
gu(n):pf(d07al7a2a”'7aN)b17b27"' 7bN7/8u)7 fOI'[L:]_,Q,'” ;Mg (45)

and the entries of (4.4) and (4.5) are of the same form as (2.14)-(2.16) but with

) — prTTho Pj2 —1 "
exp(n;) = j exp m )

(P; — Pp)(Pj + Py , { 1 forj =k,

k= k= PP — ) (PP + 1) P T 0 forj £k,
where P; and nj are arbitratry constants and c,(j) are parameters satisfying Zi\[]:l cu(j) =
P21
2(1%?+1)'
Let us now verify that (4.4) and (4.5) are indeed solutions to equation (4.2) and (4.3). Based
on the fact that equation (4.3) is similar to equation (2.4), one can prove that f(n) and g,(n) given
by (4.4) and (4.5) satisfy (4.3) following the similar procedure in [11]. Now we begin to prove that

f(n) and g, (n) satisfy (4.2), which can be rewritten as

Ogu(n+1) Of(n—1)  Ogu(n—1) df(n+1)
I T2 iy 1) — 1 1) — gu(n— NZATY
1 1
—§g#(n+1)f(n—1)+§gu(n—1)f(n—|—1) =0. (4.6)
Using a method described in [11], we find the following differential formulae,
a (n) — 7pf(d0a dta ap,az, - ,aN, bl) b23 e abN); (47)
0
agu(n) = pf(d(]a dt7a17a2a crt 5, AN, bla b27 e 7bNa/6M7BU)7 (48)
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where the entries are defined as follows,

P? -1
pf(do,dr) =0, pf(di,b;) =0, pi(di, o) =0, pf(de, Bu) =0, pi(de,a;) = mexp(m)v
forj=1,2,--- ,N.
It is noted that (4.6) is equivalent to
0g,(n + 2 of(n 0g,(n of(n +2
w052 ) — g+ 2) P2y 090 ) gy gy P2
1 1
—ggu(n+2)f(n) + igu(n)f(nqLQ) =0. (4.9)

So it suffices to show that f(n) and g, (n) satisfy equation (4.9). Now we introduce a character do
defined by

pf(dg, a]) = (1332 - 1) eXp(nj): pf(cZQ, b]) = pf(d% /80) = pf(d% /B,u) = pf(d~27 dO) = pf(j% dt) =0.

By doing so and denoting {ay, a2, ,an,b1,bo, -+ by} = {------ }, we obtain the following dif-
ference formulae
f(n) = pf(d07 ﬁo; ..... )7 f(n + 2) = pf(d()a /607 """" ) - pf<d07 d~27 """" )7 (410)
g,u(n) = pf(d()?ﬁpn """ )7 gu<n+2) = pf(d()v/B,ua """ ) +pf(d07d27ﬁu7/807 """ )(411)
and the following differential formulae [11],
of(n+2 1 ~ ~
T ) ot(dosd ) — ok, o) + pildo, i, o), (1.12)
dg(n + 2 1 ~ ~
g(at) = _pf(d()adtaﬁuwg(h """ ) + ipf(d07d27ﬁu7/807 """ ) +pf(d07d27dt7ﬁ/u'”(4:])3)

Substituting these relations (4.7)-(4.8) and (4.10)-(4.13) into eq.(4.9), we find that this bilinear
equation is reduced to the pfaffian identity [11, 14],

pf(ﬁﬂad()) """ )pf(ﬂu)d27dt7d05 """ ) - pf(ﬂ;ud(% """ )pf(ﬁ07d2adt7d07 """ )
+pf(d27 d07 """ )pf(/B(h ﬁ;u dt7 d07 """ ) - pf(dt) d07 """ )pf(ﬁ()? ﬁ,lﬂ d27 d07 """ ) =

Therefore, f(n) and g,(n) satisfy the bilinear equation (3.3). It is noted that we introduced a
character d; acting as the normal differential operator to deduce the difference and differential
formulae. In this aspect, it is different from the other three coupled systems.

In what follows, we will present a bilinear Backlund transformation for Egs. (4.2) and (4.3). In
fact, we have the following Bécklund transformation

(P =Ate P (g f1 — f - ) + Awpe?” —wue Py f - ff =0, (4.14)

(Dee™Pn + ADwe — (A= My)ePn +ye™Pn) - f/ =0, (4.15)

(Dee™ P+ ADen — (A= My)eP + e Pr)(gu- f'+ [ - ) = 0, (4.16)
p=1,2-- M

between equations (4.2),(4.3) and

(D, cosh(Dy) — %sinh(pn))g;(n) Fn) =0, forp=1,2,--- M, (4.17)
M
> g.(n) = fi(n) (4.18)
pn=1

11



where we have assumed that
g1(n) + g2(n) + -+ gu(n) = fo(n),  g1(n) + g3(n) + -~ + gar(n) = fi(n) (4.19)
such that Eqgs. (4.3) and (4.18) are satisfied automatically and \,vy,w, (# = 1,2,---, M) are
arbitrary constants. In fact, in order to show (4.14)-(4.16) constitute a BT, it suffices to prove that
B = 2{[D; cosh(Dn) — %Sinh(Dn)]gu(n) - f@)][e” f'(n) - f'(n)]
~2[eP" f(n) - f(n)][Dy cosh(Dy) — 3 sinh(Dy)]g, (m) - ()} = .

For this purpose, we have, by using (4.14)-(4.16) and (B7)-(B9),

B, = %Dt{[eD"(gu =g € ) =P ) e P g f = g}
5D (g £+ 1GNP ) = S (DuePnf - e g 4 f )
[P g+ F gD ) (P D g+ f )

P g S F GNP 1)+ (P e P g S o)

= e D AT g )] [P — e o) f ]

D™D+ ADEP) (g~ £+ - gl (GeP + 5A e - )
(DD + ADEP) S PGP + AP g S+ )]
P g S F gD 1)+ (P e g S Tl
= (A=) —9e P gy 14 T gl + gA e f - f)
H=(A = Ay)el e ) f - f’][(%eD” + %A’le’Dn)(gu f 9]

1P (g £ F g NP g ) (P f) e (g £ gl

= 0.
Therefore, we have proved that (4.14)-(4.16) constitute a bilinear BT between equations (4.2),(4.3)
and (4.17),(4.18) under the assumption (4.19).

5 An integrable multi-component generalization of equation (1.4),

its soliton solutions and Backlund transformation
It is noted that equation (1.4) can be derived by reduction from the discrete BKP equation
[21 exp(D1) + z2 exp(D2) + z3 exp(D3) + zaexp(Da)]f - f =0, (5.1)
where D1, Do, D3, Dy and 21, 29, 23, 24 are bilinear operators and constants, respectively, satisfying

Di+Ds+D3s+Dy=0, z1+20423+24=0.

12



In fact, if we choose

R S SN D
21 = 5 y 22 = 5’ z3 = 5’ Ry = 5’
DIZDm+Dn+5Dt7 D2:Dn_Dm_5Dt7

D3 = _Dm_Dn+5Dta D4 :Dm_Dn_tha

the discrete BKP equation (5.1) can be rewritten as
. 1. 1.
sinh(D,,) 5 sinh(0Dy) cosh(D,,) — 3 sinh(D,, +dDy)| f- f =0, (5.2)

from which we can deduce equation (1.4) by choosing D,, = %Dn and taking the limit as 6 — 0.
Therefore, equation (1.4) is an integrable differential-difference equation. In this section, we will
give an integrable multi-component generalization of equation (1.4).

Based on the fact that equation (1.4) can be rewritten as

(D, cosh(Dy) — %sinh(Dn))g(n) fn) =0, g(n)=fn+1)— f(n),

we now propose a natural coupled form

(Dy cosh(D,,) — %sinh(Dn))gu(n) - f(n)=0, forpu=1,2,---,M, (5.3)
M
Y guln) = f(n+1) = f(n). (5.4)
pn=1

By the dependent variable transformation v,(n) = g,(n)/f(n), u(n)=In(f(n+1)/f(n)), equa-
tions (5.3) and (5.4) are transformed into

1

(vp(n+1)+vu(n—1)) + (vu(n+1) —vu(n — 1)) (ug(n) + ug(n — 1) — 5) =0,
M

vu(n) = e — 1,
pn=1

In what follows, we shall firstly derive the N-soliton solutions to the coupled differential-
difference system (5.3) and (5.4). Using the perturbational method, we find that the 3-soliton
solutions to the above equations (5.3) and (5.4) are also in the same form of (2.7) and (2.8) but
with

2
o Dol (BeP)BHR) PP
TPy T BR-D(ERA) T BR-T
cu(dy k) = ajr(cu(f) —cu(k)), cu(1,2,3) = a12a1,3a2,3b2,3¢,(1) + b3 1¢,(2) + b12¢,],
for j,k=1,2,3and p=1,2,--- , M,

n+mn;.o

exp(n;) = P

exp(g;t),

where Pj,n;g, are constants and c,(j) are free parameters satisfying Zﬂ/le cu(j) = Pj — 1 for
j =1,2,3. Similar to the previous three coupled equations, the N-soliton solutions expressed by
pfaffians to the equations (5.3) and (5.4) may also take the following form

f(n) :pf(d07a1)a2)"' 7aN7b17b27"' 7bN760)7 (55)
gu(n):pf(d()?al?aZa”' 7aN7b17b27"' 7bN7/8u)7 fOI'/,L:172,"‘ 7M7 (56)
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and the entries of (5.5) and (5.6) are defined in the same form as (2.14)-(2.16) but with

_ P? -1 1 forj=k

s ) = ’.rH_nJ’O _J - . — OI'j ’

exp(n;) = By exp (2(13].2 n 1)t> Ok { 0 for j # k,
(Pj — Pr)(Pj + Py) by — Py

PP, —1)(PiP+1) %" PP —1’

here P}, n;o are constants and c,(j) are free parameters satisfying Zﬁil cu(j) =P; — 1.

Noticing that the bilinear equation (5.3) is the same as equation (4.2), so we can prove that (5.3)
holds following the similar procedure in section 4. Now we turn to verify equation (5.4). It should
be pointed out that due to the coefficient difference in the terms pf(b;, by) between (3.5,3.6) and
(5.5,5.6), we can not prove that f(n) and g,(n) given by (5.5) and (5.6) satisfy (5.4) just following
the procedure in section 3, although equation (5.4) is the same as (3.4) in the form. Instead, we
will follow the similar procedure for the vector Ito equation given in [11] to verify equation (5.4)
by replacing differential operator with difference operator. The first step is to rewrite f(n) as

f(n) = fo(n) + f'(n),
fO(n) = pf(a17a2a .. '7aN7b17b2’ .. 'abN)a f/(n) = pf(dovﬁ(/bal»a% cee 7aNab1>627 cee ,b]\](ﬁ?)

where () is a new character defined by

pf(d075[l)) =0, (pf(d0760) = 1), (58)
pf(a;, 8y) =0, pi(b;,B)) =1, forj=1,2,--- N.

It is known that fo(n) and f’(n) are invariant under the following transformations
a; — aj(= ajexp (=n;)), b — bj(= b exp (n;)),
So,
fo(n) = pf(a),dh, ... ay, b1, b5, ..., b), f'(n)=pf(d,B)a},ah, ... dy,b\, b5 ..., 00N),
where the entries are defined by,

pf(aj, a)) = —ajx, pf(a},by) =k, DI}, b)) = bjrexp (n; +mx),  pi(6h, a;) =0,
pf(do, 6(,)) =0, pf(do, a;) =1, pf(do, b;) = —exp (nj)v pf(ﬁév b;) = —exXp (77])

Now we introduce the second new character dj defined by

pf( /lvﬁ(/)) =0, pf( ,17 ;) = (Pj - 1) exXp (773‘), pf(d,bd()) =0, pf( /laa;’) =0,
forj=1,2,---, N,

such that

Pf(ag‘» a;e)n+1 = pf(a;, a?c)n + pf( lla ﬁ(l)v a;‘> a;c)m

pf(aj, b )n+1 = Py, b )n + DE(dY, By, af, by )n,

pf(b;-, b;c)n+1 = pf(b;», b?c)n + pf( /1’ B(,)v b;'v b;C)TLa
for 5,k =1,2,--- | N,
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from which it follows by induction that

pf(al, ab, ... N, by, b5, o N )t
= pf(al, ay, ... ady, b, b5, ... ) + pE(dY, Bh,, al, ab, .. aly, b, b, o O ), (5.10)

ie.,

fo(n +1) — fo(n) = pf(dy, B, al, ay, ... aly, by, b5, ... by), (5.11)
where we have denoted pf(a},a), ..., aly, b, b5, ..., V) to be pf(a),a), ..., a)y, b1, b5, ..., b), and
SO on.

Now let us introduce another character dj(= dy — f3)) defined by

( 0> J) = pf(d07 ;) - pf(ﬁé,d;) = 17

( 0 ]) = pf(d07 ) pf(ﬂé)?b;) = 07

pf(dp, dy) = pf(do, dy) — pf(By, dy) = 0,

for] =1,2,---,N,
such that

(d()aﬁ(]va]?ak) pf(d07/867a;‘7ak) +pf( 1 Oaaj7ak)n7
<d07 /807 a’]? bk)n+1 pf(d07 ﬁ[l)v a;'7 b;g)n + pf( 07 a b/ )na
(d()a/BO: j: pf(dﬁv/@(/)abgyb%)n_'_pf( 07 jvb/ )na

forj,k—1,2,--- , IN.

Then by induction, we obtain
pf(do, B, ay, ab, .. a, by, by, .o U ) st
= pf(do, By, al, ab, ... aln, by, b, o BN ) + PE(), dfy,  al, ay, .o dly, By, Uh, - B )6 12)
i.e.,
Fin+1) = f/(n) = pi(di, dy, ah, b - aly, b, b, ,Bly). (5.13)

Accordingly we obtain

fn+1) —fn) = foln+1)+ f(n+1) = (fo(n) + f'(n))
= pf(dy,do,a},ab, ... .y, b1, by). (5.14)

Now we expand eq.(5.14) with respect to the first character d},

fn+1) = f(n) = Y (P —=1D(=1)N* exp (n;)pt(do, af, ay, -~ aly, ), 0, bly)

M-

<
I
-

>

(PJ - 1)(_1)N+jpf(d07a17a27"' 7a’N7b17b27"' yUgy m 0" 7bN)7 (515)

I
hE

<.
Il
-
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where the denotes & indicates the letter « is missing. On the other hand, we expand g,(n) with
respect to the final character 3, and obtain

g,u(n) = pf(d07a17a2a"' 7aN7b17b27"' 7bN7ﬁ,u)7 (516)

= ZC,U, N+] f(d07a17a27"' ,(lN,bl,bQ,“‘ 7Bja"' 7bN) (517)

The sum of g,(n) over u gives

>

N
> gu(n) = D (=D)VH(P; — 1)pf(do, a1, a2, - an, by, by,
7j=1

joooe s by). o (5.18)
Therefore, f(n) and g, (n) satisfy the linear equation

Zgu Fn+1) = f(n). (5.19)

Based on the fact that (5.3) has the same form as (4.2), we can easily work out the following
BT

(eDn - A_le_Dn)(gu f = f- 9:;) + (Awge P — wue )f f =0, (5.20)

(Dye=Pr 4 XDl — (X = A\y)ePm +ve Pr)f - f =0, (5.21)

(Die™Pm + ADeP — (X = My)eP + e D) (g - £+ f - g9) =0, (5.22)
p=1,2-,M

between equations (5.3),(5.4) and

(D, cosh(Dy) — %sinh(Dn))gL(n) F(n) =0, forp=1,2,--- M, (5.23)
Z gu(n (n+1)— f'(n), (5.24)

where we have assumed that

g1(n)+g2(n)+- - +gu(n) = f(n+1)=f(n),  gi(n)+ga(n)+---+gi(n) = f'(n+1)=f'(n)  (5.25)

such that Egs. (5.4) and (5.24) are satisfied automatically, and X\, v,w, (@ = 1,2,---, M) are
arbitrary constants.

6 Conclusion and discussions

In this paper, Hirota’s bilinear formalism has been utilized to generate integrable multi-component
generalizations of the so-called 1+1 dimensional special Toda lattice, the Volterra lattice, a simple
differential-difference equation found by Adler, Moser, Weiss, Veselov and Shabat and another
integrable lattice deduced from the discrete BKP equation. Their soliton solutions expressed by
pfaffians and the corresponding bilinear Backlund transformations are obtained. It is noted that
these pfaffian solution can also be derived by means of the corresponding Béacklund transformations.
For example, consider the so-called 141 dimensional special Toda lattice. By applying the Backlund
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transformations (2.26)-(2.28) to f(n) = pf(do, a1, b1,60) = 1 +exp(m), gu(n) = pf(do, a1, b1, 5,) =
cu(1) exp(n1), we can obtain

f'(n) =1 —exp(m) /b2 + exp(2) — a1z exp(m1 + 12), (6.1)

9, (n) = —cu(1) exp(m)/bra + cu(2) exp(n2) — ¢, (12) exp(m + 12) /b2, (6.2)
for the parameters A =1, v =0, k, = —c,(2) = Zi;%c#(l); or

f'(n) =1 —exp(m)/arz + exp(n2) — biz exp(m + 12), (6.3)

gu(n) = —cu(1) exp(m1)/a12 + cu(2) exp(n2) — cu(12) exp(m + n2)/ a2, (6.4)
for the parameters A = P%, v = %,ku = 0. Obviously, by simple transformations, solutions

(6.1)-(6.2) and (6.3)-(6.4) are respectively equivalent to

f'(n) =1+ exp(m) + exp(n2) + aizbiz2 exp(n1 + n2) = pf(do, a1, az, b1, ba, Bo), (6.5)
g, (n) = cu(1) exp(m) + cu(2) exp(n2) + ¢, (12) exp(m + n2) = pf(do, a1, az, b1, b2, B,,),(6.6)

where a2, bi2, ¢u(1), ¢u(2), cu(12) and exp(n;), (j = 1,2), are given by (2.9)-(2.11). Furthermore,
starting from the bilinear Béacklund transformations obtained in the paper, we may derive the
corresponding Lax pairs for the multi-component systems under consideration. Again we take
the Bécklund transformation (2.26)-(2.28) as an example, by setting f(n) = ¢(n)f'(n), gu(n) =
Yu(n) f'(n) + ¢(n)g,(n), u(n) =In f/f(fzz)l), vu(n) = % - %, we derive from (2.26)-(2.28) a
Lax pair for (2.5)-(2.6):

(o), =oCam ) (i ) =v (it )
U= ( o)) et =B —1)E. — 3y 0 >
etm=v=D(k, —v,(n—1))E; — (ky + vu(n))BE- — (vu(n) +vu(n —1))] 3~

Lyl Al 0
2\ kuAy —vu(n)(E44+1) 0 )7

where Fy f(n) = f(n+1), AL = EL — 1. In fact, we have checked that the compatibility condition
of above spectral problem yields (2.5)-(2.6). Besides, based on the fact that the multi-component
systems (2.3)-(2.4),(3.3)-(3.4),(4.2)-(4.3) and (5.3)-(5.4) consist of one linear equation and M bilin-
ear equations with respect to f and g, respectively, it would be interesting to explain the meaning
of these variables g, and reasons for investigation of linear equations for them. Actually, linear
equations (2.4) and (4.3) may be viewed as a decomposition of f; into sum of g,, while (3.4) and
(5.4) may be thought of as a decomposition of f(n 4 1) — f(n) into sum of g,. Bilinear equations
(2.3) or (3.3) or (4.2) or (5.3) satisfied by f and g, may be respectively considered as compo-
nents of bilinear equations (1.1) or (1.2) or (1.3) or (1.4) under such decompositions. Finally, it
is remarked that the bilinear procedure to generate integrable multi-component generalizations of
soliton equations may be utilized to derive integrable coupled versions for some fully discrete in-
tegrable equations, say the discrete KAV equation etc.. The work in this direction is in progress.
Moreover, it would be of interest to investigate whether the Pfaffian forms of solutions obtained in
the paper have soliton-like behaviours and how to clarify the asymptotics. These remain to be done
further. Here we just give some plots for the physical quantities, corresponding to the 2-soliton
solution of (2.5)-(2.6):

Uln 0 I f(n+1) _ Guln+1) B 9u(n)

T I R (CE S ()

w=12 (6.7)
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with f(n), gu(n) given by (6.5)-(6.6), which are shown in Fig.1 and 2 where we choose M = 2,
nio =0, (i = 1,2), P, = 0.2, Py = 0.05, c1(1) = —1.0, ¢1(2) = —4.6432, c2(1) = —1.4, c5(2) =
—4.3443.

Figure 1: The plots of v;(n), j =1,2
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Figure 2: The plots of U(n)
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Appendix A. Properties of Pfaffian
A1. Definition

For the sake of self-containedness, we review some properties of Pfaffian. Pfaffians are antisym-
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metric functions with respect to their characters,
pf(a,b) = —pf(b,a), for any a and b.

A 2n-th degree pfaffian can be defined by the following expansion rule,

2n

pf(1,2,-+-,2n) = > (=1)/pf(1, j)pf(2,3,--- ,j, -+ ,2n), (A1)
=2

where & denotes the missing of the letter a. For example, if n = 2, we have
pf(1,2,3,4) = pf(1,2)pf(3,4) — pf(1, 3)pf(2,4) + pf(1,4)pf(2, 3).

It is noted that Pfaffians are closely related to determinants. One interesting fact is that a
determinant of n-degree,
B = det|bj 1 <jr<n

can be expressed by means of a pfaffian of 2n-th degree
det’bj,k‘lgj,kgn = pf(l, 2, e, N, n*, s ,2*, 1*),

whose entries are defined by

pf(j, k) =0, pf(G" k") =0, pf(j, k%) = bj.

A2. Pfaffian identities

From the definition of Pfaffian, we know that its properties are closely related to those of
determinants. One of these properties is that Pfaffian satisfies various kinds of Pfaffian identities.
Here we introduce some fundamental identities in which bilinear soliton equations often result.
Based on (Al), the following pfaffian identities are obtained [25]

pf(CLl,CLQ, o, A2m, 1727 T 52n)pf(1727 T ,2”)

= Z pf (a1,a4,1,2,--- ,2n)pf(ag, -+ , a5, -+ ,a2m,1,2,--- ,2n) (A2)
pf(al)QQ)' o 7a2m—171727"’ 72n— 1)pf(]-727 72n— 1)
2m—1 '
= Y (-1 'pf(a;,1,2,--+ ,2n — D)pf(ar, -+ @5, -+ ,a2m-1,1,2,--- ,2n— 1) (A3)
j=1

with pf(a;,ar) = 0, (4,k = 1,2,---2m). For example, in the case of m = 2, (A2) and (A3) are
respectively rewritten as

(a1,az2,a3,a4,1,-+- ,2n)(1,--- ,2n) = (a1,a2,1,--- ,2n)(as,aq,1,--- ,2n)
—(a1,as, 1,--- ,2n)(a2,a4,1,--~ ,2n) + (a1,a4,1,- -+ ,2n)(ag,as, 1, -+ ,2n), (A4)
(a1,az2,a3,1,--- 2n—1)(1,--- ,2n—1) = (a1, 1, -+ ,2n — 1)(ag,as,1,--- ,2n — 1)
—(ag,1,--- ,2n—1)(ay,as,1,--- ,2n— 1) + (a3, 1,--- ,2n — 1)(ay,as,1,--- ,2n — 1)(A5)

where (a;,a;) =0, (i,j =1,2,3,4).
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Appendix B. Hirota bilinear operator identities.

The following bilinear operator identities hold for arbitrary functions a, b, ¢ and d.

(Dya - b)c? — (Dyd - €)b* = —(Dsb - ¢)(ac + bd) + beDyi(a - ¢+ b - d). (B1)
[sinh(Dy)a - b = sinh(%Dn)[(e%D”a ¢)-(e72Pmb-c) — (ezPrb-c) - (e72Pna - ). (B2)
sinh(gDn)(egD”a -b) - (egD"c -d) = %(e‘sD"a -d)ch — %ad(e‘mnc -b). (B3)
sinh(%Dn)a ca=0. (B4)
(Dia - b)ed — abDyc - d = (Dya - ¢)bd — acDyb - d. (B5)
[sinh(D,)a - bled — absinh(Dy,)c - d

= sinh(%Dn)[(e%Dna -d)-(e72P"b-¢) — (e2Pb-¢) - (e 2Pma - d)]. (B6)
2[D; cosh(Dy)a - b][ePmc - (]

= %Dt[eDna - [ePrb o] + %[DteD"a c][e™Prb- ] — %[eD"a - c|[De™Pmb - (]

—I—%Dt[e_D"a -] [eD"b o]+ %[Dte_D”a . c][eD"b ] — %[e_D"a e [DteD"b - c]. (B7)
2[sinh(Dy,)a - b][ePre - ¢] — 2[sinh(D,,)d - c][ePb - b]

=[ePm(a-c+b-d)](ePb-c) = (ePrb-c)[e™Pr(a-c+b-d). (B8)
Dy[e®Pr(a-c—b-d)] - [e°Pnb - ]

—[Die®Pr(a-c+b-d)]|[e®Pb- ] + [Die®Prb - ][e?Pr(a-c+b-d)] = 0. (B9)
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