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Abstract Based on the analysis of [7] and [10], we present the mixed finite element ap-
proximation of the variational inequality resulting from the contact problem in elasticity. The
convergence rate of the stress and displacement field are both improved from O(h3/ 1) to quasi-
optimal O(h|logh|'/*). If stronger but reasonable regularity is available, the convergence rate
can be optimal O(h).
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1. Introduction

Variational inequalities arise mainly from the application of mechanics and physics, such as
obstacle problem, unilateral problems, contact mechanics. The contact problem in elasticity is
one of the mostly used models in the theory of variational inequality(see [6],[8]). Kikuchi and
Oden|[7] made a detailed analysis of the contact problem in elasticity with the mathematical
model and numerical implementation of the models. Wang[10] improved the duality methods
in the mixed finite element approximation. In this paper, we make an improvement of the error
estimates from O(h%/4) to quasi-optimal O(h|logh|'/*). Under stronger but reasonable regularity
assumption, the convergence rate can be optimal O(h).

Throughout the paper all the notation is followed with that in [7]. The notation of Sobolev
spaces and the corresponding semi-norms, norms is taken from [1]. In addition, the frequently
used constant C' is a generic positive constant whose value may be different under different
context. Bold Latin letters like u, v represent for vector quantities and the summation convention
of repeated indices over 1,2 is adopted. The paper is organized as follows: In section 2, we
introduce some notation and present the framework of the contact problem. In section 3, mixed
problem is derived and its finite element approximation is given. Finally we show our main
results and the proofs in section 4.

2. The framework of the contact problem

The contact problem in elasticity arises from deformable solid mechanics. Suppose Q C R? is
a Lipschitz bounded domain, and its boundary 0f2 consists of three non-overlapping parts I' p, I'¢
and I'p. The displacement field u of 2 is fixed along I" p (Dirichlet condition) with meas(I'p) > 0
while I'¢ is the contact region subjected to a frictionless foundation. Moreover, I'c and I'p are
not adjacent, and I'r is the "glacis” between them with Neumann condition, i.e., the suface
traction force t is applied to I'r. The body force is denoted by f, and g € Héf(l“c UTp)(see
Fig 1.1).

The general continuous setting of the contact problem in elasticity in R? can be illustrated



Fig 1.1

as the following mathematical model: to find the displacement field u € K,
K={ve H%D(Q) = (H%D(Q))2 v-n=uv,<g on Ic},

such that
a(u,v —u) > f(v—u), Vv € K, (2.1)

where

o) = [ (e (o). (2.2)
f('v):/ﬂf"vdx—i-/rFt‘vds. (2.3)

The notation H%D stands for the set of functions in H*(Q2) which vanish on T'pp. Besides, € with
€;j(v) = 3(9jvi + D;v;) denotes the linearized strain tensor field induced by a displacement field
v and 0;(v) = Ejjpep(v) is the stress tensor with £ = (E;;;) denoting the Hook’s tensor of
the elastic material. Moreover, the Hook’s tensor E has the following properties :

Eij € L*(Q), || Eijrillree < M,
Eijrt = Erij = Ejik, (2.4)
Eiji(®)&i&u > m&;i&ij,  for allw € Q, € = (&;) € 52,

where S? denotes the set of the real symmetric matrices of order two. Furthermore, E = (Eijkt)
is invertible, and its inverse denoted by C' = (Cjji;) also satisfies similar properties:

Cijir € L), ||Cijrtll e < ma,
Cijkt = Criij = Cjitk, (2.5)
Cijkl($)7_ij7—kl > MlTZ'jTZ'j, for all « € Q, T = (Tz'j) S 32,

with 7;; = Ejjii&k and &5 = CjxiTr- It can be checked that the following differential forms are
equivalent to the above variational inequality problem (2.1)-(2.3):

—divo(u)=f in €,
u=0 onlp,
oc(un=t on Ip,
upn<g, 0, <0, 0:=0, (up,—9g)o,=0 on Tg,

(2.6)



where 0, = o(u)n - n and o, = o(u)n — o,n.
3. The mixed variational inequality and its finite element approximation

Notice that the variational inequality (2.1)-(2.3) can also be interpreted as a functional
minimization problem, i.e., to find u € K, such that

J(u) = 11)11€1[I} J(v) (3.1)

where J(v) = 1a(v,v) — f(v). Using the duality theory in [3], i.e., for a given convex function
s(v) defined on a space V, its conjugate function s’(v’) is defined by

s'(v') = sup(v, v )y« — s(v), W' €V’
veV

where V’ is the dual space of V, we can easily obtain(see [10])

Jw) = alv,v) - ()

= % /QEijlcleij(v)ekl(,v)dx‘ - f('U)

1
= sup / (Tije,-j(v) — §Cijkl7'ij7'kl)dx — f(v)
TEAJQ

with
A={r=(rj): 7 €LXQ), 75 =75}

Then, the minimization problem (3.1) induces the following saddle point problem:

. 1
Juf f_lél/)f/ﬂ(ﬂjﬁij(v) = 5CinTiTi)de — f(v)}. (32)

Following the mixed finite element theory of Brezzi et.al [4], we can show that the corresponding
mixed variational inequality is as follows: to find (o, u) € A x K, such that

a*(a,7) = (e(u),7) =0 VT €A, 15
(e(v—u),0)> flv—u) Vvek, (3:3)
where
a*(o,7)= / CijkiOijTrida. (3.4)
Q

It is easy to see the above mixed problem has a unique solution due to the ellipticity (2.5) of
Cijr and the following inf — sup condition
e(v), T
sup (el),7) > al|lv|| g, Vv € H%D (). (3.5)
e |7z
which is a direct result of Korn’s inequality. Let K and Aj be the finite element approximation
spaces of the mixed variational inequality with respect to the triangulation 75, and then the
discrete mixed finite element approximation is as follows: to find (o, up) € Aj, X K, such that

{ (a*(ah,Th) — (€( Th) =0 V15 € Ap,

up),
6(’Uh — uh), O'h) > f(vh — uh) V’Uh € Kh. (3'6)
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To be exactly, here let Vj, = {v, € H%D(Q) coplr € P(T),VT € T}, and Kp, = {v), €
Vi : (Vpn — g)(P) < 0} with P being the set of the nodes on I'c, and Ay, = {7, € A : 7|7 €
Py(T),¥T € Jp}, then the discrete in f — sup condition can be verified similarly as the continuous
one (3.5), i.e., there exists a constant § > 0, such that

sup (e(vp), Th)

> Bllonllgr  Yon € Vi, C HE (),
Tredn  ThllL2

so the discrete mixed problem (3.6) has a unique solution.
Before we present the improved error estimates for the finite element approximation, we
need the following lemmas.

Lemma 3.1(see [7],[10])  Suppose (o, u) is the solution of the mized variational problem (3.3)
and (op,up) the solution of the discrete one (3.6) respectively, then for all Ty € Ap,vp € K,
and v € K, we have

luw—wupll < 1+ 87w —vpllg +miB7 o — onll (3.7)

Millo — o3 <millo —onllzllo — Thllz + |lu — wsllgillo — 7al L2
+||w —vp|| g llo — onllz2 —I—/ On(Vpn — Unp + Vp — Uy )ds. (3.8)
el

Lemma 3.2 The following discrete trace inequality holds, for 1 < p < oo,
lv]lop.or < C{h;leHapI + hzi’p_1|v|’1’7p7T}l/p, Yo e WHP(T), T e J. (3.9)

where C' is a positive constant independent of v and hr.
The proof is same as Stummel’s(see [9]).

Next, let us introduce some notation for later use. Let all the line segments F C 92
corresponding to the triangulation J5, on I'¢ be divided into the following 3 types:

Y ={F cT¢:unlr =g}, (3.10)
Iz ={F CT¢:unlr < g}, (3.11)
L™ ={F CTc: FNTY #0,FNT; # 0}, (3.12)
and _
Lo =Tg U ury™. (3.13)
Moreover, let
1
Pl (v) = m/ vds, RY(v)=v— Pl (v). (3.14)
F

4. Main results and the proofs

Now we can establish the error estimates for the finite element approximation to the mixed
problem (3.6).

Theorem 4.1 Suppose (o,u) € HY(Q)? x H?(Q)? is the solution of the mived variational
problem (8.3) and (o, up) the solution of the discrete one (3.6) respectively, f € L?*(Q)%,t €



H_l/z(FF) ,and g € H; / (TcUTE)N H3/2(Fc) and that the number of the points on I'c where
the constraints change fmm binding to non-binding is finite. Then

o — oz = O(hllogh|/*) (4.1)

lu — wp [ = O(hllogh|'/*) (4.2)

where C' is a positive constant depending only on ||o|| g1 (q), [ulm2@) and |g]gs/2r,.)-
Proof. Let 71 € Ay, v € V), represent for the interpolation of 7, v respectively, then by the
standard interpolation error estimates (see [5]), one yields

lm —71llr2 < Ch|T|m (4.3)

lv — vl < Chlv| g2 (4.4)

Then choosing 7y, = o1 € Ay, v, = ur € K, and v € K such that v,, = ¢ on I'¢ in lemma 3.1,
and using Young’s inequality, 2ab < ca® + %b2, Ve > 0, we then obtain by (2.6)

o anllie < CHlofiy + Chllw — unllslolus + CHYulle + [ onlurn —unn)ds (49
Te

Now we consider the last term of the right-hand side of (4.5). By (2.6) and (3.11), it is easy to
see 0, =0 on I', so

ch On(Urn — Upp)ds = / On(Urn — Upyp)ds + / On(Urn — Upp)ds
1'\0 FJumP

— Z /Un ULp — U )dS + Z /O'n(uln—un)ds

FeTd Feriym? F
- /ang gds+ 3 /an — wpn)d
Ferim» Feriymr
=L+DL+1I3+ 1y (46)

Notice for all F' € FOC with m® as its midpoint,

(wrn — unn)(m") = (wrn — g1 + g1 — upy) (M) = (g1 — wpy) (M) <0 (4.7)

then by (3.14), (4.7), lemma 3.2 as well as the standard interpolation error estimates, it follows
that

fF on(Urn — upp)ds = / Rg(an)(ujn — Upp)ds + POF(O'n) / (Urp — Upy)ds
F F

- /F RE(0) (i — upn)ds + PE (00) (ttn — ) (m")|F|

< /F RE (0,){(tt1n — tn) + (ttn — un) }ds

- /F RE (0n){(urn — un) + R (un — wpn) }ds

< IR (o) llo,r([[trn — unllo,r + | RS (wn — wnn)lo,r)
< Ch|o |1y (CH 2 |ul g2y + OB | — wn| g 1)



which implies that

n=> / on(urn — unn)ds < Ch?||o|| g |ulgz + Chllo | m |lu — unl m (4.8)
per, ’ I

Now we begin to estimate I5. For all F' € I‘é“ "P by lemma 3.2 and the standard interpolation
error estimates,

Jy nltttn = wn)ds < nll gyl — tnll o
< ||Un||Lp’(F)Chl+l/p|u|H2(T)

< Chlﬂ/p”an”m’(rc)’u‘HZ(T)

where ' C 0T and 1/p + 1/p’ = 1. Since HY/?(I'¢) «— L (T¢) for 1 < p/ < +oo, and to be
exactly (see [2]),

lowll o ey < OV lonllmsaey:
thus, by trace theorem we have

loull vy < OVl

Consequently, since the number of the points on I'c where constraints change from binding to
non-binding is finite,

I :/chumpan(u[n—un)ds: Z /an(ujn—un)ds

Feriyme r
_ ’
< VPR PR o g Z || g2 (1)
FCOT
FeFJC“mP

< CVP Y R o || g ul e

Set p’ = |logh|, it can be easily seen that
b= [ oulunn — un)ds < CHlloghl" o ful (4.9)
F um.
Moreover, similarly as above, by the standard interpolation error estimates, for all F' € I‘é" me

/F 0ulg — 91)ds < onll 1 iy 19 = 9100y < OVl i CRIF2]g] oo

Let p’ = |logh| again, it easily follows that

I =/ on(g — gr)ds = /Jng—gzds
3 e ( 1) > : ( )

Ferzm»
<OV R el Y lalgse
Feriym»
< CB2|logh|"?||o |l 1 |9] /2 r e (4.10)



Now, we begin to estimate I;. Note that up € Kp, then (upy, — g1)(P) = (upn — g)(P) < 0 with
P being the set of all the nodes on I'¢. By the linearity of uj and gy, we have uy, — gr < 0 on
¢, together with (2.6), one gets

Iy = / on(9r — tpn)ds <0 (4.11)
Féump

Now combining (4.5), (4.6) and (4.8)-(4.11), one gets
lo —onllz: < Ch?ollin + Chllu — upllgllolg + Ch?lulfs
+CR?(logh|"? ||| (el > + 19| vz rey) (4.12)
In addition, let vy, = uy € K} in lemma 3.1, we have
lw —upllgr < Chlulpz + Cllo — opll L2 (4.13)
Finally, by (4.12) and (4.13) as well as the Young’s inequality, the proof is completed.
Theorem 4.2 Under the assumptions of theorem 4.1 and the assumption that o, € L™ (I'¢),
the following error estimates hold:
o —onllz = O(h), (4.14)
lw —wup g1 = O(h), (4.15)

where C is a positive constant depending only on ||o|| g1, [|on || Lo (o) [wlm2(0) and |9]gs/2(r,)-
Proof. Following the proof of theorem 4.1, in order to improve the convergence rate form
O(h|logh|'/? to O(h), we only need to re-estimate the terms I and I3 which lost the optimal
convergence rate. By lemma 3.2 for p = 2 and the finite number of points on I'c where the
constraints form binding to non-binding,

I, = /FJS“”P Un(uln - un)ds < ”O'nHLOO(Fc) Z / (Uln o un)ds

Jjump
Fer}

< llonllroreayh® D lum — unllz2r)
Ferims

<hPlonllpeeqrey Y Ch2|ulgzy

FCOT
jump
FEFC

< Ch*|lon | oo (rey el a2 (4.16)
In addition, by standard interpolation error estimates,

1 :/ on(g —g1)ds = /ang—g ds
3 - (9 —a1) > : (9 —g1)

jump
Fery;

< llonllze@ayp® > llg = gill2r)

Ferzm»
§h1/2||0'nHL°°(Fc) Z Ch3/2|9|H3/2(F)
Ferims
< Ch2H0n||L°°(Fc)|9|H3/2(rc) (4.17)

Combining (4.5), (4.6), (4.8), (4.11), (4.16) and (4.17) together with Young’s inequality, the
proof is completed.
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