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Abstract

The Legendre pseudospectral approximation for numerical solution of the time-

dependent incompressible Navier-Stokes equations on a spherical surface is pre-

sented. The fully discrete Legendre pseudospectral scheme is constructed. The

stability of the scheme is analyzed and the convergence is proved.
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1 Introduction

The incompressible Navier-stokes equations on a spherical surface is the following
nonlinear partial differential equations [1]:





∂U

∂t
+ (U · ∇)U − ν4U + ∇P = f, in S × (0, T ],

∇ · U = 0, in S × (0, T ],
U |t=0 = U0, on S,

(1.1)

where U = (U1, U2) is the velocity vector, P is the ratio of the pressure to constant density,
and ν is the kinematic viscosity coefficient. Let S =

{
(λ, θ) : 0 ≤ λ < 2π,−π

2
≤ θ ≤ π

2

}

be the unit spherical surface, where λ and θ are longitude and latitude coordinates on
the spherical surface, respectively. It is naturally assumed that all functions in (1.1) have
the period 2π for the variable λ. Furthermore they are regular at θ = ± π

2
and their first

order derivatives with respect to λ vanish at the two poles.
We note that the velocity U and the pressure P in the above equations are coupled

together by the incompressibility constraint ∇ · U = 0, which makes the system difficult
to solve numerically. Popular strategies to overcome this difficulty are, among others, the
artificial compressibility method, the pressure stabilization method and the projection
method [2, 3, 4, 5, 11].

∗This work is supported by Chinese Academy of Sciences and TWAS-UNESCO.

1



Since the spectral method has convergence rate of ”infinite” order, it has become
one of the most powerful tools for the numerical solution of nonlinear partial differential
equations arising in fluid dynamics [6, 7]. Many papers have also attempted to use spectral
methods for solving problems in spherical coordinates [8, 9, 10] and achieved satisfactory
results. However, relatively less work has been done in numerical analysis of these spectral
methods which use the function space and approximate subspaces in spherical coordinates.
In this paper, we present a legendre pseudospectral method for solving the time-dependent
Navier-Stokes equations in the spherical polar coordinates.

An outline of the paper is as follows. In section 2, by using the spherical harmonic
functions as the basis functions, the Legendre pseudospectral approximation on a sphere
is described. In section 3, we list several lemmas related to the Legendre pseudospectral
approximation. The stability and convergence of the proposed scheme are analyzed in
section 4 and 5 respectively.

2 Legendre Pseudo-spectral Method

We are going to construct the pseudospectral scheme for (1.1). First we introduce
some approximation subspaces and define an interpolation operator. For a non-negative
integer n ≥ 0, denote by Ln(x) the nth degree Legendre polynomial defined on x ∈ [−1, 1]
and recall the orthogonality relation

(Li(x), Lj(x)) =
2

2i + 1
δij, ∀i, j ≥ 0,

where (f, g) =
∫ 1

−1
f(x)g(x)dx. Also recall that L′

n(x) satisfies the recurrence relation

L′
n(x) =

n−1∑

k=0

(2k + 1)Lk(x),

For an integer m(|m| ≤ n), the associated Legendre polynomials are defined as

Lm,n(x) =

√
(2n + 1)(n − m)!

2(n − m)!
(1 − x2)m/2 dm

dxm
Ln(x), 0 ≤ m ≤ n,

Lm,n(x) = L−m,n(x), −n ≤ m ≤ 0.

Then the spherical harmonic functions Ym,n(λ, θ) are

Ym,n(λ, θ) =
1√
2π

eimλLm,n(sin θ), −n ≤ m ≤ n. (2.1)

Let N be any positive integer that truncates the series. We define the trail function space
for pseudo-spectral approximation as

V̂N =

{
v : v =

N∑

n=0

n∑

m=−n

v̂m,nYm,n(λ, θ)

}
. (2.2)

Furthermore, define VN as the real subspace of V̂N , and V 0
N as the subspace of VN , whose

average on the spherical surface vanishes.
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Next, we consider the interpolation from C(S) onto VN . Let xj(0 ≤ j ≤ N) be the
N + 1 roots of the legendre polynomial LN+1(x). Clearly, xj ∈ [−1, 1]. Let

wj =
1

(1 − x2
j)[L

′
N+1(xj)]2

, 0 ≤ j ≤ N,

which are the N + 1 weights in the Legendre-Gauss quadrature formula associated with
the N + 1 roots. Define SN as a set of grid points on S,

SN =

{
(λl, θj) : λl =

2πl

2N + 1
, 0 ≤ l ≤ 2N ; θj = sin−1 xj, 0 ≤ j ≤ N

}
. (2.3)

Then we define the interpolation operator IN , from C(S) onto VN , as follows

INv =
N∑

n=0

n∑

m=−n

vm,nYm,n(λ, θ), (2.4)

where

vm,n =
2π

2N + 1

2N∑

l=0

N∑

j=0

v(λl, θj)wjY
∗
m,n(λl, θj),

and symbol ”∗” denotes complex conjugate of Ym,n. Moreover, we introduce the discrete
inner product (·, ·)N as

(u, v)N =
2π

2N + 1

2N∑

l=0

N∑

j=0

wjv(λl, θj)v
∗
m,n(λl, θj), ∀u, v ∈ C(S). (2.5)

Define the bilinear form

J(u, v) = (v · ∇)u +
1

2
(∇ · v)u (2.6)

It is easy to verify that (J(u, v), u) = 0. To tackle the incompressibility constraint, we
adopt the approach of artificial compressibility that is to approximate the incompressible
condition by the equation

β
∂P

∂t
+ ∇ · U = 0, (2.7)

where β >> 1 is the artificial compressibility factor. Finally, we consider the finite
difference discretization in the temporal direction. Let τ be the time step. Define

Rτ =

{
t = kτ : 0 ≤ k ≤ T

τ

}
,

and

vt(λ, θ, t) =
1

τ
[v(λ, θ, t + τ) − v(λ, θ, t)],

v̂(λ, θ, t) =
1

2
[v(λ, θ, t + τ) + v(λ, θ, t)],

A fully discrete Legendre pseudo-spectral scheme for solving (1.1) with the approach of
artificial compressibility is to find(u(t), p(t)) ∈ VN × V 0

N for all t ∈ Rτ , such that





ut + INJ(û(t), û(t)) + ν4û(t) + ∇p̂(t) = f̂(t)
βpt(t) + ∇ · û(t) = 0,
u(0) = INU0, p(0) = 0.

(2.8)
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3 Lemmas

We give several lemmas related to the Legendre pseudospectral approximation. Let
D(S) be the set of all infinitely differentiable function defined on S. The dual space of
D(S) is denoted by D′(S). Define

L2(S) = {u ∈ D′(S) : ‖u‖ < ∞} ,

equipped with following inner product and norm

(u, v) =

∫ ∫

S

uvds =

∫ 2π

0

∫ π/2

−π/2

u(λ, θ)v(λ, θ) cos θdθdλ, ‖u‖ = (u, u)
1

2 .

Also we define

H1(S) =

{
u : u,

1

cos θ

∂u

∂λ
,
∂u

∂θ
∈ L2(S)

}
.

Its semi-norm and norm are respectively

|u|1 =

(∥∥∥∥
1

cos θ

∂u

∂λ

∥∥∥∥
2

+

∥∥∥∥
∂u

∂θ

∥∥∥∥
2
) 1

2

, ‖u‖1 = (‖u‖2 + |u|21)
1

2 .

For any real number r ≥ 0, we define Hr as the complex interpolation between the two
spaces H [r](S) and H [r+1](S). Since Ym,n are the eigenfunctions of the spherical Laplace
operator 4, corresponding to the eigenvalues n(n + 1), the norm ‖u‖r is equivalent to(∑∞

n=0

∑
|m|≤n(n + 1)2rû2

m,n

) 1

2

, where û2
m,n being the Fourier coefficients related to the

spherical harmonic functions Ym,n . Besides, let ‖u‖r,∞ = ‖u‖Cr(S), ‖u‖∞ = ‖u‖C(S), etc.
In order to derive the error estimates, we define the L2 orthogonal projection operator
PN , i.e., for any u ∈ L2, PNu ∈ VN satisfies, (u − PNu, v) = 0, ∀v ∈ VN . Throughout
this paper we shall use c to denote a general positive constant independent of τ and N .
It can be different in different cases.

Lemma 1. If 0 ≤ r ≤ β, then for all u ∈ Hβ(S),

‖u − PNu‖r ≤ cN r−β‖u‖β

Proof.

‖u − PNu‖2
r ≤ c

N∑

m=−N

∞∑

n=N+1

nr(n + 1)r|ûm,n|2 + c
∑

|m|>N

∞∑

n=|m|

nr(n + 1)r|ûm,n|2

≤ c

N∑

m=−N

∞∑

n=N+1

nr(n + 1)r|ûm,n|2 + c
∑

|m|>N

∞∑

n=N+1

nr(n + 1)r|ûm,n|2

≤ cN2r−2β

∞∑

m=−∞

∞∑

n=N+1

nβ(n + 1)β|ûm,n|2,

≤ cN2r−2β‖u‖2
r

Lemma 2. (Inverse Inequality) If 0 ≤ r ≤ β, then for all ∀u ∈ VN ,

‖u‖β ≤ cNβ−r‖u‖r
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Proof. Let

u =

N∑

m=−N

N∑

n=|m|

ûm,nYm,n(λ, θ).

Since Ym,n(λ, θ) is the eigenfunction of the operator −4 on S, with eigenvalue −n(n+1).
Thus for any u ∈ Hr(s), the norm is equivalent to




∞∑

m=−∞

∑

n≥|m|

nr(n + 1)r|ûm,n|2



1

2

Lemma 3. [7] If u ∈ C(S) and v ∈ VN , then:

(i) INv = v, (ii) (INu, v) = (INu, v)N = (u, v)N .

Lemma 4. [5] For all u ∈ C(S) we have

‖INu‖ = ‖INu‖N ≤ ‖u‖N ,

‖u − INu‖N = inf
∀v∈VN

‖u − v‖N .

Lemma 5. [5] For all u = (u(1), u(2)) ∈ H1(S)
∥∥∥∥
∂u(1)

∂λ

∥∥∥∥+

∥∥∥∥
∂u(2)

∂λ

∥∥∥∥ ≤ ‖u‖H1(S),

Lemma 6. Assume 0 ≤ r ≤ β and β > 1. Then for all u ∈ Hβ(S),

‖u − INu‖r ≤ cN1+r+ε−β‖u‖β

where ε is an arbitrary small number.

Proof. First we consider the case r = 0. By the embedding theorem on spherical surface,
we have

‖u‖∞ ≤ c‖u‖1+ε, ∀ε > 0 (3.1)

Thus Hβ(S) ⊂ C(S) and INu is well defined. It follows from (ii) of Lemma 4 that

‖u − INu‖ ≤ ‖u − PNu‖N ≤ c‖u − PNu‖∞,

Because INu ∈ VN , PNu ∈ VN , we have from Lemma 3 that

‖u − INu‖ ≤ ‖u − PNu‖ + ‖INu − PNu‖ = ‖u − PNu‖ + ‖INu − PNu‖N

≤ ‖u − PNu‖ + ‖u − INu‖N + ‖u − PNu‖N ≤ 3‖u − PNu‖∞
The combination of (3.1) and Lemma 2 leads to

‖u − PNu‖∞ ≤ c‖u − PNu‖1+ε ≤ cN1+ε−β‖u‖β,

where ε is an arbitrary small number. If r > 0, then we have from lemma 2 that

‖INu − PNu‖r ≤ cN r‖INu − PNu‖
≤ cN r(‖u − PNu‖ + ‖u − INu‖)
≤ cN1+r+ε−β‖u‖β,

which, together with Lemma 1, implies the conclusion of this lemma.

5



4 The Stability

Suppose that the initial values u(0), p(0) in (2.8) have error ũ0, p̃0 and that the right

hand terms in the first and second equation have errors f̃(t) and g̃(t) respectively. Then
the error ũ(t) and p̃(t) of u(t) and p(t) satisfy.





ũt(t) + IN [J(̂̃u(t), û(t) + ̂̃u(t)) + J(û(t), ̂̃u(t))]

−ν4̂̃u(t) + ∇̂̃p(t) =
̂̃
f(t),

β̂̃pt(t) + ∇ · ̂̃u(t) = g̃(t),
ũ(0) = ũ0, p̃(0) = p̃0,

(4.1)

By taking inner product of the first equation of (4.1) with 2̂̃u(t), and the second equation

of (4.1) with 2̂̃p(t), we get

(
‖ũ(t)‖2 + β‖p̃(t)‖2

)
t
+ 2ν|̂̃u(t)|21 + F = 2(

̂̃
f(t), ̂̃u(t)) + 2(g̃(t), ̂̃p(t)), (4.2)

where
F = 2

(
INJ(û(t), ̂̃u(t)), ̂̃u(t)

)

Now we estimate the inner product and F , clearly

2

∣∣∣∣(
̂̃
f(t), ̂̃u(t))

∣∣∣∣ ≤ c(‖ũ(t)‖2 + ‖ũ(t + τ)‖2 +
∥∥∥f̃(t)

∥∥∥
2

+
∥∥∥f̃(t + τ)

∥∥∥
2

)

2
∣∣∣(g̃(t), ̂̃p(t))

∣∣∣ ≤ c(‖p̃(t)‖2 + ‖p̃(t + τ)‖2 + ‖g̃(t)‖2)

|F | ≤ c ‖û(t)‖1,∞

∥∥∥̂̃u(t)
∥∥∥

H1(S)

∥∥∥̂̃u(t)
∥∥∥ ≤ ν

∣∣∣̂̃u(t)
∣∣∣
2

1
+

c

ν
‖û(t)‖2

1,∞

∥∥∥̂̃u(t)
∥∥∥

2

.

Putting the above estimations in (4.2), we get

(
‖ũ(t)‖2 + β ‖p̃(t)‖2)

t
+ ν

∣∣∣̂̃u(t)
∣∣∣
2

1
≤ A(‖ũ(t)‖2 + ‖ũ(t + τ)‖2

+ ‖p̃(t)‖2 + ‖p̃(t + τ)‖2) + G(t) (4.3)

where

A = (1 +
c

ν
)‖u(t)‖2

1,∞

G(t) = c

(∥∥∥f̃(t)
∥∥∥

2

+
∥∥∥f̃(t + τ)

∥∥∥
2

+ ‖g̃(t)‖2

)
,

let τ be suitably small, and define,

E(t) = ‖ũ(t)‖2 + β ‖p̃(t)‖2 + ντ

t−τ∑

t′=0

∣∣∣̂̃u(t′)
∣∣∣
2

1
,

ρ(t) = 2(‖ũ(0)‖2 + β ‖p̃(0)‖2) + τ

t−τ∑

t′=0

G(t′)

Summing up (4.3) for t′ = 0, τ, ..., t − τ , we have

E(t) ≤ ρ(t) + 2Aτ

t−τ∑

t′=0

E(t′)

By applying Grownwall’s inequity, we assert the following theorem for stability.
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Theorem 1. Suppose τ is suitably small, then there exist a positive constant A, such that
for all t ∈ Rτ

E(t) ≤ ρ(t)e2At.

5 Convergence

In this section, we analyze the convergence of the scheme (2.8) and derive the rate
of convergence. Suppose U(t), P (t) is the exact solution of (1.1). Let UN(t) and P N(t)
be its L2 projection onto VN that is UN (t) = PNU(t), P N(t) = PNP (t). Then UN (t) and
P N(t) satisfies





∂ bUN

∂t
(t) + 1

2
PN [(U(t) · ∇)U(t) + (U(t + τ) · ∇)U(t + τ)] − ν4ÛN (t) = PN f̂(t)

β ∂ bUN

∂t
(t) + ∇ · ÛN (t) = 0,

UN (0) = PNU0, P N(0) = 0

(5.1)

Define
Ũ(t) = UN (t) − u(t), P̃ (t) = P N(t) − p(t),

we drive from (2.8) and (5.1)





Ũt(t) + IN [J(
̂̃
U(t), Û(t) +

̂̃
U(t)) + J(Û(t),

̂̃
U(t))] + ν4 ̂̃U(t)

+∇ ̂̃P (t) = E1(t) + E2(t) + E3(t)

βPt(t) + ∇.
̂̃
U(t) = βE4(t),

Ũ(0) = (PN − IN )U0, Ũ(0) = 0,

(5.2)

where

E1(t) = (PN − IN )f̂(t),

E2(t) = UN
t (t) − ∂ÛN

∂t
(t),

E3(t) = INJ(Û(t), Û(t)) − 1

2
PN [(U(t) · ∇)U(t) + (U(t + τ) · ∇)U(t + τ)] ,

E4(t) = P N
t (t) − ∂P̂ N

∂t
(t),

By an argument similar to that in the section 4, we get

(∥∥∥Ũ(t)
∥∥∥

2

+ β
∥∥∥P̃ (t)

∥∥∥
2
)

t

+ ν

∣∣∣∣
̂̃
U(t)

∣∣∣∣
2

1

≤ B(
∥∥∥Ũ(t)

∥∥∥
2

+
∥∥∥Ũ(t + τ)

∥∥∥
2

+
∥∥∥P̃ (t)

∥∥∥
2

+
∥∥∥P̃ (t + τ)

∥∥∥
2

) + H(t) (5.3)

where

B = (1 +
c

ν
)‖U(t)‖2

1,∞ H(t) =

4∑

i=1

‖Ei(t)‖2,
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Ẽ(t) =
∥∥∥Ũ(t)

∥∥∥
2

+ β
∥∥∥P̃ (t)

∥∥∥
2

+ ντ

t−τ∑

t′=0

∣∣∣∣
̂̃
U(t′)

∣∣∣∣
2

1

,

ρ̃(t) = 2(
∥∥∥Ũ(0)

∥∥∥
2

+ β
∥∥∥P̃ (0)

∥∥∥
2

) + τ

t−τ∑

t′=0

H(t′)

Summing up (5.3) for t′ = 0, τ, ..., t − τ , we have

Ẽ(t) ≤ ρ̃(t) + 2Aτ

t−τ∑

t′=0

Ẽ(t′).

In order to get convergence rate for
∥∥∥Ũ(t)

∥∥∥ and
∥∥∥P̃ (t)

∥∥∥, we need only to estimate the

order of ρ̃1(t) , then

τ

t−τ∑

t′=0

‖E1(t
′)‖2 ≤ CN2(1+ε−r)‖f(t)‖2

r,

τ

t−τ∑

t′=0

‖E2(t
′)‖2 ≤ CN2(1+ε−r)

∥∥∥∥
∂U

∂t

∥∥∥∥
L2(0,T ;H1(S))

+ Cτ 4

∥∥∥∥
∂3U

∂t3

∥∥∥∥
2

L2(0,T ;L2(S))

,

τ

t−τ∑

t′=0

‖E3(t
′)‖2 ≤ C

(
‖|U | ‖2

r +
∥∥|UN

∣∣ ‖2
r(S)

)
×
(
N2(1+ε−r) ‖U‖2

C(0,T ;Hr(S))

+ τ 4

∥∥∥∥
∂2U

∂t2

∥∥∥∥
2

L2(0,T ;Hr(S))

)
,

τ

t−τ∑

t′=0

‖E4(t
′)‖2 ≤ Cτ 4

∥∥∥∥
∂2P

∂t2

∥∥∥∥
2

L2(0,T ;L2(S))

.

Consequently, we have
ρ̃(t) ≤ d

(
τ 4 + N2(1+ε−r)

)
,

where d is positive constant depending only on ν and the norm of U and P in the spaces
mentioned above. Finally we reach the following theorem for convergence rate.

Theorem 2. Assume that the exact solution (U, P ) of (1.1) satisfies the following smooth-
ness U ∈ H1(0, T ; H1(S))

⋂
H3(0, T ; L2(S))

⋂
C(0, T ; Hr(S))

⋂
H2(0, T ; L2(S))

P ∈ H2(0, T ; L2(S)) f ∈ C(0, T ; Hr(S)). Then there exist a positive constant d, such that
for all t ∈ Rτ

Ẽ(t) ≤ d(τ 4 + N2(1+ε−r)),

where ε is a suitably small number.
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