A note on symplecticity of step-transition mappings for multi-step methods

Gui-Dong Dai ${ }^{\text {a,b }}$, Yi-Fa Tang ${ }^{\text {a,* }}$
${ }^{\mathrm{a}}$ LSEC, ICMSEC, Academy of Mathematics \& Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100080, P.R. China
${ }^{\mathrm{b}}$ Graduate School of the Chinese Academy of Sciences, Beijing 100080, P.R. China

Received 1 April 2005; received in revised form 28 September 2005

Abstract

We prove that for a linear multi-step method $\sum_{k=0}^{m} \alpha_{k} Z_{k}=\tau \sum_{k=0}^{m} \beta_{k} f\left(Z_{k}\right)$, even though the mappings $Z_{0} \rightarrow Z_{1}, \ldots, Z_{m-2} \rightarrow$ Z_{m-1} are chosen to be symplectic, $Z_{m-1} \rightarrow Z_{m}$ will be non-symplectic. Similarly, there is an interesting result for a sort of general linear methods. © 2005 Elsevier B.V. All rights reserved.

Keywords: Linear multi-step method; Infinitesimally symplectic; Symplecticity; General linear method

1. Introduction

For an ordinary differential equation

$$
\begin{equation*}
\frac{\mathrm{d} Z}{\mathrm{~d} t}=f(Z), \quad Z \in \mathbb{R}^{p} \tag{1}
\end{equation*}
$$

any compatible linear m-step difference scheme

$$
\begin{equation*}
\sum_{k=0}^{m} \alpha_{k} Z_{k}=\tau \sum_{k=0}^{m} \beta_{k} f\left(Z_{k}\right) \quad\left(\sum_{k=0}^{m} \beta_{k} \neq 0\right) \tag{2}
\end{equation*}
$$

is of order s if and only if (refer to [6])

$$
\begin{equation*}
\sum_{k=0}^{m} \alpha_{k}=0, \quad \sum_{k=0}^{m} \alpha_{k} k^{l}=l \sum_{k=0}^{m} \beta_{k} k^{l-1}, \quad 1 \leqslant l \leqslant s, \quad \sum_{k=0}^{m} \alpha_{k} k^{s+1} \neq(s+1) \sum_{k=0}^{m} \beta_{k} k^{s} \tag{3}
\end{equation*}
$$

When Eq. (1) is a hamiltonian system, i.e., $p=2 n$ and $f(Z)=J \nabla H(Z)$, here

$$
J=\left[\begin{array}{ll}
0_{n} & -I_{n} \\
I_{n} & 0_{n}
\end{array}\right]
$$

[^0]∇ stands for gradient operator, and $H: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{1}$ is a (smooth) hamiltonian function, people have studied the symplecticity of scheme (2).

Definition 1 (refer to [1]). A transformation $T: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is called canonical or symplectic if

$$
\begin{equation*}
\left[\frac{\partial T(Z)}{\partial Z}\right]^{\mathrm{T}} J\left[\frac{\partial T(Z)}{\partial Z}\right] \equiv J \tag{4}
\end{equation*}
$$

Eirola and Sanz-Serna [2], Ge and Feng [3] have shown respectively that under some condition on the coefficients in (2), the transformation $\left(Z_{0}^{\mathrm{T}}, \ldots, Z_{m-1}^{\mathrm{T}}\right)^{\mathrm{T}} \longrightarrow\left(Z_{1}^{\mathrm{T}}, \ldots, Z_{m}^{\mathrm{T}}\right)^{\mathrm{T}}$ in the higher dimensional manifold $\mathbb{R}^{2 m n}$ is symplectic with respect to some more general structure.

On the other hand, Hairer and Leone [4], Tang [9] have got the negative result for the step-transition operator (underlying one-step method) $G: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ satisfying

$$
\begin{equation*}
\sum_{k=0}^{m} \alpha_{k} G^{k}=\tau \sum_{k=0}^{m} \beta_{k} J(\nabla H) \circ G^{k} \tag{5}
\end{equation*}
$$

to be symplectic (in the sense of Definition 1).
From Hairer et al. [5], MacKay [7], McLachlan and Scovel [8], one can find reviews on symplectic multi-step methods.
In this note, we study mappings from $\mathbb{R}^{2 n}$ to $\mathbb{R}^{2 n}$ for linear multi-step method (2) for hamiltonian system. Let us see what happens to Z_{m} if we choose Z_{0}, \ldots, Z_{m-1} such that $Z_{i} \rightarrow Z_{i+1}(0 \leqslant i \leqslant m-2)$ is symplectic. We will also consider the case for a sort of general linear methods:

$$
\begin{equation*}
\sum_{k=0}^{m} \alpha_{k} Z_{k}=\tau \sum_{k=0}^{m} \beta_{k} f\left(\sum_{l=0}^{m} \gamma_{k l} Z_{l}\right) \quad\left(\sum_{l=0}^{m} \gamma_{k l}=1, k=0, \ldots, m\right) . \tag{6}
\end{equation*}
$$

2. Main results

Theorem 1. For any linear multi-step method (2) with $\alpha_{m} \neq 0$ of order s for hamiltonian system, if we choose Z_{0}, \ldots, Z_{m-1} such that mappings $Z_{i} \rightarrow Z_{i+1}(0 \leqslant i \leqslant m-2)$ are symplectic, then mapping $Z_{m-1} \rightarrow Z_{m}$ will be non-symplectic.

In order to prove Theorem 1, we introduce the following Definition 2 and Lemma 1:
Definition 2. A transformation $M: \mathbb{R}^{2 n} \rightarrow \mathbb{R}^{2 n}$ is said to be infinitesimally symplectic iff its Jacobian M_{z} satisfies $M_{z}^{\mathrm{T}} J+J M_{z}=0$.

Lemma 1 (see [9]). For $k \geqslant 2, Z^{[k]}$ cannot be infinitesimally symplectic. Provided $s \geqslant 3$, then $\sum_{j=1}^{s} \sum_{\substack{l_{1}+\cdots+l_{j}=s \\ l_{u} \geqslant 1}} b_{l_{1} \cdots l_{j}}$ $J(\nabla H)_{z^{j}} Z^{\left[l_{1}\right]} \ldots Z^{\left[l_{j}\right]}$ is infinitesimally symplectic iff $b_{l_{1} \cdots l_{j}}=0$, for all j and all l_{1}, \ldots, l_{j}.

Here we use the notation $Z^{[0]}=Z, Z^{[1]}=f(Z), Z^{[k+1]}=\left(\partial Z^{[k]} / \partial Z\right) Z^{[1]}=Z_{z}^{[k]} Z^{[1]}$ for $k=1,2, \ldots$. And $(\nabla H)_{z^{j}} Z^{\left[l_{1}\right]} \cdots Z^{\left[l_{j}\right]}$ stands for the multi-linear form

$$
\sum_{1 \leqslant t_{1}, \ldots, t_{j} \leqslant 2 n} \frac{\partial^{j}(\nabla H)}{\partial Z_{\left(t_{1}\right)} \cdots \partial Z_{\left(t_{j}\right)}} Z_{\left(t_{1}\right)}^{\left[l_{1}\right]} \cdots Z_{\left(t_{j}\right)}^{\left[l_{j}\right]}
$$

$Z_{\left(t_{u}\right)}^{\left[l_{u}\right]}$ stands for the t_{u} th component of the $2 n$-dim vector $Z^{\left[i_{u}\right]}$.

Proof of Theorem 1. Setting $Z=Z_{0}$, according to the order condition we can only choose

$$
\begin{equation*}
Z_{k}=\sum_{i=0}^{+\infty} \frac{k^{i} \tau^{i}}{i!} Z^{[i]}+\tau^{s+1} \Theta_{k}(Z)+\mathrm{O}\left(\tau^{s+2}\right), \quad 1 \leqslant k \leqslant m-1 \tag{7}
\end{equation*}
$$

and then we also have

$$
\begin{equation*}
Z_{m}=\sum_{i=0}^{+\infty} \frac{m^{i} \tau^{i}}{i!} Z^{[i]}+\tau^{s+1} \Theta_{m}(Z)+\mathrm{O}\left(\tau^{s+2}\right) \tag{8}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
\left[\frac{\partial Z_{k}}{\partial Z}\right]^{\mathrm{T}} J\left[\frac{\partial Z_{k}}{\partial Z}\right]=J+\tau^{s+1}\left\{\left[\frac{\partial \Theta_{k}}{\partial Z}\right]^{\mathrm{T}} J+J\left[\frac{\partial \Theta_{k}}{\partial Z}\right]\right\}+\mathrm{O}\left(\tau^{s+2}\right) \tag{9}
\end{equation*}
$$

for $1 \leqslant k \leqslant m$.
Since the composition of any two symplectic transformations is symplectic, $Z_{i} \rightarrow Z_{i+1}(0 \leqslant i \leqslant m-2)$ is symplectic means $Z_{0} \rightarrow Z_{i+1}(0 \leqslant i \leqslant m-2)$ is symplectic. Therefore,

$$
\begin{equation*}
\left[\frac{\partial \Theta_{k}}{\partial Z}\right]^{\mathrm{T}} J+J\left[\frac{\partial \Theta_{k}}{\partial Z}\right]=0, \quad 1 \leqslant k \leqslant m-1 \tag{10}
\end{equation*}
$$

that is to say Θ_{k} is infinitesimally symplectic for $1 \leqslant k \leqslant m-1$.
Substituting (7) and (8) into (2) and comparing the terms of τ^{s+1} on both sides we obtain

$$
\begin{equation*}
\Theta_{m}(Z)=\sum_{k=0}^{m-1} \delta_{k} \Theta_{k}(Z)+\delta_{m} Z^{[s+1]}, \tag{11}
\end{equation*}
$$

where $\delta_{k}=-\alpha_{k} / \alpha_{m}$ for $1 \leqslant k \leqslant m-1$ and $\delta_{m}=\sum_{k=0}^{m} k^{s}\left[(s+1) \beta_{k}-k \alpha_{k}\right] /\left[\alpha_{m}(s+1)!\right] \neq 0$.
According to Lemma 1 , we easily conclude from (10), (11) that Θ_{m} cannot be infinitesimally symplectic. Thus, we know from (9) that $Z \rightarrow Z_{m}$ (and then $Z_{m-1} \rightarrow Z_{m}$) is non-symplectic.

For general linear methods in form (6), we establish the following:
Theorem 2. For any general linear method (6) with $\alpha_{m} \neq 0$ of order sfor hamiltonian system, if we choose Z_{0}, \ldots, Z_{m-1} such that the symplecticity of mappings $Z_{i} \rightarrow Z_{i+1}(0 \leqslant i \leqslant m-2)$ results in the symplecticity of mapping $Z_{m-1} \rightarrow Z_{m}$, then $s=2$.

Proof of Theorem 2. Setting $Z=Z_{0}$, similarly we also have (7), (8), (9) and (10). Substituting (7) and (8) into (6) and comparing the terms of τ^{s+1} on both sides we obtain

$$
\begin{equation*}
\Theta_{m}(Z)=\sum_{k=0}^{m-1} \delta_{k} \Theta_{k}(Z)+\sum_{j=1}^{s} \sum_{\substack{t_{1}+\cdots+t_{j}=s \\ 1 \leqslant t_{u} \leqslant s}} \lambda_{t_{1} \cdots t_{j}} J(\nabla H)_{z^{j}} Z^{\left[t_{1}\right]} \cdots Z^{\left[t_{j}\right]}, \tag{12}
\end{equation*}
$$

where $\delta_{k}=-\alpha_{k} / \alpha_{m}$ for $1 \leqslant k \leqslant m-1, \lambda_{t_{1} \cdots t_{j}}=\rho_{t_{1} \cdots t_{j}} / \alpha_{m}$ and each $\rho_{t_{1} \cdots t_{j}}$ is a polynomial in $\alpha_{i}(1 \leqslant i \leqslant m-1), \beta_{j}$ $(1 \leqslant j \leqslant m)$ and $\gamma_{k l}(1 \leqslant k, l \leqslant m)$. According to the order condition, $\lambda_{t_{1} \cdots t_{j}}$ is not always null for $t_{1}+\cdots+t_{j}=s$, $1 \leqslant t_{u} \leqslant s$.

According to Lemma 1 , for $s \geqslant 3$ we conclude from (10), (12) that Θ_{m} cannot be infinitesimally symplectic. One can easily check the same situation for $s=1$. Thus, we know from (9) that $Z \rightarrow Z_{m}$ (and then $Z_{m-1} \rightarrow Z_{m}$) is non-symplectic unless $s=2$.

3. Concluding remark

The results of Theorems 1 and 2 show the difficulty of getting a series of stringent symplectic step-transition mappings for the linear multi-step methods (and some sort of general linear methods). One should try constructing of symplectic multi-step methods in a weaker sense.

Acknowledgements

This research is supported by the Informatization Construction of Knowledge Innovation Projects of the Chinese Academy of Sciences "Supercomputing Environment Construction and Application" (INF105-SCE), and by a Grant (No. 10471145) from National Natural Science Foundation of China.

References

[1] V.I. Arnold, Mathematical Methods of Classical Mechanics, second ed., 1989, Springer, New York, 1978.
[2] T. Eirola, J.M. Sanz-Serna, Conservation of integrals and symplectic structure in the integration of differential equations by multistep methods, Numer. Math. 61 (1992) 281-290.
[3] Z. Ge, K. Feng, On the approximation of linear Hamiltonian systems, J. Comput. Math. 6 (1) (1988) 88-97.
[4] E. Hairer, P. Leone, Order barriers for symplectic multi-value methods, in: D.F. Griffiths, D.J. Higham, G.A. Watson (Eds.), Numerical Analysis 1997, Proceedings of the 17th Dundee Biennial Conference, June 24-27, 1997, Pitman Research Notes in Mathematics Series, vol. 380, Longman Sci. Tech., Harlow, 1998, pp. 133-149.
[5] E. Hairer, Ch. Lubich, G. Wanner, Geometric Numerical Integration, Springer, Berlin, 2002.
[6] E. Hairer, S.P. Nørsett, G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems, second ed., Springer Series in Computational Mathematics, vol. 8, Springer, Berlin, 1993.
[7] R. MacKay, Some aspects of the dynamics and numerics of Hamiltonian systems, in: D.S. Broomhead, A. Iserles (Eds.), The Dynamics of Numerics and the Numerics of Dynamics, Clarendon Press, Oxford, 1992, pp. 137-193.
[8] R.I. McLachlan, J.C. Scovel, A survey of open problems in symplectic integration, Fields Inst. Commun. 10 (1996) $151-180$.
[9] Y.F. Tang, The symplecticity of multi-step methods, Computers Math. Appl. 25 (3) (1993) 83-90.

[^0]: * Corresponding author.

 E-mail address: tyf@1sec.cc.ac.cn (Y.-F. Tang).

