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Abstract  

This letter focuses on studying algebraic structure and the Poisson’s theory of mechanico-electrical 
systems. Based on the relationship between momentum and Hamiltonian, we present Hamilton canonical 
equations and generalized Hamilton canonical equations and their contravariant algebraic forms for 
mechanico-electrical systems. The work derives that Lagrange mechanico-electrical systems possess Lie 
algebraic structure, and then Poisson’s theory on holonomic conservative mechanical systems is used by 
these systems; and Lagrange-Maxwell mechanico-electrical systems possess Lie admitted algebraic structure, 
and then Poisson’s theory on holonomic conservative mechanical systems is halfway used by these systems. 
Two examples are discussed to illustrate these results.  
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1. Introduction 

It is well known that many methods have been developed to seek invariants of mechanical and 
physical systems.1-15 Some important ones Ermakov technique as used by Ray and Reid1 in a series of 
papers, Lutzky’s approach2,3 using Noether’s theorem, group transformation method of Burgan et al.4as 
used by Ray,5dynamical algebraic method of Korsch6 as used by Kaushal, Korsch and Mishra,7,8 algebraic 
structure and Poisson’s theory for constrained mechanical systems as used by Mei.9-14 Among these 
methods, the invariants of the mechanical systems are studied by using algebraic structure seems to have an 
additional advantage of having a straightforward extension to the corresponding quantum mechanical 
systems,15 and algebraic structure and Poisson’s theory are carried out to relativistic Birkhoffian systems by 
Fu et al.16-18 These methods while applied successfully to the mechanico-electrical systems have not been 
explored so far. In this letter, we make an effort in this direction and demonstrate the applications of the 
algebraic structure and Poisson’s theory of dynamical systems to mechanico-electrical systems.  
2. Generalized Hamilton canonical equations of mechanico-electrical systems 
    Mechanico-electrical systems are systems in which a mechanical process and an electromagnetic 
process are coupled. The mechanical part, constituted by N particles, is described by n generalized 
coordinates ql (l=1,…,n), and the electrodynamical part, constituted by m electric circuits, is described by 
m electric quantities ek(k=1, …,m). Consider a mechanico-electrical system composed of m  circuits 
consisting of linear conductors and capacitors. Let ik denote the current, uk denote the electronic potential, 
Rk denote the resistance, and Ck denote the capacitance. Then the Lagrangian of the mechanico-electrical 

                                                        
1 Corresponding author: Jing-Li Fu. 



system is  
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where Lkr=Lkr(q)(k≠r) is the mutual-inductance between the k th circuit and the r th circuit, Lkk=Lkk(q) is the 
self-inductance of the k th return circuit, Ck=Ck(q) is the capacitance of k th capacitor. We point out that the 

coupling characteristic of mechanical process and electromagnetic process is expressed in eW and mW . For 

simplicity, we use the convention which the repeated suffixes denote summation in the Letter.  
Motion of the system is governed by the Lagrange-Maxwell equation  
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where '
lQ is non-potential generalized force, F is the following dissipative function      
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where { } ie == meee ,,, 21 denotes electric current, the electric dissipative function is given by 
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and Fm is the dissipative function of the viscous frictional damping force. 
We now take that the qs(s=1,…,n,n+1, …,n+m) expresses generalized coordinate which qs(s=1,…,n) 

denotes the component of space coordinate, qs(s=n+1, …,n+m) denotes the component of electrics, then Eq. 
(3) can be written in the form  
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where Qs(s=1,…,n) denotes non-potential generalized force, and Qs(s=n+1,…,n+m) denotes generalized 
electrokinetic potential.  

The systems are called the Lagrange mechenico-electrical systems satisfying condition 

0=∂∂− ss qFQ . Equation (6) yields 
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here the mechanical and electromagnetic process is also coupling each other. 
Supposing the generalized momentums of mechenico-electrical systems are   
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and introduce the Hamiltonian of the systems 
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where { }nppp ,,, 21=p denotes generalized momentum. Equation (6) can be shown that  
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which is called the generalized Hamilton canonical equation of mechanico-electrical systems. Eq. (7) can 
can be written that 
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which is called the Hamilton canonical equation of Lagrange mechanico-electrical systems. In Eqs. (10) 
and (11), q={q1,… ,qn,qn+1,… ,qn+m},p={p1,… ,pn,pn+1, … ,pn+m } denote generalized coordinate and 
generalized momentum respectively. 
3. Contravariant algebraic form of mechanico-electrical systems 

Let us introduce contravariant vectors  
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Hamiltonian of the system is written in the form 
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Using the contravariant tensor  
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then Hamilton canonical equation (11) is expressed in the contravariant algebraic form  
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For generalized Hamilton canonical equation (10) of Lagrange-Maxwell mechanico-electrical systems, 
we let  

    
k

skst
s

s p
HQ

q
FQ

ss ∂
∂

−==
∂
∂

− = Ω~)( ),,( pqqq  （s,k=1,…,n,n+1,…,n+m）,          (16) 



where 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

++ ))((

22

11

000

00
00

)(

mnmn

sk

Ω

Ω
Ω

Ω ,                           (17) 

then Eq. (10) can be expressed in the contravariant algebraic form.  
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It is obvious that the tensor Sµν composed with anti-symmetry tensor ωµν and symmetry tensor Tµν. 
   For example, the Lagrangian of mechanico-electrical system is 
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subjected to non-potential generalized force xxcQ 11 = , ecQ 22 = , dissipative function −= 2
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Substituting H into Eq. (16) yields 
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Substituting µνω and µνT into Eq. (18) leads to the contravariant algebraic form of the mechanico- 

electrical system  
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4. Algebraic structure of mechanico-electrical systems  
Firstly, we carry out the algebraic structure of Lagrange mechanico-electrical systems 

We taking total derivative to a function )(aA along the Eq. (15), one has  
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the right-hand side of Eq. (22) is defined as a double-linear product HA , i.e.  
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which satisfies right-hand distributive law, left-hand distributive law and scalar law, so Eq. (23) possesses 
compatible algebraic structure. 

We expanding form (23) yields  
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this is the classical Poisson’s bracket (A, B), i.e. BABA =),( . It is well known that Poisson’s bracket 

satisfies anti-symmetry   
0=+ ABBA ，                                   (25) 

and Jacobi identical equation 
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equations (25) and (26) are also called Lie algebra axiom, then one has 
Theorem 1 Equations of motion of Lagrange mechanico-electrical systems possess the compatible 

algebraic structure as well as the Lie algebraic structure. 
Secondly, one presents the algebraic structure of Lagrange-Maxwell mechanico-electrical systems.  
We taking total derivative to a function A(a) along Eq. (18), and this derivative is defined as a product 
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this product also satisfies right-hand distributive law, left-hand distributive law and scalar law, and then the 
Eq. (18) possesses the compatible algebraic structure. 

If Eq. (18) possesses the Lie algebraic structure, the Eq. (27) satisfies Eqs. (25) and (26). When 
considering Eqs. (19)~(21), the Eqs. (25) and (26) lead to conditions with respect to Tµν  
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Further, we carry out  
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Therefore, Eq.（18）have no Lie algebraic structure, we have  
Theorem 2 The equations of motion of Lagrange-Maxwell mechanic-electrical systems have not Lie 

algebraic structure. 
We can prove that the Lagrange-Maxwell mechanico-electrical systems possess the Lie admitted 

algebraic structure. For Eq. (27), we define a new product  
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it satisfies anti-symmetry 
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and Jacobi identical equation  
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Expanding Eq.（34），the Sµν satisfies the following form 
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Using Eq. (19) ~Eq.（21），equation (36) leads to 
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µνT is a symmetry tensor, then Eq (37) is evident. The new product (32) possesses Lie algebraic structure, 
then Eq. (27) possesses Lie admitted algebraic structure. We give  

Theorem 3 Equations of motion of Lagrange-Maxwell mechanico-electrical systems possess the 
compatible algebraic structure as well as Lie admitted algebraic structure. 
5. Poisson’s theory of mechanico-electrical systems  

It is well known that there are two main contents in the Poisson’s integration theory of conservative 
holonomic systems. One is the Poisson conditions on the first integral. The other is the Poisson theorem. 
This theory points out that the Poisson’s bracket of two first integrals, which are not involution, is also a 
first integral. We now give generalizations of the Poisson’s theory in mechanico-electrical systems. 



5.1 Poisson’s theory of Lagrange mechanico-electrical systems  
We have known that the theoretical foundation of Possion integral method is equation of motion of 

systems possessing Lie algebraic structure.[19] Lagrange mechanico-electrical system（11）possesses Lie 
algebraic structure, then the Poisson integral methods of conservative holonomic dynamical systems can all 
be used in the systems. Then we have  
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is a Poisson bracket. 

Proof In fact, the I is a first intefral if and only if 0=I . Notice that 
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Equation (39) is called the Poisson condition of the first integral for Lagrange mechanico-electrical 
systems.  

Proposition 2 H=c is a first integral of Lagrange mechanico-electrical system, if the Hamiltonian of 
the system does not depend evidently on time t. 

Proposition 3 For the Lagrange mechanico-electrical system (11), which possessing two first integrals 
I1(aµ,t) and I2(aµ,t) have not involution, then theirs Poisson bracket（I1, I2）is also a first integral of the 
system. 

Proof : Supposing the Lagrange mechanico-electrical system (11) possesses the following two first 
integrals having not involution 
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using Lie algebraic axioms（25），（26）lead to 

  )),,(()),(,()),,(()),,(()),,(( 2121211221 IHIHIIIIHIHIHII +=−−= ,          (44) 

combining Eqs. (43) and（44）and considering Eq. (41) yield  

0)),(,()),,()(()),,((),( 2
2

121
1

2121 =+
∂
∂

++
∂
∂

=+
∂
∂ HI

t
IIIHI

t
IHIIII

t
.         (45) 

then（I1,I2）being also a first integral of the system is obtained in Eq. (45).  
Proposition 4 For the Lagrange mechanico-electrical system（11）,which possesses a first integral 

I(aµ,t) containing t , and Hamiltonian does not depend evidently on t, then ,, 2
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Proof:  By partial differentiating（38）with respect to t , we obtain 
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Proposition 5 For the Lagrange mechanico-electrical system (11), which possesses a first integral 
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Proof: By partial differentiating (38) with respect to aρ, we have 
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where H does not depend evidently on aρ, one has  
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5.2 Poisson’s theory of Lagrange-Maxwell mechanico-electrical systems 

Poisson’s theory still point out that[19] the part of Poisson integral methods may be used by such 
systems, when the equation of motion of the systems possesses Lie admitted algebraic structure, and the 



Poisson theorem are not hold in the systems.    

Proposition 6 The necessary and sufficient condition on which ),,1(),( mntaI +=µµ is a first 

integral of the Lagrange-maxwell mechanico-electrical system (18) is that the ),( taI µ satisfies 
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Proposition 7 H=C is a first integral of the conservative and no dissipated Lagrange-Maxwell 
mechanico-electrical system (18), if the Hamiltonian H of the system does not depend evidently on time t. 

Proof:  Substituting I=H into Eq. (48) leads to 
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using Eq. (15), we obtain 
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then H=C is first integral of Lagrange-Maxwell mechanico-electrical system (18) for the case of 0~
=sQ  

and no dissipation, when H does not depend evidently on t. 
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when Hamiltonian H, non-potential generalized force Qs and the dissipative function F do not depend 
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Proposition 9 For the Lagrange-Maxwell mechanico-electrical system (18), which possesses a first 

integral I(aµ,t) containing aρ, and Hamiltonian H , non-potential generalized force Qs and the dissipative 
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when Hamiltonian H，non-potential general force Qs and the dissipative function F do not depend evidently 

on aρ, i.e. sQ
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namely ρa
I

∂
∂

is first integral of the system (18), Similar, we can prove ,2

2

ρa
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∂

∂
, are also first integrals of 

the system. 
6. An example 

Consider a circuitry of dynamoelectric transducer, which memorizes mechanical vibration. Let m 
denote the mass of armature, k denote the stiffness factor, L1=L1(x)=bx (b is constant) denote the 
self-inductance of winding. The circuitry constituted by winding, battery and resistance, where x denotes 
the displacement of plumb line, which is calculated from originally length of spring. E denotes the 
electromotive force of battery, and R denotes the resistance. We choose that displacement x and electric 
quantity q are expressed by general coordinates. We, further, suppose that the armature subjected 

nonconservative force xqRxqE 2+ . Let us study algebraic structure and Poisson integral approach.  

The kinetic energy and magnetic energy of the system is  
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potential energy is  

                        mgxkxV −= 2
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and dissipative function is 
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Lagrange function of the system is written in the form 
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Taking the general momentums and velocities of system are   
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then Hamiltonian of the system is expressed by  
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Equations of motion of the system are described by part canonical form  

,

,
2
1

,,

2

2

2

2
2

2

1

21

qREqRE
q
Hp

x
qR

x
qE

x
p

b
mgkx

x
qR

x
qE

x
Hp

bx
pq

m
px

−=−+
∂
∂

−=

+−++−=+−
∂
∂

−=

==

             (61) 

in which 
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Let 
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Equation（59）is written as contravariant algebraic form，one has 

                 0=
∂
∂

− ν
µν

a
HSau

， （µ,ν=1,…,4）                             (64) 

where 

                  µνµνµν ω TS += , 

                ⎥
⎦

⎤
⎢
⎣

⎡
−

=
××

××

2222

2222

0
0

)(
I

Iµνω , ⎥
⎦

⎤
⎢
⎣

⎡
−

=
×

××

kk

T
Ω

µν

22

2222

0
00

)( . 

Using Eqs. (15) and (62) , we obtain  
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Therefore, we give 
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when  
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we know, from the proposition (7), that Hamiltonian of the system 
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is first integral. Using proposition 6, we can obtain  
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Equation (69) is one-order linear homogeneous partial differential equation, its characteristic equation is  
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We, from Eq. (70), can obtain the following integrals  
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the first integral I3 includes a2，using proposition 9，from I3 leads to the new integral  
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7. Conclusion 
The algebraic structure and the Poisson’s theory are extended to mechanico-electrical systems in this 

letter. The results here present significant approaches to seek conserved quantities in mechanico-electrical 
systems. 
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