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Abstract
This letter focuses on studying algebraic structure and the Poisson’s theory of mechanico-electrical
systems. Based on the relationship between momentum and Hamiltonian, we present Hamilton canonical
equations and generalized Hamilton canonical equations and their contravariant algebraic forms for
mechanico-electrical systems. The work derives that Lagrange mechanico-electrical systems possess Lie
algebraic structure, and then Poisson’s theory on holonomic conservative mechanical systems is used by
these systems; and Lagrange-Maxwell mechanico-electrical systems possess Lie admitted algebraic structure,
and then Poisson’s theory on holonomic conservative mechanical systems is halfway used by these systems.
Two examples are discussed to illustrate these results.
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1. Introduction
It is well known that many methods have been developed to seek invariants of mechanical and
physical systems.""” Some important ones Ermakov technique as used by Ray and Reid' in a series of
papers, Lutzky’s approach™ using Noether’s theorem, group transformation method of Burgan et al.*as
used by Ray, dynamical algebraic method of Korsch® as used by Kaushal, Korsch and Mishra,”® algebraic
structure and Poisson’s theory for constrained mechanical systems as used by Mei.”'* Among these
methods, the invariants of the mechanical systems are studied by using algebraic structure seems to have an
additional advantage of having a straightforward extension to the corresponding quantum mechanical
systems,'~ and algebraic structure and Poisson’s theory are carried out to relativistic Birkhoffian systems by
Fu et al.'*"® These methods while applied successfully to the mechanico-electrical systems have not been
explored so far. In this letter, we make an effort in this direction and demonstrate the applications of the
algebraic structure and Poisson’s theory of dynamical systems to mechanico-electrical systems.
2. Generalized Hamilton canonical equations of mechanico-electrical systems
Mechanico-electrical systems are systems in which a mechanical process and an electromagnetic
process are coupled. The mechanical part, constituted by N particles, is described by n generalized
coordinates ¢; (/=1,...,n), and the electrodynamical part, constituted by m electric circuits, is described by
m electric quantities e(k=1, ...,m). Consider a mechanico-electrical system composed of m circuits
consisting of linear conductors and capacitors. Let i; denote the current, u; denote the electronic potential,
Ry denote the resistance, and C; denote the capacitance. Then the Lagrangian of the mechanico-electrical
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system is

L:T(q,Q)—V(q)—VVe(q,e)-l-Wm(q,e), (1)

in this letter, = {ql,qz,”-,qn },q = {q'l,qz,-"q'n },e = {el,ez.- . -,em} denote generalized coordinate,

1 ) <

generalized velocity and generalized electric quantity respectively, T :Eas (9)g, and V = sz )]
s=1

are the kinetic energy and the potential energy, and the electric field energy and the magnetic field energy

of the m th circuit are respectively defined by

1 e 1 1
VVe :__k’VVm :_Lkrikir =_Lkrékér (k’r = l’ip) (2)

2C, 2 2
where Ly, =L (Q)(k#r) is the mutual-inductance between the & th circuit and the 7 th circuit, Ly=L(q) is the

self-inductance of the & th return circuit, C;=Cy(q) is the capacitance of & th capacitor. We point out that the

coupling characteristic of mechanical process and electromagnetic process is expressed in, and W, . For

simplicity, we use the convention which the repeated suffixes denote summation in the Letter.
Motion of the system is governed by the Lagrange-Maxwell equation

16—;—8—L+6—F=Q,', ia_']“_a_l’_i_@_]'::uk (=1 ,mk=1---,m), 3)
dt 0q, 0q, 0q, dt 0e, 0Oe, 0Oé,

where Q, is non-potential generalized force, F is the following dissipative function
F=F(€)+F, (9,09), 4

where € = {él NN } = i denotes electric current, the electric dissipative function is given by

1, 1.,
Fe :ERklk :ERkek (k:1,---,m). (5)
and F, is the dissipative function of the viscous frictional damping force.
We now take that the gs(s=1,**,n,nt1, -*-,ntm) expresses generalized coordinate which g (s=1,***,n)
denotes the component of space coordinate, g,(s=n+1, *,n+m) denotes the component of electrics, then Eq.

(3) can be written in the form

doL oL oF
dt oG, 0q, 94

=0, (s=L-,nn+l,---,n+m). (6)

s N

where Qy(s=1,:*,n) denotes non-potential generalized force, and Qy(s=n+1,:*,n+m) denotes generalized
electrokinetic potential.

The systems are called the Lagrange mechenico-electrical systems satisfying condition

Q, —0F/0¢, =0 . Equation (6) yields



————:O (S: 9“':nan+1:'“9n+m)‘ (7)

here the mechanical and electromagnetic process is also coupling each other.
Supposing the generalized momentums of mechenico-electrical systems are

_a

— (s=L-,nn+l,--- n+m), ®
aq,

Py

and introduce the Hamiltonian of the systems

H(t’ q’q) = psq.s - L = psq.s (t7 q’ p) - L(t’ qs ’q.s (t’ q’ p)) = H(t7 qi‘ p) b (9)
where p = {pl s Das 5 Py }denotes generalized momentum. Equation (6) can be shown that

; oF -
qS aps ’ ps aqs ’ (Qb _a)‘ 4,=4,(2,9,p) (S_l’ ’n’n+1’ b n+m)’ (10)

)
which is called the generalized Hamilton canonical equation of mechanico-electrical systems. Eq. (7) can
can be written that

oH o aH

, D, =——— (=L, ol ntm) (11)
op, P oq,

q,
which is called the Hamilton canonical equation of Lagrange mechanico-electrical systems. In Egs. (10)
and (11), 9={q1, *** GnsGn+1> *** sGuim}-P={P1> *** PusPn+1, *** Pnsm |} denote generalized coordinate and
generalized momentum respectively.
3. Contravariant algebraic form of mechanico-electrical systems

Let us introduce contravariant vectors

aﬂ:{q” (u=1-,nn+1,---,n+m), 12)
Doinenmy (W =n+m+1,---2(n+m)),
Hamiltonian of the system is written in the form
H(t,q,p) = H(t,a"), (13)
Using the contravariant tensor
(a)#u/) _ ( 0("+m)x(n+m) I(ﬂ+m)x(n+m) j i (14)
- I(n+m)><(n+m) (n+m)x(n+m)
then Hamilton canonical equation (11) is expressed in the contravariant algebraic form
a" —a)’”%: 0 (wov=L--n+m,-,n+mn+m+1,--2n+2m). (15)

For generalized Hamilton canonical equation (10) of Lagrange-Maxwell mechanico-electrical systems,

we let
OF ~ oH
) ¢ =0 =-Q, —  (s,k=1,nn+l, - ntm) , 16
(Qs aq-s )‘ d,=0,(z,0,p) Qs sk apk (16)



where

0 0, - 0
(‘st ) = : : .. : b (17)
0 0 O Q(n+m)(n+m)

then Eq. (10) can be expressed in the contravariant algebraic form.

OH

d”—S”Va—V:O (u,v=L-,nn+l,--n+mn+m+1,---2(n+m)), (18)
a
S =" +T"", (19)
On+m><nm ]nmxnm
(0)/”’):( ( Yx(n+m) (+)(+)j’ (20)
- I(n+m)><(n+m) (n+m)x(n+m)
0 xX(n+m On m)x(n+m
(T,uV) _ (n+m)x(n+m) (n+m)x( ) ' (21)
0(n+m)><(n+m) - ‘Qkk

It is obvious that the tensor §** composed with anti-symmetry tensor o/ and symmetry tensor 7.
For example, the Lagrangian of mechanico-electrical system is

2 2
H:l&+lL+lkx2—mgx,
2m 2L(x) 2

subjected to non-potential generalized force O, = ¢, xx , 0, = c,€, dissipative function F, = §C3é2 -
c,6, F, = coxx +c%’. Where p, =mix, p, = L, (x)é denote generalized momentums, m denotes mass,

k,c,(l =1,-- -,S)are constants.

Substituting H into Eq. (16) yields

0 OH ~ oH
Q1:C]&X—Csx—2c6ﬂ:_glk_’ sz(cz_cs)—pz +Cp =22y ,
" " P L (x) op,
then
_Qu:clx—csﬂx+2cé, -Q,, =—(c;—¢,)+¢, Ll(x)’
! P,
00 0 0
00 I 0 0 0 0 0
00 017
uv ) _ e B m
(0) )_ -7 0 0 ol T = 0 0 CX — Cs 1X+26’6 0
0 -7 0 0 0 0 0 (c,—c)+e, L (x)
p




Substituting @“" and T*" into Eq. (18) leads to the contravariant algebraic form of the mechanico-

electrical system

. ) 1 oL
al=&, i, =22 ﬁpzz—loc+mgJr(cl)c—csﬂx+2céj&,

=—, a,=
m L) 2L° ox ) m

Ll(x)} P,
P, |L(x)
4. Algebraic structure of mechanico-electrical systems

a, :{_(03 —¢)te,

Firstly, we carry out the algebraic structure of Lagrange mechanico-electrical systems

We taking total derivative to a function A(a) along the Eq. (15), one has

04 . oH

= (u,v=L-,nn+L-- n+mn+m+1,---2(n+m)), (22>
oa” oa"
the right-hand side of Eq. (22) is defined as a double-linear product 4o H , i.e.
0A OH
" ——=AoH, (23)
oa” oa"

which satisfies right-hand distributive law, left-hand distributive law and scalar law, so Eq. (23) possesses
compatible algebraic structure.
We expanding form (23) yields

04 ok OH 04 0H 04 oH
Oa* da" oq* op, Oop, 0q"’

24)

this is the classical Poisson’s bracket (A, B), i.e.(A, B) = Ao B . Itis well known that Poisson’s bracket

satisfies anti-symmetry
AoB+BoA=0, (25)

and Jacobi identical equation
Ao(BoC)+Bo(CoA)+Co(AB)=0, (26)

equations (25) and (26) are also called Lie algebra axiom, then one has

Theorem 1 Equations of motion of Lagrange mechanico-electrical systems possess the compatible
algebraic structure as well as the Lie algebraic structure.

Secondly, one presents the algebraic structure of Lagrange-Maxwell mechanico-electrical systems.

We taking total derivative to a function A(a) along Eq. (18), and this derivative is defined as a product

A@@) = oA S’”a—H def Ao H , Q27)

oa” O’ —=

this product also satisfies right-hand distributive law, left-hand distributive law and scalar law, and then the

Eq. (18) possesses the compatible algebraic structure.
If Eq. (18) possesses the Lie algebraic structure, the Eq. (27) satisfies Egs. (25) and (26). When
considering Egs. (19)~(21), the Egs. (25) and (26) lead to conditions with respect to 7

T +T™ =0, (28)



uv vr T
» 0T L oT T oT _0

oa” oa” oa” (29)
(w,v,t,p=1,--,nn+1,--- . n+mn+m+1,---2n+2m),

T

Further, we carry out

‘Qkk =07 (kzla"'anan+la"'5n+m)i (30)

0,=0 (s=L--,n,n+1,---,n+m). (1)

Therefore, Eq. (18) have no Lie algebraic structure, we have

Theorem 2 The equations of motion of Lagrange-Maxwell mechanic-electrical systems have not Lie
algebraic structure.

We can prove that the Lagrange-Maxwell mechanico-electrical systems possess the Lie admitted
algebraic structure. For Eq. (27), we define a new product

[4,B] def AoB~Bo A, (32)
it satisfies anti-symmetry
[4,B]+[B,A]=0, (33)
and Jacobi identical equation
[4,[B,C]]+[B,[C, A]]+[C,[4,B]] =0, (34)

Expanding Eq. (34), the §* satisfies the following form
(S —S’“’)L(Sw -S7)+(S” —Spv)i(ST” -8+
oa” oa”

(S”’—S’”)ﬂ(S”—S”‘)zo (36)
oa”
(wv,r,p=1---,n,n+1,--- . n+mmn+m+1,---2(n+ m)).

Using Eq. (19) ~Eq. (21), equation (36) leads to

(T ~T™) (T =T™)+ (T =T") O (rm _ ey

a [
oa oa” (37

+(T7 —Tpf)aaip(TW —T%)=0.

T*"is a symmetry tensor, then Eq (37) is evident. The new product (32) possesses Lie algebraic structure,
then Eq. (27) possesses Lie admitted algebraic structure. We give

Theorem 3 Equations of motion of Lagrange-Maxwell mechanico-electrical systems possess the
compatible algebraic structure as well as Lie admitted algebraic structure.
5. Poisson’s theory of mechanico-electrical systems

It is well known that there are two main contents in the Poisson’s integration theory of conservative
holonomic systems. One is the Poisson conditions on the first integral. The other is the Poisson theorem.
This theory points out that the Poisson’s bracket of two first integrals, which are not involution, is also a
first integral. We now give generalizations of the Poisson’s theory in mechanico-electrical systems.



5.1 Poisson’s theory of Lagrange mechanico-electrical systems

We have known that the theoretical foundation of Possion integral method is equation of motion of
systems possessing Lie algebraic structure.!'” Lagrange mechanico-electrical system (11) possesses Lie
algebraic structure, then the Poisson integral methods of conservative holonomic dynamical systems can all

be used in the systems. Then we have

Proposition 1 The necessary and sufficient condition on which /(a”,t) (i =1,---,n+ m)is a first

integral of the Lagrange mechanico-electrical system (11) is that the /(a”,t) satisfies

g+(1,H)=0, (33)
ot

where

ol oH ol oH

(IaH): -
oq, op, Op, 0q,

(k=1---,nn+1,---,n+m), (39)

is a Poisson bracket.

Proof In fact, the [ is a first intefral if and only if I =0. Notice that
di _ol ol . oH _ol
dt ot oa” oa” Ot

Equation (39) is called the Poisson condition of the first integral for Lagrange mechanico-electrical

+(I,H)=0.

systems.

Proposition 2 H=c is a first integral of Lagrange mechanico-electrical system, if the Hamiltonian of
the system does not depend evidently on time ¢.

Proposition 3 For the Lagrange mechanico-electrical system (11), which possessing two first integrals
I(d",f) and L,(d",f) have not involution, then theirs Poisson bracket ([}, I,) is also a first integral of the
system.

Proof : Supposing the Lagrange mechanico-electrical system (11) possesses the following two first

integrals having not involution
I(a",t)=c,, I,(a",t)=c,, (40)
which satisfy Poisson conditions

ol ol
—14+U,,H)=0, —%2+(,,H)=0. 41
o (/,,H) o (1,,H) (41)

We take the following operation

812)+ ol, ow"" 0I,

; (42)
ot 0Oa" ot ot

0 ol
5(11,12) = (a_tlalz)"'(]n

in respect that

then one has



(1,1)( 1)(21) (43)

using Lie algebraic axioms (25), (26) lead to
(([1,]2),[‘1) = _((IZJH)JII)_((H5II)512) = ([n(lzaH))‘l'((IlaH):Iz)a (44)
combining Egs. (43) and (44) and considering Eq. (41) yield

0 ol ol
5(119[2)4-((11712):]_1) :((a_;)+(IlsH)912)+(1198_;+(12:H)):O- (45)

then (71,1;) being also a first integral of the system is obtained in Eq. (45).
Proposition 4 For the Lagrange mechanico-electrical system (11) ,which possesses a first integral
1 . - : ol 0’1
I(d",t) containing ¢, and Hamiltonian does not depend evidently on ¢, then 8—,6—2, -+, are also first
t ot
integrals of the system.

Proof: By partial differentiating (38) with respect to #, we obtain

ool ol OH
(— H)+(,—)=0,
81‘ ﬁl‘ ot ot
where H does not depend evidently on ¢, one has
oo ol
+(.H)=0. (46)
otor ot
/. , . ’1 &1
thena— is a first integral of Eq (11). Similar, one can prove that the 6_2’?’“.’ are also the first
¢ t ¢

integrals of the system.

Proposition 5 For the Lagrange mechanico-electrical system (11), which possesses a first integral

ol 0’1
I(d",t) containing ¢, and Hamiltonian H does not depend evidently on &”, then 20 ,+++, are also
a” da”
first integrals of the system.
Proof: By partial differentiating (38) with respect to a”, we have
o o ol oH
ot O ) (120 =0,
oa’ ot oa
where H does not depend evidently on ¢”, one has
0 6] 8]
= (47)
ot oa” 6a
. . - 0’1 0’1
then is a first integral of the Eq. (11). Similar we can prove —,—,""", are also first

oa” oa” 0Oa”
integrals of the system.
5.2 Poisson’s theory of Lagrange-Maxwell mechanico-electrical systems

Poisson’s theory still point out that'”! the part of Poisson integral methods may be used by such
systems, when the equation of motion of the systems possesses Lie admitted algebraic structure, and the



Poisson theorem are not hold in the systems.

Proposition 6 The necessary and sufficient condition on which /(a”,t) (i =1,---,n+m)is a first

integral of the Lagrange-maxwell mechanico-electrical system (18) is that the /(a”,) satisfies

g+[1 H]=0 (48)
ot
where
[I,H]:IOHza—IS”Vi (u,v=L--nn+1,---n+mn+m+1---2n+2m).
oa* oa”

is Poisson bracket, and S*"is given by Egs. (19)-(21).

Proposition 7 H=C is a first integral of the conservative and no dissipated Lagrange-Maxwell
mechanico-electrical system (18), if the Hamiltonian H of the system does not depend evidently on time 7.
Proof: Substituting /=H into Eq. (48) leads to

N iw, =2 O g OO | Oy OO Q4 2w
a ot 8a oa” 8t aa # oa’ ot Ba’m
using Eq. (15), we obtain
aH [H H]—ﬁﬂ‘FQ( oH ) (s=1,-",n,n+1,~--,n+m). (50)
al ot Ba"m

then H=C is first integral of Lagrange-Maxwell mechanico-electrical system (18) for the case of Q‘, =0

and no dissipation, when H does not depend evidently on ¢.
Proposition 8 For the Lagrange-Maxwell mechanico-electrical system (18) , which possesses a first
integral I(a",f) containing ¢ ,when Hamiltonian / , non-potential generalized force Q, and the dissipative

2

function £ do not depend evidently on ¢, a—, -, are also first integrals of the system.
t

or*’

Proof: By partial differentiating (48) with respect to ¢, we can obtain

o ol o0, oI ol . 0 OH
R R e ) 5)
ot ot ot da" Oa oa” Ot
when Hamiltonian H, non-potential generalized force O and the dissipative function F do not depend
evidently on 7, 1. e. ﬁés =0, 8_H =0, one has
ot ot
0 ol
il il =0. 52
Py ( at) [ H] (52)

7 2
namely@— is first integral of the system (18). Similar, we can prove@—z, ---, are also first integrals of the
t t

system.
Proposition 9 For the Lagrange-Maxwell mechanico-electrical system (18), which possesses a first
integral /(a",f) containing ¢, and Hamiltonian H , non-potential generalized force O, and the dissipative



ol o°1
oa’’ da”

Proof: By partial differentiating (48) with respect to @”, we can lead to

function F do not depend evidently on &, then -, are also first integrals of the system.

0,6 ol 0 oH 8Q ol ol 0 ,0H

S + S ( )=0. (53)
Ot (8 2 oa” (8 p) oa" 861" oa""""  Oa” oa" "0a”
when Hamiltonian H, non-potential general force Q; and the dissipative function F do not depend evidently
~ OH
ond’, Q =0, we have
' Ba’
0, ol 0 ,OH 0 ol ol
G B p>*‘ = () 4 [ H]=0. (54)
ot 0a”  0Oa" Oa Oa” Ot Oa” oa
[ . o’ .
namely 20’ is first integral of the system (18), Similar, we can prove ——-,---, are also first integrals of
a oa”
the system.

6. Anexample

Consider a circuitry of dynamoelectric transducer, which memorizes mechanical vibration. Let m
denote the mass of armature, k& denote the stiffness factor, L;=L;(x)=bx (b is constant) denote the
self-inductance of winding. The circuitry constituted by winding, battery and resistance, where x denotes
the displacement of plumb line, which is calculated from originally length of spring. £ denotes the
electromotive force of battery, and R denotes the resistance. We choose that displacement x and electric
quantity ¢ are expressed by general coordinates. We, further, suppose that the armature subjected

nonconservative force £ §/x + R q’ / X . Let us study algebraic structure and Poisson integral approach.

The kinetic energy and magnetic energy of the system is

r .1, .
T =—mi+—bxq’, (55)
2 2
potential energy is
1
—Ekx2 —mgx, (56)
and dissipative function is
.
F=——Rg’>, (57)
2
Lagrange function of the system is written in the form
| I, . 1
L=—mx’+—bxq’ ——kx* +mgx. (58)
2 2 2
Taking the general momentums and velocities of system are
oL L
P = 8 =mx, X= &,
X
(59)
0 =L g g2
Gy ’ bx’

then Hamiltonian of the system is expressed by



1pl 1p; 1
__p_1+_&+_kxz_mgx. (60)

H =
2m 2bx 2

Equations of motion of the system are described by part canonical form

. _ D . _ P
X =, =
m 1 bx
' H . -2 1 2 h -2
pl:_5——Eg_+Rq—,z—kx+mg+—p—§—E1.+Rq—., (61)
ox X X 2b x X X
. H . .
D, :_a—+E—Rq=E—Rq,
dq
in which
. .2 2
0, =-EdyRL — g™ g 5 _p_ pP: (62)
X X bxp, b x bx
Let
a, =x,a, =q,a; = p,,d, = P, > (63)
Equation (59) is written as contravariant algebraic form, one has
. oH
au _S#v . — 0 , (,u,vzl,"',4) (64)
oa

where

S* = 0" +T*

(a)w):[(’;xz (I)} (T’”):B“ OQ}
L2 2x2 22 Sk

Using Eqgs. (15) and (62) , we obtain

2 2 2
m-a m-a ba
-Q,, =-F ‘;+R > 242, -Q,=EFE—-R. (65)
ba,a b a;a a
143 1643 4
Therefore, we give
2 2
. a . a . a ma ma a
a1=—3, a2:_4: a3=ka1—mg+—;42—E ~+R 2 24 ) a4:E—R—4, (66)
m ba, 2b a, ba,a, b a;a, ba,
when
N o, 04 =0i+0,5=-E +R 9 p% g g 67)
8t H sds 1 2 bal b2a12 bal b2a12 .
we know, from the proposition (7), that Hamiltonian of the system
lai 1a; 1
H=—"+——"+—ka' —mga, =C,, (68)
2m 2ba, 2

is first integral. Using proposition 6, we can obtain



a1 ol ol L oH ol .oH o ola ol a

+I1oH=" w S T Y
ot ot 6a” oa" Oa" da" Ot 0Oa'm Oa, ba'
ol ;L la ol ©
(—E% g _ka, +mg)+-2L(E - Ry =,
Oa ba,a, b a;a, 2 ba1 oa, ba,

Equation (69) is one-order linear homogeneous partial differential equation, its characteristic equation is

dt _mda, _bada, _ a,da, __ da, ’ (70)
1 a, a, (-E ma, ernazf aa; ~kaa, +mga,) E- Ra,
ba, b’a’ 2ba} ba,
We, from Eq. (70), can obtain the following integrals
I, :mal—ja3dt:cl, (71)
= j dt =¢,, (72)

1, ma, mRa,a, a,aa, 1
I, =—a:+E—>+ 24 L 2754 ka? v mga, =, 73
o ba, bzal2 2ba12 2! 54 : (73)

Ra,

a, FEba
14:a2+?4+R—211n(E— )=C,. (74)

a,
the first integral /5 includes a;, using proposition 9, from /3 leads to the new integral

m mRa, a,a,

+
ba, b’al 2ba}

I, =F =c5. (75)
7. Conclusion

The algebraic structure and the Poisson’s theory are extended to mechanico-electrical systems in this
letter. The results here present significant approaches to seek conserved quantities in mechanico-electrical
systems.
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